Percutaneous epidural balloon decompression and neuroplasty by ZiNeu catheter in lumber spinal stenosis patient in Bangladesh: A case report

Sanjoy Kumar Saha ¹ Panna Lal Saha ² Jin-Woo Shin ³ Raiat Shuvra Das¹ X (D) AKM Akhtaruzzaman¹

Department of Anaesthesia, Analgesia and Intensive Care Medicine, Bangabandhu Sheikh Mujib Medical University (currently, Bangladesh Medical University), Dhaka, Bangladesh

²Department of Anaesthesiology, Critical Care and Pain Medicine, National Institute of Burn and Plastic Surgery, Dhaka,

³Department of Anaesthesiology and Pain Medicine, Asan Medical Center, Seoul, South Korea

Correspondence

Rajat Shuvra Das rajatsdas1351@gmail.com

Publication history

Received: 15 Jan 2025 Accepted: 24 Apr 2025 Published online: 14 May 2025

Handling editor

Md Nahiduzzamane Shazzad 0000-0002-8535-4259

Reviewers

0000-0002-2884-9212

Seong-Soo Choi 0000-0002-2333-0235

Kazi Mahzabin Arin 0009-0004-0064-3847

percutaneous epidural balloon decompression, lumbar spinal stenosis, ZiNeu catheter

Ethical approval

Ethical approval was not sought because this is a case report. However, written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Funding

None

Trail registration no.

Not applicable

Introduction Epidural adhesions, often resulting from surgery, spinal stenosis, or disc herniation, restrict spinal nerve movement and increase neural sensitivity causing pain. Percutaneous epidural adhesiolysis (PEA), particularly beneficial for patients resistant to conservative treatments, breaks these adhesions and delivers drugs directly to the affected area [1]. Utilising Racz or ZiNeu catheters, PEA enhances drug distribution effectiveness hindered by adhesions [2]. PEA proves more effective than traditional epidural steroid injections in lumbar spinal stenosis [3]. Percutaneous epidural balloon neuroplasty (PEBN), combining balloon decompression and neuroplasty, has shown significant pain reduction and functional improvement with minimal complications [4]. We report a case of percutaneous balloon decompression and neuroplasty with a ZiNeu catheter for lumbar spinal canal stenosis, confirming its safety and effectiveness. So far literature search, no cases of combined balloon decompression and epidural neuroplasty with the ZiNeu catheter have been reported in our country.

Case description and management

A 22-year-old female presented with a three-year history of lower back pain and right leg tingling that worsened after walking for 5 minutes and improved with rest or forward flexion. Physical examination revealed bilateral sacroiliac joint tenderness, positive

straight leg raise, at right side, Patrick's, sacral thrust, and Kemp tests. Laboratory findings showed elevated erythrocyte sedimentation rate (40 mm/hour) and Creactive protein 8, pelvic radiography (modified Ferguson view) indicated bilateral grade 2 sacroiliitis.

MRI showed L4-L5 right paracentral disc protrusion and L5-S1 diffuse disc bulge, compressing L4-L5 traversing nerve roots, resulting in right-sided foraminal stenosis at L4-L5 and bilateral neural foraminal stenosis at L5-S1. The diagnosis was lumbar spinal canal stenosis at L4-L5 and L5-S1 caused by right paracentral disc protrusion and spondyloarthropathy. The patient received oral ibuprofen, acetaminophen, pantoprazole, duloxetine, along with oral tofacitinib and physical exercise based on specialists' recommendations.

After one month, with minimal improvement, the patient underwent percutaneous epidural balloon decompression and neuroplasty. The procedure performed under C-arm guidance with American Society of Anesthesiologists Monitoring System, involved an 18-gauge IV line in the right arm and a 10 -gauge caudal epidural needle from the ZiNeu (02) 1.55 mm catheter set up to S3 in caudal epidural space. The skin was infiltrated with 1% lidocaine before needle insertion. A mixture of 10 ml iohexol contrast dye and 1% lidocaine (1:1) identified filling defects at L5-S1 anterior epidural space and bilateral foramen and L4-L5 anterior epidural space (Figure 1). A ZiNeu balloon catheter was guided to both the anterior and posterior epidural space at the sites of

Key messages

This case demonstrates the efficacy of percutaneous epidural balloon neuroplasty with a zineu catheter for lumbar spinal stenosis in patients unresponsive to conservative treatment. This procedure facilitates adhesiolysis, reduces venous congestion, and enables localised drug delivery, resulting in pain relief and functional improvement. It may also serve as an alternative to surgical intervention or conventional epidural steroid injections.

© The Author(s) 2025; all rights

Published by Bangabandhu Sheikh Mujib Medical University (currently, Bangladesh Medical University).

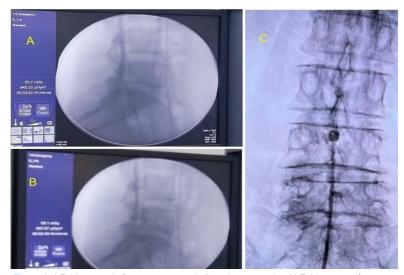


Figure 1 a) Epidurogram before percutaneous balloon decompression; b) Epidurogram after percutaneous balloon decompression; c) ZiNeu catheter at posterior epidural space with inflated balloon.

the filling defect mentioned above and, ballon was inflated with 0.1 ml iohexol dye for adhesiolysis and repeated for up to a maximum of 5 seconds at each site. Dexamethasone (3 mg) was injected into L4-L5 and L5-S1. Severe adhesions in the L5-S1 anterior epidural space necessitated 1500 units of hyaluronidase.

Although an epidurogram showed dye spread to the anterior epidural space and right L5-S1 neural foramen, balloon decompression could not be done at the L4-L5 anterior epidural space. An epidural catheter was placed in the right L4-L5 lateral canal, and 5 ml of plain 1% lidocaine was administered postoperatively. Thirty minutes later, 4 ml of 5.0% NaCl was injected after confirming the absence of motor block. The patient was discharged after one hour of satisfaction. Follow-ups over one month showed reduced pain, tingling, numbness, and improved mobility, with scores of 2/11 on the numerical rating scale, 8/35 on Paindetect, and 4 on PHQ9. The patient was able to walk for 30-40 minutes without neurogenic claudication. Physical examination revealed negative straight leg raise, and Kemp tests on the right side.

Discussion

Lower back and lower extremity pain unresponsive to conservative treatments is often linked to post-surgery syndrome, spinal stenosis, or disc herniation [5]. For patients unsuitable for or unresponsive to surgery and epidural injections, percutaneous adhesiolysis may be an effective alternative [6]. PEA alleviates pain and improves function by disrupting epidural adhesions and restoring nerve mobility.

Studies show PEA's efficacy in managing lumbar spinal stenosis, chronic disc herniation, and post-lumbar surgery syndrome [7]. The ZiNeu catheter's balloon technology aids adhesiolysis and decompression, enhancing epidural drug delivery and expanding stenotic areas. This intervention increases nerve root mobility and reduces neurogenic claudication symptoms [8].

Epidurography is crucial for identifying filling defects from adhesions and assessing procedural efficacy. A study reported transforaminal balloon treatment increased epidural space in the intervertebral foramen by 28% and lumbar foraminal canal volume by 98% [2]. Research shows significant pain relief and functional improvement with balloon decompression. In our case, improvement confirmed the safety and effectiveness of this minimally invasive procedure.

The combined balloon decompression and adhesiolysis approach using the ZiNeu catheter offers a promising alternative for managing chronic lumbar spinal stenosis, providing long-term relief and functional recovery while minimising risks.

Acknowledgments

This procedure was performed at the Social Islami Bank Limited Hospital, Panthapath, on 12 November 2024. We are thankful to the hospital authority, operation theatre, and post-surgery care unit staff of the hospital and the Bangladesh Pain Management and Research Center for their uneventful support in performing this case. Furthermore, we are grateful to the patient for his willingness to cooperate and consent to this procedure at the first intention after discussion.

Author contributions

Manuscript drafting and revising it critically: RSD, SKS, AKMA. Approval of the final version of the manuscript: RSD, SKS, PLS, JWS, AKMS. Guarantor accuracy and integrity of the work: RSD, SKS, PLS, JWS, AKMA.

Conflict of interest

We do not have any conflict of interest.

Data availability statement

We confirm that the data supporting the findings of the study will be shared upon reasonable request.

Supplementary file

None

References

- Choi SS, Joo EY, Hwang BS, Lee JH, Lee G, Suh JH, Leem JG, Shin JW. A novel balloon-inflatable catheter for percutaneous epidural adhesiolysis and decompression. Korean J Pain. 2014 Apr;27(2):178-185. doi: https://doi.org/10.3344/kjp.2014.27.2.178
- Manchikanti L, Bakhit CE. Percutaneous lysis of epidural adhesions. Pain Physician. 2000 Jan;3(1):46-64. PMID: 16906207
- Kim DH, Shin JW, Choi SS. Percutaneous epidural balloon neuroplasty: a narrative review of current evidence. Anesth Pain Med (Seoul). 2022 Oct;17(4):361-370. doi: https://doi.org/10.17085/apm.22237
- Karm MH, Kim CS, Kim DH, Lee D, Kim Y, Shin JW, Choi SS. Effectiveness of percutaneous epidural neuroplasty using a balloon catheter in patients with chronic spinal stenosis accompanying mild spondylolisthesis: a longitudinal cohort study. Korean J Pain. 2023 Apr 1;36 (2):184-194. doi: https://doi.org/10.3344/kjp.22289
- Helm S 2nd, Racz GB, Gerdesmeyer L, Justiz R, Hayek SM, Kaplan ED, El Terany MA, Knezevic NN. Percutaneous and Endoscopic Adhesiolysis in Managing Low Back and Lower Extremity Pain: A Systematic Review and Meta-analysis. Pain Physician. 2016 Feb;19(2):E245-82. PMID: 26815254

Das RS et al. | Bangabandhu Sheikh Mujib Medical University Journal | 2025;18(2):e79113

- 6. Manchikanti L, Knezevic NN, Navani A, Christo PJ, Limerick G, Calodney AK, Grider J, Harned ME, Cintron L, Gharibo CG, Shah S, Nampiaparampil DE, Candido KD, Soin A, Kaye AD, Kosanovic R, Magee TR, Beall DP, Atluri S, Gupta M, Helm Ii S, Wargo BW, Diwan S, Aydin SM, Boswell MV, Haney BW, Albers SL, Latchaw R, Abd-Elsayed A, Conn A, Hansen H, Simopoulos TT, Swicegood JR, Bryce DA, Singh V, Abdi S, Bakshi S, Buenaventura RM, Cabaret JA, Jameson J, Jha S, Kaye AM, Pasupuleti R, Rajput K, Sanapati MR, Sehgal N, Trescot AM, Racz GB, Gupta S, Sharma ML, Grami V, Parr AT, Knezevic E, Datta S, Patel KG, Tracy DH, Cordner HJ, Snook LT, Benyamin RM, Hirsch JA. Epidural Interventions in the Management of Chronic Spinal Pain: American Society of Interventional Pain Physicians (ASIPP) Comprehensive Evidence-Based Guidelines. Pain Physician. 2021 Jan;24(S1):S27-S208. PMID: 33492918
- Manchikanti L, Knezevic NN, Sanapati MR, Boswell MV, Kaye AD, Hirsch JA. Effectiveness of Percutaneous Adhesiolysis in Managing Chronic Central Lumbar Spinal Stenosis: A Systematic Review and Meta-Analysis. Pain Physician. 2019 Nov;22(6):E523-E550. PMID: 31775400
- Choi SS, Lee JH, Kim D, Kim HK, Lee S, Song KJ, Park JK, Shim JH. Effectiveness and Factors Associated with Epidural Decompression and Adhesiolysis Using a Balloon-Inflatable Catheter in Chronic Lumbar Spinal Stenosis: 1-Year Follow-Up. Pain Med. 2016 Mar;17 (3):476-487. doi: https://doi.org/10.1093/pm/pny018
- Shin JW. Spinal Epidural Balloon Decompression and Adhesiolysis. 1st ed. Seoul (Korea) Springer; 2021. doi: https://doi.org/10.1007/978-981-15-7265-4