In silico targeting of interleukin-6 by natural compounds

  • Wei Zhou Department of Osteoarthritis, Shanghai Oriental Hospital, Shanghai
  • Jun-Feng Cai Department of Osteoarthritis, Shanghai Oriental Hospital, Shanghai
  • Feng Yuan Department of Osteoarthritis, Shanghai Oriental Hospital, Shanghai
  • Min Ma Department of Osteoarthritis, Shanghai Oriental Hospital, Shanghai
  • Feng Yin Department of Osteoarthritis, Shanghai Oriental Hospital, Shanghai
Keywords: Rheumatoid Arthritis, IL-6, Natural Compounds, Virtual Screening, Docking

Abstract

Rheumatoid arthritis an autoimmune disorder affecting many tissues and organs, is a challenging prospect in terms of treatment. Our work is looking into finding lead compound of natural origin against IL-6, an important cyto-kine having a profound role in pathogenesis of rheumatoid arthritis . For this purpose we have targeted the active site (ARG 179) of IL-6 using IBS database having 48531 natural compounds. Computer aided drug designing methods of virtual screening and in silico ADME/Tox helped us to limit our study of mole-cular docking to selected few for an atomic insight into their binding modes. The molecular docking analysis helped us to propose five possible drugs, out of which one compound (Chem. ID 10465) margaric acid is an edible fatty acid and exhibited good binding affinity with the active site of IL-6, thus making it a good starting point for developing drug for treatment of arthritis.

Downloads

Download data is not yet available.
Abstract
4343
Download
1075

References

Alvarez JC. High-throughput docking as a source of novel drug leads. Curr Opin Chem Biol. 2004; 8: 365-70.

Chikan NA, Bhavaniprasad V, Anbarasu K, Shabir N, Patel TN. From natural products to drugs for epimutation computer-aided drug design. Appl Biochem Biotechnol. 2013; 170: 164-75.

Cooke NJ, Hansen RP, Shorland FB. Occurrence in butterfat of n-heptadecanoic acid (margaric acid). Nature 1957; 179: 98.

Davis AM, Riley RJ. Predictive ADMET studies, the challenges and the opportunities. Curr Opin Chem Biol. 2004; 8: 378-86.

Fontaine V, Savino R, Arcone R, de Wit L, Brakenhoff JP, Content J, Ciliberto G. Involvement of the Arg179 in the acti- ve site of human IL-6. Eur J Biochem. 1993 ; 211: 749-55.

Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2011; 11: 365-70.

Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000; 43: 250-58.

Hashizume M, Yoshida H, Koike N, Suzuki M, Mihara M. Overproduced interleukin 6 decreases blood lipid levels via up-regulation of very-low-density lipoprotein receptor. Ann Rheum Dis. 2010; 69: 741-46.

Hochberg MC, Arnold CM, Hogans BB, Spivak JL. Serum immunoreactive erythropoietin in rheumatoid arthritis: Impaired response to anemia. Arthritis Rheum. 1988; 31: 1318-21.

Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoidarthritis and other inflammatory arthritides. Arthritis Rheum. 1988; 31: 784-88.

Khalil MH, Marcelletti JF, Katz LR, Katz DH, Pope LE. Topical application of docosanol- or stearic acid-containing creams reduces severity of phenol burn wounds in mice. Contact Dermatitis 2000; 43: 79-81.

Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet 2009; 373: 659-72.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46: 3-26.

Lipinski, CA. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004: 1: 337-41.

Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin6 levels in rheumatoid arthritis: Correlation with clinical and laboratory indices of disease activity. Ann Rheum Dis. 1993; 52: 232-34.

Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. lazar: A modular predictive toxicology framework. Front Pharmacol. 2013; 4: 38.

McInnes IB, Schett G. The pathogenesis of rheumatoid arthri-tis. N Engl J Med. 2011; 365: 2205-19.

Morris GM1, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective recep-tor flexibility. J Comput Chem. 2009; 30: 2785-91.

Scott DL, Wolfe F and Huizinga TW. Rheumatoid arthritis. Lancet 2010; 376: 1094-108.

Somers W, Stahl M, Seehra JS. 1.9 A crystal structure of interleukin 6: Implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997; 16: 989-97.

Szekanecz Z, Besenyei T, Paragh G, Koch AE. Angiogenesis in rheumatoid arthritis. Autoimmunity 2009; 42: 563-73.

Thompson MA. ArgusLab 4.0. 1. Planaria software LLC, Seattle, WA, 2004.

Van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bond-ing descriptors. J Drug Target. 1998; 6: 151-65.

Van de Waterbeemd H, Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat Rev Drug Discov. 2003; 2: 192-204.

Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Butina D, Beck G, Sherborne B, Cooper I, Platts JA. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001; 90: 749-84.

Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8: 967-74.

Published
2014-08-19
How to Cite
Zhou, W., J.-F. Cai, F. Yuan, M. Ma, and F. Yin. “In Silico Targeting of Interleukin-6 by Natural Compounds”. Bangladesh Journal of Pharmacology, Vol. 9, no. 3, Aug. 2014, pp. 371-6, doi:10.3329/bjp.v9i3.19065.
Section
Research Articles