

## CHALLENGES REGARDING THE PROVISION OF ANTIBIOTICS VIA THE INFORMAL SECTOR ACROSS LOW- AND MIDDLE-INCOME COUNTRIES AND POTENTIAL WAYS FORWARD

TiyaniMulta Maluleke<sup>1,2</sup>, Inaam Ur Rehman<sup>3</sup>, Amanj Kurdi<sup>1,4,5,6</sup>,  
Brian Godman<sup>1,7\*</sup>, Johanna C. Meyer<sup>1,8</sup>



Antimicrobial resistance (AMR) is a public health threat across the world in view of its impact on morbidity, mortality and costs<sup>1-5</sup>. AMR rates are highest in low- and middle-income countries (LMICs), including among children, driven by high levels of inappropriate dispensing and prescribing of antibiotics<sup>6-11</sup>. By 2050 unless addressed, it is envisaged that there will be 1·91 million deaths attributable to AMR, and 8·22 million deaths associated with AMR, with the greatest burden among African and Asian countries<sup>12,13</sup>. The estimate for sub-Saharan Africa is 4·1 million AMR-related deaths annually by 2050 unless urgent activities are undertaken<sup>13</sup>.

Primary care is a critical sector to address among LMICs to reduce AMR as this sector accounts for upto 95% of total antibiotic consumption in humans<sup>14</sup>. Consequently, this is a key target area for initiatives to help improve future antibiotic use as there continues to be high rates of inappropriate dispensing of antibiotics without a prescription as well as high levels of poor antibiotic prescribing<sup>9,15-18</sup>. This includes appreciable utilisation of Watch antibiotics that have a greater potential for resistance development<sup>6,10,19-23</sup>.

High levels of inappropriate prescribing of antibiotics in recent years among LMICs have been aided by continued issues with prescribers' limited knowledge concerning antibiotics, AMR and antimicrobial stewardship (AMS), alongside ongoing diagnostic uncertainty<sup>9,24-26</sup>. There also continues to be high levels of inappropriate dispensing of antibiotics without a prescription among LMICs due to limited changes to existing barriers and challenges<sup>15,24</sup>.

1\* Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Garankuwa, Pretoria 0208, South Africa. Email: [brian.godman@smu.ac.za](mailto:brian.godman@smu.ac.za) (BG); [hannelie.meyer@smu.ac.za](mailto:hannelie.meyer@smu.ac.za) (J.C.M). ORCID IDs:<http://orcid.org/0000-0001-6539-6972> (BG); <http://orcid.org/0000-0003-0462-5713> (JCM) [Corresponding Author]

2 Saselamani Pharmacy, Saselamani 0928, South Africa. Email: [tiyanim@gmail.com](mailto:tiyanim@gmail.com). ORCID ID: <https://orcid.org/0000-0001-6437-7198>

3 Punjab University College of Pharmacy, Faculty of Pharmacy, University of the Punjab, Lahore 54000, Pakistan. Email: [rehmaninaam1@gmail.com](mailto:rehmaninaam1@gmail.com)

4 Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 161 Cathedral Street, Glasgow, UK. Email: [amanj.baker@strath.ac.uk](mailto:amanj.baker@strath.ac.uk). ORCID Number: 0000-0001-5036-1988

5 College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq

6 College of Pharmacy, Al-Kitab University, Kirkuk 36015, Iraq

7 Antibiotic Policy Group, Institute for Infection and Immunity, City St. George's University of London, London SW17 0RE, UK. Email: [aicook@citystgeorges.ac.uk](mailto:aicook@citystgeorges.ac.uk) (AC). ORCID ID: <https://orcid.org/0000-0002-9189-7815>

8 South African Vaccination and Immunisation Centre, Sefako Makgatho Health Sciences University, Molotlegi Street, Garankuwa, Pretoria 0208, South Africa

Barriers and challenges include long travel times, costs and waiting times to see healthcare professionals (HCPs) in primary healthcare clinics (PHCs), high co-payments for the visits and medicines, PHCs often out of stock of key antibiotics necessitating their purchasing from community pharmacies anyway, previous experiences with antibiotics including successfully treating self-limiting conditions, current infectious disease seen as minor, convenience of community pharmacies, and community pharmacy personnel may be the only HCPs available especially in more rural areas of LMICs<sup>15,26-31</sup>. Stock control and funding of antibiotics among PHCs are further challenged if there are sudden increases in their prices occur as recently seen in Nigeria<sup>32-34</sup>, which resulted in more patients necessarily purchasing their medicines from community pharmacies and other sources to reduce costs.

High levels of inappropriate prescribing of antibiotics in LMICs are also driven by considerable patient pressures for HCPs to issue antibiotics even for self-limiting infections, with a similar experience in community pharmacies<sup>24</sup>. This pressure is exacerbated by often limited knowledge among patients regarding antibiotics, including whether they are effective or not for self-limiting viral infections, AMR and antimicrobial stewardship<sup>24,26,35-37</sup>.

There have also been issues and challenges with the extent of substandard and falsified antibiotics among LMICs, which further exacerbates AMR<sup>38-41</sup>, with the availability of these medicines likely to be greater in the informal versus formal sectors among LMICs<sup>34,35,41</sup>. Definitions of the informal sector are contained in Supplementary Table S1, with a lack of formal training and qualifications a common theme among informal providers (IPs) alongside cash payments for services provided including medicines<sup>42-45</sup>.

Of equal concern is that the informal sector is a major provider of services and medicines in LMICs, including antibiotics<sup>43,44,46-49</sup>, with antibiotics generally treated as another commodity further driving up AMR<sup>30</sup>. Khare et al. (2019) documented that 74% of all prescriptions issued by IPs in rural India contained antibiotics<sup>50</sup>, and in Bangladesh 63% of antibiotic prescriptions issued in primary care are from IPs<sup>51</sup>. In their study, Tesema et al. (2025) documented that among children under 5 years of age with a cough or fever in sub-Saharan Africa taking antibiotics, on average 67.19% were from unqualified sources<sup>52</sup>. This ranged from 40.34% in Chad to 92.67% in Sao Tome<sup>52</sup>. The odds of being issued and taking antibiotics were also 1.23 times higher in rural compared with urban areas<sup>52</sup>. Other researchers have estimated that 44% of antibiotics issued in primary care among LMICs come from informal sources<sup>30,53</sup>. In their study, Ingelbeen et al. (2022) found that antibiotic use was considerably higher in private clinics including IPs versus public clinics<sup>48</sup>. However, this is not always the case with Wildbret et al. (2023) documenting greater antibiotic use in the formal sector (56.2% of paediatric prescriptions) versus the informal sector (29.3%)<sup>54</sup>. In any event, a key issue among IPs is that the most affordable antibiotics have included ciprofloxacin and azithromycin, both Watch antibiotics<sup>55</sup>.

These high rates of antibiotic use among IPs are enhanced by the fact that IPs can account for up to 90% of situations when patients first contact providers whether informal or otherwise<sup>45</sup>. Das et al. (2022) in their study ascertained that 68% of healthcare providers in primary care in India were IPs<sup>56,57</sup>. Others have documented that IPs can account for up to 55% of all primary care providers in India, increasing up to 77% in Uganda, and close to 96% in rural Bangladesh<sup>42,46</sup>. This makes IPs an important stakeholder group among LMICs where these are present to reduce inappropriate antibiotic use in primary care.

Barriers and challenges resulting in the high use of IPs among LMICs include a lack of available trained HCPs especially in rural areas and urban slums, issues of affordability as antibiotics and other aspects of care can be cheaper in the informal sector with no co-payments for HCPs, and convenience. In addition, IPs can often provide a greater range of

## EDITORIAL

antibiotics compared with PHCs<sup>30,31,44,56,58-62</sup>. Alongside this, IPs may be more empathetic towards patients than HCPs<sup>63</sup>, can take delayed payments, and, as mentioned, are typically the first point of contact for patients in rural and undeserved areas<sup>49,64</sup>.

Typically, there is inadequate knowledge of antibiotics, AMS and AMR among IPs causing considerable concern (Supplementary Table S2). Encouragingly, we are seeing increasing formalisation of this sector among some LMICs. In Nigeria, Patent and Proprietary Medicine Vendors (PPMVs) are increasingly being recognised as important providers of healthcare in the country, and alongside retail pharmacies do obtain their licenses from the Pharmacists Council of Nigeria to practice<sup>44,60</sup>. In addition, the Pharmacist Council does conduct educational programs for existing PPMVs alongside inspections as well as the publishing of the Approved Patent Medicine List to guide prescribing<sup>60</sup>. These activities have resulted in PPMVs and the public being encouraged to report itinerant drug sellers as well as unlicensed and non-compliant PPMVs to the regulatory bodies for potential fines and closure to improve future medicine use<sup>44,60</sup>. In Tanzania, the ADDO (accredited drugs dispensing outlets) program was a donor-initiated project launched in 2003 to improve access to, and use of, medicines in rural areas where there are currently a limited number of HCPs<sup>65</sup>. ADDOs can dispense some antibiotics with a prescription including amoxicillin, trimethoprim/sulfamethoxazole suspension, doxycycline and phenoxy-methylpenicillin<sup>65</sup>. However, there are ongoing concerns with high and inappropriate levels of the selling of antibiotics without a prescription among ADDOs<sup>65-67</sup>. Over the counter medicine sellers in Ghana can also dispense cotrimoxazole without a prescription, with all other antibiotics requiring a prescription<sup>68</sup>. However, in practice, they also sell many antibiotics despite no prescription<sup>69,70</sup>.

In South Africa, we know there are a number of spaza shops operating in Townships without formal licenses<sup>71</sup>. They sell everyday goods to millions of South Africans where there are issues of affordability and limited access to formal retail outlets<sup>71</sup>. However, there are ongoing moves towards their formalisation in view of ongoing concerns, and it is debatable whether they would be able to dispense antibiotics without a prescription as these medicines would need to come from wholesalers, with such activities illegal<sup>71,72</sup>.

There are a number of activities that can be undertaken to address current issues and challenges with the informal sector, including addressing high levels of inappropriate use of antibiotics. These build on existing suggestions to reduce the extent of substandard and falsified medicines among LMICs and include<sup>34,35,41</sup>. They include firstly addressing health coverage concerns especially in rural areas in LMICs.

- Potential ways forward include increasing the number of community pharmacists and their activities to be able to treat and dispense key antimicrobials, including antibiotics, for certain conditions complementing ongoing activities across countries that have enhanced the activities of community pharmacists when treating patients with infectious diseases<sup>16,73-75</sup>. This will make community pharmacy more attractive especially in rural areas with a greater range of provided services, and build on the increasing recognition of their role in healthcare delivery following COVID 19<sup>76-80</sup>. This though may take time depending on existing pharmacist training programs within a country and their emphasis
- In the meantime, increase the number of trained community pharmacies working in health care, including those working in the public sector, dispensing medicines and providing advice and guidance to patients especially where there is currently unemployment among pharmacists as seen for instance in South Africa<sup>81,82</sup>. This is critical to improve the utilisation of antibiotics in the community in the future
- Alongside this, encourage task shifting where pertinent especially in the short versus medium or long term to redistribute certain activities to the informal sector alongside

increased training for IPs<sup>50</sup>. This builds on the experience in Tanzania with an increase in the number of ADDOs, training programmes for IPs in India, and the development of PPMVs in Nigeria<sup>42,50,60</sup>. However, linking IPs to the formal healthcare system will require clearly defined roles and responsibilities including for instance among Government personnel and PPMV associations in Nigeria<sup>44,83</sup>

Secondly improve the performance of community pharmacy personnel as well as IP personnel. This will be achieved by:

- Universities ensuring that trainee community pharmacists leave universities fully knowledgeable with the WHO AWaRe antibiotic guidance and system for classifying antibiotics to appreciably improve future antibiotic utilisation in LMICs given current concerns<sup>24,35</sup>
- Alongside this, Universities need to work closely with Pharmacy organizations across LMICs to encourage continual professional development and associated activities among practising community pharmacists and pharmacist assistants, as well as among IPs where pertinent, surrounding the WHO AWaRe antibiotic system and guidance<sup>24,35</sup>. This will reduce their reliance on pharmaceutical companies for advice and training on antibiotics<sup>43,45,84</sup>
- Undertake research regarding the influence of training of IPs to improve future antibiotic use<sup>49,85</sup>. Adamu et al. (2020) found that PPMVs in Nigeria who had not received any training on antibiotic use and AMR were twice as likely to sell antibiotics to patients compared with those who had received training<sup>86,87</sup>. In view of the variable findings, Universities need to work more closely with pertinent organisations to review previous findings as a basis for improved targeted educational activities among IPs where pertinent, certainly in the short term, given their current importance among across a range of LMICs in the management of infectious diseases.

Thirdly, reduce the prices of antibiotics among LMICs to improve their affordability in the public sector. Activities include:

- Prices of antibiotics can be appreciably reduced through initiatives such as encouraging international non-proprietary name (INN) prescribing<sup>88,89</sup>, which has appreciably helped in other countries<sup>88</sup>. This is especially important among LMICs where there are currently a considerable number of branded generic antibiotics available for critical antibiotics, with each manufacturer lobbying governments to increase their prices whilst concurrently encouraging greater prescribing and dispensing of their branded generics including among IPs for their sustainability<sup>88,90-93</sup>.
- Reducing antibiotic prices among community pharmacies is critical in LMICs where available finances are a key issue to reduce the need and reliance on IPs, e.g., considerable switching to IPs occurred in Zimbabwe following their changing economic circumstances<sup>16</sup>

Fourthly, educating the public regarding antibiotics, AMR and antimicrobial stewardship through:

- There are currently major concerns regarding patients' knowledge of antibiotics, AMS and AMR across LMICs – resulting in considerable pressures on providers, including IPs, to prescribe and dispense antibiotics even for self-limiting infections such as coughs and colds (Supplementary Table 2)<sup>24,35-37,43</sup>

- Consequently, there is an urgent need for health authorities and others to educate patients regarding the appropriate use of antibiotics to reduce AMR. This can be via multiple channels including social media<sup>24,35</sup>
- Prescribers and dispensers can also play their role through educating patients and encouraging alternative solutions to antibiotics, which includes symptomatic relief initially for viral infections, building on the WHO AWaRE guidance<sup>24,43,94-96</sup>
- Educational campaigns must acknowledge the importance of language when HCPs and others talk with patients and about the optimal use of antibiotics to prevent AMR and its implications for them and their families; consequently, educational campaigns need to be targeted and specific including in local languages where pertinent<sup>24,37,97</sup>
- There is also a need to educate patients regarding the effectiveness of generics, i.e. their quality, and have been tested and approved by the Regulatory Authorities, given potential concerns with unbranded generics as a result of the extent of marketing by branded generics by companies across LMICs (Supplementary Table 2)<sup>91-93,98</sup>. This has worked well across countries leading to high rates of voluntary INN prescribing and dispensing<sup>88</sup>

In conclusion, Governments in LMICs can undertake a range of actions to reduce their reliance on IPs through increasing the number of community pharmacists and their potential activities. In the meantime, upskill IPs to improve future antibiotic use. This though needs careful planning and subsequent monitoring to reverse increasing rates of AMR, and the implication, in line with United Nations' recent goals for AMR<sup>99</sup>.

## CONFLICT OF INTEREST

The authors declare they have no relevant conflicts of interest

## FUNDING

There was no funding for this Editorial

## REFERENCES

1. Sartelli M. Antimicrobial Resistance, Infection Prevention and Control, and Patient Safety. *Journal of the Medical College for Women & Hospital*. 2025;21(2):14-5. DOI: doi.org/10.3329/jmcwh.v21i2.83676.
2. [Antimicrobial Resistance Collaborators](#). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet*. 2022;399(10325):629-55. doi: 10.1016/S0140-6736(21)02724-0.
3. Hofer U. The cost of antimicrobial resistance. *Nat Rev Microbiol*. 2019;17(1):3. doi: 10.1038/s41579-018-0125-x.
4. Cassini A, Höglberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. *Lancet Infect Dis*. 2019;19(1):56-66. doi: 10.1016/S1473-3099(18)30605-4.
5. Siaba S, Casal B, López-Martínez I. The Economics of Antibiotic Resistance: A Systematic Review and Meta-analysis Based on Global Research. *Appl Health Econ Health Policy*. 2025. doi: 10.1007/s40258-025-01001-7.
6. ESCMID. Over 3 million children died from antimicrobial resistance-related infections in 2022, major study shows. 2025. Available at URL: <https://a-p-p-a.org/pdf/over-3-million-children-died-from-antimicrobial-resistance-related-infections-in-2022.pdf> (Accessed 20 October 2025).

7. Godman B, Egwuenu A, Haque M, Malande OO, Schellack N, Kumar S, et al. Strategies to Improve Antimicrobial Utilization with a Special Focus on Developing Countries. *Life*. 2021;11(6). doi: 10.3390/life11060528.
8. Lewnard JA, Charani E, Gleason A, Hsu LY, Khan WA, Karkey A, et al. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: an evidence review and modelling analysis. *Lancet*. 2024;403(10442):2439-54. doi: 10.1016/S0140-6736(24)00862-6.
9. Song Q, Li J, Zhou P, Chen R, Liu Z, Li H, et al. Worldwide antibiotic prescription practices in primary care and associated factors: a systematic review and meta-analysis. *American Journal of Infection Control*. 2025;53(1):1137-43. doi: 10.1016/j.ajic.2025.08.009.
10. Klein EY, Milkowska-Shibata M, Tseng KK, Sharland M, Gandra S, Pulcini C, et al. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000-15: an analysis of pharmaceutical sales data. *Lancet Infect Dis*. 2021;21(1):107-15. doi: 10.1016/S1473-3099(20)30332-7.
11. Abejew AA, Wubetu GY, Fenta TG. Relationship between Antibiotic Consumption and Resistance: A Systematic Review. *Can J Infect Dis Med Microbiol*. 2024;2024:9958678. doi: 10.1155/2024/9958678.
12. **GBD 2021 Antimicrobial Resistance Collaborators**. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. *Lancet*. 2024;404(10459):1199-226. doi: 10.1016/S0140-6736(24)01867-1.
13. Totaro V, Guido G, Cotugno S, De Vita E, Asaduzzaman M, Patti G, et al. Antimicrobial Resistance in Sub-Saharan Africa: A Comprehensive Landscape Review. *The American journal of tropical medicine and hygiene*. 2025;113(2):253-63. doi: 10.4269/ajtmh.25-0035.
14. Duffy E, Ritchie S, Metcalfe S, Van Bakel B, Thomas MG. Antibacterials dispensed in the community comprise 85%-95% of total human antibacterial consumption. *J Clin Pharm Ther*. 2018;43(1):59-64. doi: 10.1111/jcpt.12610.
15. Li J, Zhou P, Wang J, Li H, Xu H, Meng Y, et al. Worldwide dispensing of non-prescription antibiotics in community pharmacies and associated factors: a mixed-methods systematic review. *Lancet Infect Dis*. 2023;23(9):e361-e70. doi: 10.1016/S1473-3099(23)00130-5.
16. Sono TM, Yeika E, Cook A, Kalungia A, Opanga SA, Acolatse JEE, et al. Current rates of purchasing of antibiotics without a prescription across sub-Saharan Africa; rationale and potential programmes to reduce inappropriate dispensing and resistance. *Expert Rev Anti Infect Ther*. 2023;21(10):1025-55. doi: 10.1080/14787210.2023.2259106.
17. Torres NF, Chibi B, Kuupiel D, Solomon VP, Mashamba-Thompson TP, Middleton LE. The use of non-prescribed antibiotics; prevalence estimates in low-and-middle-income countries. A systematic review and meta-analysis. *Arch Public Health*. 2021;79(1):2. doi: 10.1186/s13690-020-00517-9.
18. Zewdie S, Kassa AA, Bizuneh MM, Tesfaye TC, Yayehrad AT. Antibiotic use without prescription among children aged under 5 years in low- and middle-income countries: a systematic review and meta-analysis. *JAC-Antimicrobial Resistance*. 2025;7(3). doi: 10.1093/jacamr/dlaf093.

19. Sulis G, Sayood S, Katukoori S, Bollam N, George I, Yaeger LH, et al. Exposure to World Health Organization's AWaRe antibiotics and isolation of multidrug resistant bacteria: a systematic review and meta-analysis. *Clin Microbiol Infect.* 2022;28(9):1193-202. doi: 10.1016/j.cmi.2022.03.014.
20. Islam MA, Akhtar Z, Hassan MZ, Chowdhury S, Rashid MM, Aleem MA, et al. Pattern of Antibiotic Dispensing at Pharmacies According to the WHO Access, Watch, Reserve (AWaRe) Classification in Bangladesh. *Antibiotics.* 2022;11(2):247. doi: 10.3390/antibiotics11020247.
21. Rani J, Saha S, Ferdous F, Rahman MA. Assessment of the Bangladeshi antibiotic market: Implications of the WHO AWaRe classification and dosage form availability on antimicrobial resistance. *J Infect Public Health.* 2024;17(12):102587. doi: 10.1016/j.jiph.2024.102587.
22. Laizu J, Parvin R, Sultana N, Ahmed M, Sharmin R, Sharmin ZR, et al. Prescribing Practice of Antibiotics for Outpatients in Bangladesh: Rationality Analysis. *Am J Pharmacol.* 2018;1(1): 1008. Available at URL: <https://www.remedypublications.com/open-access/pprescribing-practice-of-antibiotics-for-outpatients-in-bangladesh-rationality-analysisp-1983.pdf> (Accessed 20 October 2025).
23. Yesmin SMS, Chakma P, Habiba U, Rhod Larsen A, Tino Fusire T, Wangmo S, et al. Human Antimicrobial Use in Bangladesh: Five-Year Trend Analysis Including COVID-19 Pandemic Era. *Antibiotics.* 2025;14(9):868. doi: 10.3390/antibiotics14090868.
24. Saleem Z, Moore CE, Kalungia AC, Schellack N, Ogunleye O, Chigome A, et al. Status and implications of the knowledge, attitudes and practices towards AWaRe antibiotic use, resistance and stewardship among low- and middle-income countries. *JAC-Antimicrobial Resistance.* 2025;7(2). doi: 10.1093/jacamr/dlaf033.
25. Chigome A, Ramdas N, Campbell SM, Gajdács M, Sefah IA, Hango E, et al. Potential activities to improve primary care prescribing of antibiotics across Africa. *Frontiers in Tropical Diseases.* 2025;Volume 6 - 2025. <https://doi.org/10.3389/fitd.2025.1634182>.
26. Ayorinde A, Ghosh I, Shaikh J, Adetunji V, Brown A, Jordan M, et al. Improving healthcare professionals' interactions with patients to tackle antimicrobial resistance: a systematic review of interventions, barriers, and facilitators. *Front Public Health.* 2024;12:1359790. doi: 10.3389/fpubh.2024.1359790.
27. Torres NF, Chibi B, Middleton LE, Solomon VP, Mashamba-Thompson TP. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: a systematic scoping review. *Public Health.* 2019;168:92-101. doi: 10.1016/j.puhe.2018.11.018.
28. Gashaw T, Yadeta TA, Weldegebreal F, Demissie L, Jambo A, Assefa N. The global prevalence of antibiotic self-medication among the adult population: systematic review and meta-analysis. *Syst Rev.* 2025;14(1):49. doi: 10.1186/s13643-025-02783-6.
29. Saliya SA, Hailu AG, Sebro SF, Menesho MD. Prevalence and predictors of self-medication practices among adult household members in Hosanna town, Hadiya zone, central Ethiopia. *BMC Public Health.* 2025;25(1):221. doi: 10.1186/s12889-025-21441-z.

30. Edessa D, Kumsa FA, Dinsa G, Oljira L. Drug providers' perspectives on antibiotic misuse practices in eastern Ethiopia: a qualitative study. *BMJ Open*. 2024;14(8):e085352. doi: 10.1136/bmjopen-2024-085352.

31. Kapatsa T, Lubanga AF, Bwanali AN, Harawa G, Mudenda S, Chipewa PC, et al. Behavioral and Socio-Economic Determinants of Antimicrobial Resistance in Sub-Saharan Africa: A Systematic Review. *Infect Drug Resist*. 2025;18:855-73. doi: 10.2147/IDR.S503730.

32. Gulumbe BH, Abdulrahim A, Ibrahim MN. Rising antibiotic costs as a potential driver of antimicrobial resistance in Nigeria. *Discover Public Health*. 2025;22(1):8. <https://doi.org/10.1186/s12982-025-00398-9>.

33. Ifeanyichukwu A, Elizabeth IC, Danjuma AH. The Escalating Antibiotic Crisis in Nigeria: A Violation of Human Rights and Ethical Imperatives - Commentary. *Ann Public Health Res*. 2024; 11(2): 1133. DOI : <https://doi.org/10.47739/2378-9328/>

34. Munzhedzi M, Kumar S, Godman B, Meyer JC. Potential Ways to Improve the Supply and Use of Quality-Assured Antibiotics Across Sectors in Developing Countries to Reduce Antimicrobial Resistance. *Adv Hum Biol*. 2025;15:579-85 DOI: 10.4103/aihb.aihb\_132\_25.

35. Saleem Z, Mekonnen BA, Orubu ES, Islam MA, Nguyen TTP, Ubaka CM, et al. Current access, availability and use of antibiotics in primary care among key low- and middle-income countries and the policy implications. *Expert Rev Anti Infect Ther*. 2025:1-42. doi: 10.1080/14787210.2025.2477198.

36. Ramdas N, Meyer JC, Schellack N, Godman B, Turawa EB, Campbell SM. Knowledge, attitudes, motivations and expectations regarding antimicrobial use among community members seeking care at the primary healthcare level: a scoping review protocol. *BMJ Open*. 2025;15(1):e088769. doi: 10.1136/bmjopen-2024-088769.

37. Sono TM, Schellack N, Godman B. The Role of Patients with Addressing Inappropriate Dispensing of Antibiotics without a Prescription Especially in Developing Countries. *Advances in Human Biology*. 2025;15(1):1-4. DOI: 10.4103/aihb.aihb\_124\_24.

38. Wada YH, Abdulrahman A, Ibrahim Muhammad M, Owanta VC, Chimelumeze PU, Khalid GM. Falsified and substandard medicines trafficking: A wakeup call for the African continent. *Public Health Pract*. 2022;3:100240. doi: 10.1016/j.puhp.2022.100240.

39. Zabala GA, Bellingham K, Vidhamaly V, Boupha P, Boutsamay K, Newton PN, et al. Substandard and falsified antibiotics: neglected drivers of antimicrobial resistance? *BMJ Glob Health*. 2022;7(8). doi: 10.1136/bmjgh-2022-008587.

40. Tegegne AA, Feissa AB, Godena GH, Tefera Y, Hassen HK, Ozalp Y, et al. Substandard and falsified antimicrobials in selected east African countries: A systematic review. *PLoS One*. 2024;19(1):e0295956. doi: 10.1371/journal.pone.0295956.

41. Maluleke TM, Mekonnen BA, Ubaka CM, Paramadhas BDA, Munzhedzi M, Kalungia AC, et al. Potential activities to reduce the extent of substandard and falsified antibiotics across Africa and associated antimicrobial resistance. *Frontiers in Tropical Diseases*. 2025;Volume 6 - 2025. <https://doi.org/10.3389/ftd.2025.1634029>.

42. Kumah E. The informal healthcare providers and universal health coverage in low and middle-income countries. *Global Health.* 2022;18(1):45. doi: 10.1186/s12992-022-00839-z.
43. Matin MA, Khan WA, Karim MM, Ahmed S, John-Langba J, Sankoh OA, et al. What influences antibiotic sales in rural Bangladesh? A drug dispensers' perspective. *J Pharm Policy Pract.* 2020;13:20. doi: 10.1186/s40545-020-00212-8.
44. Odii A, Arize I, Agwu P, Mbachu C, Onwujekwe O. To What Extent Are Informal Healthcare Providers in Slums Linked to the Formal Health System in Providing Services in Sub-Saharan Africa? A 12-Year Scoping Review. *J Urban Health.* 2024;101(6):1248-58. doi: 10.1007/s11524-024-00885-5.
45. Tandan M, Thapa P, Bhandari B, Gandra S, Timalsina D, Bohora S, et al. Antibiotic dispensing practices among informal healthcare providers in low-income and middle-income countries: a scoping review protocol. *BMJ Open.* 2024;14(6):e086164. doi: 10.1136/bmjopen-2024-086164.
46. Sudhinaraset M, Ingram M, Lofthouse HK, Montagu D. What is the role of informal healthcare providers in developing countries? A systematic review. *PLoS One.* 2013;8(2):e54978. doi: 10.1371/journal.pone.0054978.
47. Yeika EV, Ingelbeen B, Kemah BL, Wirsiy FS, Fomengia JN, van der Sande MAB. Comparative assessment of the prevalence, practices and factors associated with self-medication with antibiotics in Africa. *Trop Med Int Health.* 2021;26(8):862-81. doi: 10.1111/tmi.13600.
48. Ingelbeen B, Phanza DM, Phoba MF, Budiongo MYN, Berhe NM, Kamba FK, et al. Antibiotic use from formal and informal healthcare providers in the Democratic Republic of Congo: a population-based study in two health zones. *Clin Microbiol Infect.* 2022;28(9):1272-7. doi: 10.1016/j.cmi.2022.04.002.
49. Das S, Khare S, Eriksen J, Diwan V, Stålsby Lundborg C, Skender K. Interventions on informal healthcare providers to improve the delivery of healthcare services in low-and middle-income countries: a systematic review. *Front Public Health.* 2024;12:1456868. doi: 10.3389/fpubh.2024.1456868.
50. Khare S, Purohit M, Sharma M, Tamhankar AJ, Lundborg CS, Diwan V, et al. Antibiotic Prescribing by Informal Healthcare Providers for Common Illnesses: A Repeated Cross-Sectional Study in Rural India. *Antibiotics.* 2019;8(3). doi: 10.3390/antibiotics8030139.
51. Nahar P, Unicomb L, Lucas PJ, Uddin MR, Islam MA, Nizame FA, et al. What contributes to inappropriate antibiotic dispensing among qualified and unqualified healthcare providers in Bangladesh? A qualitative study. *BMC Health Serv Res.* 2020;20(1):656. doi: 10.1186/s12913-020-05512-y.
52. Tesema GA, Biney GK, Wang VQ, Ameyaw EK, Yaya S. Antibiotic prescription sources and use among under-5 children with fever/cough in sub-Saharan Africa. *Int Health.* 2025;17(1):94-104. doi: 10.1093/inhealth/ihae026.
53. Levine GA, Bielicki J, Fink G. Cumulative Antibiotic Exposure in the First 5 Years of Life: Estimates for 45 Low- and Middle-Income Countries From Demographic and Health Survey Data. *Clin Infect Dis.* 2022;75(9):1537-47. doi: 10.1093/cid/ciac225.

54. Wildbret S, Stuck L, Luchen CC, Simuyandi M, Chisenga C, Schultsz C, et al. Drivers of informal sector and non-prescription medication use in pediatric populations in a low- and middle-income setting: A prospective cohort study in Zambia. *PLOS Glob Public Health.* 2023;3(7):e0002072.doi: 10.1371/journal.pgph.0002072.

55. Sharland M, Gandra S, Huttner B, Moja L, Pulcini C, Zeng M, et al. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use-the new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. *Lancet Infect Dis.* 2019;19(12):1278-80. doi: 10.1016/S1473-3099(19)30532-8.

56. Das J, Daniels B, Ashok M, Shim EY, Muralidharan K. Two Indias: The structure of primary health care markets in rural Indian villages with implications for policy. *Soc Sci Med.* 2022;301:112799. doi: 10.1016/j.socscimed.2020.112799.

57. Gautham M, Spicer N, Chatterjee S, Goodman C. What are the challenges for antibiotic stewardship at the community level? An analysis of the drivers of antibiotic provision by informal healthcare providers in rural India. *Soc Sci Med.* 2021;275:113813.doi: 10.1016/j.socscimed.2021.113813.

58. Demissie D, Geremew T, Chernet AZ, Ali MM. Potency of commonly retailed antibiotics in pharmacies found in Adama, Oromia regional state, Ethiopia. *PLoS One.* 2021;16(7):e0253971. doi: 10.1371/journal.pone.0253971.

59. Gautham M, Miller R, Rego S, Goodman C. Availability, Prices and Affordability of Antibiotics Stocked by Informal Providers in Rural India: A Cross-Sectional Survey. *Antibiotics.* 2022;11(4). doi: 10.3390/antibiotics11040523.

60. Daini BO, Okafor E, Baruwa S, Adeyanju O, Diallo R, Anyanti J. Characterization and distribution of medicine vendors in 2 states in Nigeria: implications for scaling health workforce and family planning services. *Hum Resour Health.* 2021;19(1):60. doi: 10.1186/s12960-021-00602-2.

61. Nair M, Engel N, Zeegers MP, Burza S. Perceptions of effective policy interventions and strategies to address antibiotic misuse within primary healthcare in India: A qualitative study. *J Infect Prev.* 2023;24(3):113-8. doi: 10.1177/17571774231158778.

62. Oresanya O, Counihan H, Nndaliman I, Alegbeleye A, Jiya J, Adesoro O, et al. Effect of community-based intervention on improving access to treatment for sick under-five children in hard-to-reach communities in Niger State, Nigeria. *J Glob Health.* 2019;9(1):010803. doi: 10.7189/jogh.09.010803.

63. Khan MS, Bory S, Rego S, Suy S, Durrance-Bagale A, Sultana Z, et al. Is enhancing the professionalism of healthcare providers critical to tackling antimicrobial resistance in low- and middle-income countries? *Hum Resour Health.* 2020;18(1):10. doi: 10.1186/s12960-020-0452-7.

64. Suy S, Rego S, Bory S, Chhorn S, Phou S, Prien C, et al. Invisible medicine sellers and their use of antibiotics: a qualitative study in Cambodia. *BMJ Glob Health.* 2019;4(5):e001787. doi: 10.1136/bmjgh-2019-001787.

65. Ndaki PM, Mushi MF, Mwanga JR, Konje ET, Ntinginya NE, Mmbaga BT, et al. Dispensing Antibiotics without Prescription at Community Pharmacies and Accredited Drug Dispensing Outlets in Tanzania: A Cross-Sectional Study. *Antibiotics.* 2021;10(8).doi: 10.3390/antibiotics10081025.

66. Mboya EA, Sanga LA, Ngocho JS. Irrational use of antibiotics in the Moshi Municipality Northern Tanzania: a cross sectional study. *Pan Afr Med J.* 2018;31:165. doi: 10.11604/pamj.2018.31.165.15991.
67. Ndaki PM, Mwanga JR, Mushi MF, Konje ET, Fredricks KJ, Kesby M, et al. Practices and motives behind antibiotics provision in drug outlets in Tanzania: A qualitative study. *PLoS One.* 2023;18(8):e0290638.doi: 10.1371/journal.pone.0290638.
68. Ngyedu EK, Acolatse J, Akafifi G, Incoom R, Rauf A, Seaton RA, et al. Selling antibiotics without prescriptions among community pharmacies and drug outlets: a simulated client study from Ghana. *Expert Review of Anti-infective Therapy.* 2023;21(12):1373-82. doi: 10.1080/14787210.2023.2283037.
69. Afari-Asiedu S, Hulscher M, Abdulai MA, Boamah-Kaali E, Wertheim HFL, Asante KP. Stakeholders' perspectives on training over the counter medicine sellers and Community-based Health Planning and Services facilities to dispense antibiotics in Ghana. *J Pharm Policy Pract.* 2021;14(1):62. doi: 10.1186/s40545-021-00349-0.
70. Afari-Asiedu S, Kinsman J, Boamah-Kaali E, Abdulai MA, Gyapong M, Sankoh O, et al. To sell or not to sell; the differences between regulatory and community demands regarding access to antibiotics in rural Ghana. *J Pharm Policy Pract.* 2018;11:30. doi: 10.1186/s40545-018-0158-6.
71. Kamau M. The Legalisation of Spaza Shops in South Africa: An Analysis of Government Efforts. 5 March 2025. Available at URL: <https://serrarigroup.com/the-legalisation-of-spaza-shops-in-south-africa-an-analysis-of-government-efforts/> (Accessed 20 October 2025).
72. Bonoko K. The Evolution of the Spaza Shop, 7 November 2024. Available at URL: <https://brandsouthafrica.com/174238/news-facts/the-evolution-of-the-spaza-shop/> (Accessed 21 October 2025).
73. Tromp M, Truter I, du Toit J. Primary care drug therapy pharmacists in South Africa: Practice settings and conditions treated. *Explor Res Clin Soc Pharm.* 2023;12:100352. doi: 10.1016/j.rcsop.2023.100352.
74. Smile Staff Reporter. Court upholds decision allowing pharmacists to prescribe HIV treatment. 13 October 2025. Available at URL: <https://smilefm.co.za/court-upholds-decision-allowing-pharmacists-to-prescribe-hiv-treatment/> (Accessed 21 October 2025).
75. Buthelezi S. New court ruling empowers accredited South African pharmacists to prescribe HIV medications. 12 October 2025. Available at URL: <https://www.msn.com/en-za/news/other/new-court-ruling-empowers-accredited-south-african-pharmacists-to-prescribe-hiv-medications/ar-AA1OjjzD> (Accessed 21 October 2025).
76. Cadogan CA, Hughes CM. On the frontline against COVID-19: Community pharmacists' contribution during a public health crisis. *Res Social Adm Pharm.* 2021;17(1):2032-5. doi: 10.1016/j.sapharm.2020.03.015.
77. Hedima EW, Okoro RN. Primary health care roles of community pharmacists in low- and middle-income countries: a mixed methods systematic review. *BMC Health Serv Res.* 2025;25(1):1269. doi: 10.1186/s12913-025-13387-0.

78. Stewardship in crisis: the role of young pharmacists in South Africa's evolving healthcare landscape. *SA Pharmaceutical Journal*. 2025;92(2):9-10. Available at URL: [https://journals.co.za/doi/abs/10.10520/ejc-mp\\_sapj\\_v92\\_n2\\_a4](https://journals.co.za/doi/abs/10.10520/ejc-mp_sapj_v92_n2_a4) (Accessed 21 October 2025).

79. Kibuule D, Nambahu L, Sefah IA, Kurdi A, Phuong TNT, Kwon H-Y et al. Activities in Namibia to limit the prevalence and mortality from COVID-19 including community pharmacy activities and the implications. *Sch Acad J Pharm*. 2021;5:82-92. **DOI:** 10.36347/sajp.2021.v10i05.001.

80. Sami SA, Marma KKS, Chakraborty A, Singha T, Rakib A, Uddin MG, et al. A comprehensive review on global contributions and recognition of pharmacy professionals amidst COVID-19 pandemic: moving from present to future. *Futur J Pharm Sci*. 2021;7(1):119. doi: 10.1186/s43094-021-00273-9.

81. Bateman C. The high cost of having too few pharmacists in SA. 22 November 2024. Available at URL: <https://www.spotlightnsp.co.za/2024/11/22/the-high-cost-of-having-too-few-pharmacists-in-sa/> (Accessed 20 October 2024).

82. Rabali T. The plight of unemployed pharmacists and pharmacist'sassistants. *S Afr Pharm J*. 2024;91 (6):5. Available at URL: [https://journals.co.za/doi/abs/10.10520/ejc-mp\\_sapj\\_v91\\_n6\\_a2](https://journals.co.za/doi/abs/10.10520/ejc-mp_sapj_v91_n6_a2) (Accessed 21 Octibee 2025).

83. Oyeyemi AS, Oladepo O, Adeyemi AO, Titiloye MA, Burnett SM, Apera I. The potential role of patent and proprietary medicine vendors' associations in improving the quality of services in Nigeria's drug shops. *BMC Health Serv Res*. 2020;20(1):567. doi: 10.1186/s12913-020-05379-z.

84. Nair M, Tripathi S, Mazumdar S, Mahajan R, Harshana A, Pereira A, et al. Knowledge, attitudes, and practices related to antibiotic use in Paschim Bardhaman District: A survey of healthcare providers in West Bengal, India. *PLoS One*. 2019;14(5):e0217818. doi: 10.1371/journal.pone.0217818.

85. Das J, Chowdhury A, Hussam R, Banerjee AV. The impact of training informal health care providers in India: A randomized controlled trial. *Science*. 2016;354(6308). doi: 10.1126/science.aaf7384.

86. Adamu AA, Gadanya MA, Jalo RI, Uthman OA, Wiysonge CS. Factors influencing non-prescription sales of antibiotics among patent and proprietary medicine vendors in Kano, Nigeria: a cross-sectional study. *Health Policy Plan*. 2020;35(7):819-28. doi: 10.1093/heapol/czaa052.

87. Oga-Omenka C, Okafor U, Sulis G. Engaging pharmacists and medicine vendors in antimicrobial stewardship in LMICs. *Lancet Infect Dis*. 2023;23(7):786-7. doi: 10.1016/S1473-3099(23)00342-0.

88. Godman B, Fadare J, Kwon HY, Dias CZ, Kurdi A, Dias Godói IP, et al. Evidence-based public policy making for medicines across countries: findings and implications for the future. *J Comp Eff Res*. 2021;10(12):1019-52. doi: 10.2217/cer-2020-0273.

89. MacBride-Stewart S, McTaggart S, Kurdi A, Sneddon J, McBurney S, do Nascimento RCRM et al. Initiatives and reforms across Scotland in recent years to improve prescribing; findings and global implications of drug prescriptions. *Int J Clin Exp Med*. 2021;14 (12):2563-86. [www.ijcem.com](http://www.ijcem.com) /ISSN:1940-5901/IJCEM0139266.

90. Uddin MS, Mamun AA, Hossain MS, Asaduzzaman M, Sarwar MS, Rashid M, et al. In vitro quality evaluation of leading brands of ciprofloxacin tablets available in Bangladesh. *BMC Res Notes*. 2017;10(1):185. doi: 10.1186/s13104-017-2507-y.
91. Abdullah S, Saleem Z, Godman B. Coping with increasing medicine costs through greater adoption of generic prescribing and dispensing in Pakistan as an exemplar country. *Expert Rev Pharmacoecon Outcomes Res*. 2024;24(2):167-70. doi: 10.1080/14737167.2023.2280802.
92. Abdullah S, Saleem Z, Godman B, Hashmi FK, Haseeb A, Al-Rawi MBA, et al. Surge of branded generics and antimicrobial resistance: analyzing the antibiotic market dynamics in Pakistan through the WHO essential medicines and AWaRe lens. *Expert Review of Anti-infective Therapy*. 2025;23(7):513-21. doi: 10.1080/14787210.2025.2511958.
93. Mitu SY, Godman B, Kumar S, Islam S. A one health approach to combat antimicrobial resistance: A necessity for countries such as Bangladesh. *Adv Hum Biol*. 2025;15:459-64. DOI 104103/aihbaihb\_182\_25.
94. Zanichelli V, Sharland M, Cappello B, Moja L, Getahun H, Pessoa-Silva C, et al. The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. *Bull World Health Organ*. 2023;101(4):290-6. doi: [10.2471/BLT.22.288614](https://doi.org/10.2471/BLT.22.288614).
95. Sharland M, Zanichelli V, Ombajo LA, Bazira J, Cappello B, Chitatanga R, et al. The WHO essential medicines list AWaRe book: from a list to a quality improvement system. *Clin Microbiol Infect*. 2022;28(12):1533-5. doi: 10.1016/j.cmi.2022.08.009.
96. Marković-Peković V, Grubiša N, Burger J, Bojanic L, Godman B. Initiatives to Reduce Nonprescription Sales and Dispensing of Antibiotics: Findings and Implications. *J Res Pharm Pract*. 2017;6(2):120-5. doi: 10.4103/jrpp.JRPP\_17\_12.
97. Sono TM, Mboweni V, Jelić AG, Campbell SM, Marković-Peković V, Ramdas N, et al. Pilot Study to Evaluate Patients' Understanding of Key Terms and Aspects of Antimicrobial Use in a Rural Province in South Africa Findings and Implications. *Advances in Human Biology*. 2025;15(1):108-12. DOI:10.4103/aihb.aihb\_119\_24.
98. Fadare JO, Adeoti AO, Desalu OO, Enwere OO, Makusidi AM, Ogunleye O, et al. The prescribing of generic medicines in Nigeria: knowledge, perceptions and attitudes of physicians. *Expert Rev Pharmacoecon Outcomes Res*. 2016;16(5):639-50. doi: 10.1586/14737167.2016.1120673.
99. United Nations. Political Declaration of the High-level Meeting on Antimicrobial Resistance. 9 September 2024. Available at URL: <https://www.un.org/pga/wp-content/uploads/sites/108/2024/09/FINAL-Text-AMR-to-PGA.pdf> (Accessed 20 October 2025).

## Supplementary Tables

**Table S1 – Definitions of the Informal Sector**

| Study, author and year                  | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sudhinaraset et al, 2013 <sup>[1]</sup> | <ul style="list-style-type: none"> <li>IPs have typically not received any formal training, and are generally not recognized by formal institutions - typically outside of formal regulations and registration within a country</li> <li>IPs typically collect payment directly from patients for any medicines dispensed – usually undocumented and in cash</li> <li>If professional affiliations exist – usually these are centred on business activities with minimal self-regulation</li> </ul> |
| Liow et al., 2016 <sup>[2]</sup>        | Seen as unlicensed outlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Khare et al, 2019 <sup>[3]</sup>        | <ul style="list-style-type: none"> <li>Have not received a formal degree in healthcare, including medicine, from any institution and are not registered as HCPs with any governing body</li> <li>Some may have received some informal training; however, they are not certified by any formal institute and include unqualified doctors, spiritual healers and unqualified drug vendors</li> </ul>                                                                                                  |
| Nair et al., 2019 <sup>[4]</sup>        | IPs do not hold formal degrees and are untrained in allopathic medicine                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Suy et al., 2019 <sup>[5]</sup>         | IPs have no qualifications or licensing recognised by local authorities                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Matin et al. 2020 <sup>[6]</sup>        | <ul style="list-style-type: none"> <li>Unlicensed private pharmacies/ drug stores</li> <li>Typically run by individuals without any formal training and may be working as insufficiently trained village doctors</li> <li>Most frequently dispensed antibiotics from informal medicine providers include azithromycin, cefixime, ceftriaxone, ciprofloxacin and flucloxacillin</li> </ul>                                                                                                           |
| Nahar et al., 2020 <sup>[7]</sup>       | Without any health-related training who sell medicines including antibiotics, assist shop keepers or provide prescriptions (verbal or written) not endorsed by HCPs                                                                                                                                                                                                                                                                                                                                 |
| Schäfermann et al., 2020 <sup>[8]</sup> | Informal vendors do not include any Government Health or Church Health facilities, and are not Community Pharmacies                                                                                                                                                                                                                                                                                                                                                                                 |
| Gautham et al., 2021 <sup>[9]</sup>     | IPs refer to a wider range of actors, which can include unregistered pharmacies, itinerant drug sellers and traditional faith healers                                                                                                                                                                                                                                                                                                                                                               |
| Gautham et al., 2022 <sup>[10]</sup>    | <ul style="list-style-type: none"> <li>IPs typically function out of small clinics and shops or seen as itinerant and mobile</li> <li>IPs typically charge a fee for their services, which includes medicines, e.g. antibiotics, and these are typically without any prescription</li> </ul>                                                                                                                                                                                                        |
| Das et al., 2022 <sup>[11]</sup>        | Informal providers have no formal healthcare training                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Kumah 2022 <sup>[12]</sup><br>EDITORIAL | <ul style="list-style-type: none"> <li>Not recognized by a country's regulatory and legal framework, i.e. typically operate outside of regulations</li> <li>Typically have little or no officially recognized training and receive undocumented payments</li> <li>They may be part of professional associations which do not have certification or any regulatory authority and include drug sellers, untrained allopathic providers, traditional and faith healers and homeopaths</li> </ul>       |
| Rousham et al., 2023 <sup>[13]</sup>    | Typically operate without a license, and staff generally have minimal training regarding medicines                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wildbret et al., 2023 <sup>[14]</sup>   | Street vendor, friend/relative/neighbour or chemical shop                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Das et al., 2024 <sup>[15]</sup>        | <ul style="list-style-type: none"> <li>Typically practice allopathic and non-allopathic medicine with</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |

| Study, author and year              | Definition                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | <ul style="list-style-type: none"> <li>minimal or no formal training</li> <li>They include medicine sellers, traditional and faith healers, untrained allopathic providers and traditional medicine practitioners with a lack recognition within a country's regulatory and legal framework</li> <li>Payment is typically received directly from patients and without documentation</li> </ul> |
| Edessa et al., 2024 <sup>[16]</sup> | <ul style="list-style-type: none"> <li>Are untrained personnel - but some work with the experience they gained from their families</li> <li>Such sellers focus more on profit and do not generally follow drug dispensing regulations, they can include kiosks</li> <li>Antibiotics are a key area as they can account for up to 60% of the medicines dispensed</li> </ul>                     |
| Odii et al., 2024 <sup>[17]</sup>   | <ul style="list-style-type: none"> <li>Include a wide and diverse group of practitioners who provide a range of services for which they have no formal education or training</li> <li>This includes patent medicine vendors, herbalists, traditional healers, and informal allopathic providers</li> </ul>                                                                                     |
| Tandan et al., 2024 <sup>[18]</sup> | <ul style="list-style-type: none"> <li>IPs encompasses a broad spectrum of groups including drug sellers, village doctors, medicine vendors, and traditional healers</li> <li>Common attributes to define IPs include the absence of formal qualifications, operating outside the formal healthcare system, and lacking registration or affiliation with any regulatory body</li> </ul>        |
| Tesema et al 2025 <sup>[19]</sup>   | <ul style="list-style-type: none"> <li>Unqualified/ informal sources of antibiotics include churches, drug sellers, shops, traditional practitioners, and supermarkets</li> </ul>                                                                                                                                                                                                              |

NB: HCPs = Healthcare Professionals; IPs = Informal providers

**Table S2 – Extent of knowledge, attitudes practice concerning antibiotics, AMR and AMS among informal providers and sellers**

| Study, author and year            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Khare et al, 2019 <sup>[3]</sup>  | <ul style="list-style-type: none"> <li>74% of prescriptions from IPs included antibiotics, with antibiotics prescribed either singly or in combination with up to 5 antibiotics (mean of 1.4)</li> <li>Fluoroquinolones were the most prescribed antibiotic (31%), followed by penicillin and third-generation cephalosporins (20%)</li> <li>27% of prescriptions were for a fever, out of which 87% were prescribed antibiotics, with 26% for upper respiratory tract infections of which 81% were prescribed antibiotics</li> </ul> |
| Nair et al., 2019 <sup>[4]</sup>  | <ul style="list-style-type: none"> <li>Over 80% of IPs dispensed antibiotics some or all of the time to patients with colds or sore throats</li> <li>IPs frequently disbursed 3-day courses of antibiotics rather than complete courses, and had little idea regarding gentamicin and its links to potential birth defects even though IPs frequently provided gentamicin</li> <li>Many IPs relied on pharmaceutical companies for information regarding antibiotics</li> </ul>                                                       |
| Suy et al., 2019 <sup>[5]</sup>   | <ul style="list-style-type: none"> <li>High proportion of use of antibiotics for patients with a cough as well as on patient demand</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |
| Matin et al., 2020 <sup>[6]</sup> | <ul style="list-style-type: none"> <li>Antibiotics are sold based on health concerns/ visible symptoms, specific requests for an antibiotic and perceived</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |

| Study, author and year              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | <p>patient needs</p> <ul style="list-style-type: none"> <li>IPs are worried that if they do not provide antibiotics according to the customer demand, they will leave go to another seller adversely affect their business</li> <li>As a result, they often provide antibiotics for fevers, colds, coughs and acute watery diarrhoea, and regularly sell incomplete courses as patients often have limited financial capacity</li> <li>A concern is that information regarding antibiotics is primarily from the pharmaceutical industry</li> </ul>                                                                                                                        |
| Nahar et al., 2020 <sup>[7]</sup>   | <ul style="list-style-type: none"> <li>Antibiotics work against all kinds of diseases, ranging from viral to bacterial infections</li> <li>Most unqualified providers had little clear idea about the different generations of antibiotics and the implications - To them, the more expensive the antibiotic, was the more powerful it was, with antibiotics they considered less effective referred to as half-antibiotics</li> </ul>                                                                                                                                                                                                                                     |
| Gautham et al., 2021 <sup>[9]</sup> | <ul style="list-style-type: none"> <li>IPs typically believe antibiotics can cure most illnesses, and are seen as indispensable for primary care, with only 30% of IPs knowing that antibiotics cannot cure viral infections</li> <li>IPs also typically believed antibiotics are a therapeutic necessity, and without dispensing them patients may not come back, with IPs representing a significant market for pharmaceutical companies (antibiotics are the most utilised medicines in primary care)</li> <li>The choice and dosage of antibiotics is largely based on IPs' experiences of the effectiveness of different antibiotics for specific symptoms</li> </ul> |
| Nizame et al., 2021 <sup>[20]</sup> | Drug shop operators had no clear knowledge of the different generations of antibiotics available and for what diseases antibiotics are effective, both contributing to inappropriate antibiotic use                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tandan et al., 2024 <sup>[18]</sup> | Inadequate knowledge and training, financial incentives, the influence of pharmaceutical representatives are significant contributors to inappropriate antibiotic use and AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

NB: AMR = Antimicrobial Resistance; IPs = Informal providers, URTIs = Upper respiratory tract infections

## SUPPLEMENTARY REFERENCES

1. Sudhinaraset M, Ingram M, Lofthouse HK, Montagu D. What is the role of informal healthcare providers in developing countries? A systematic review. *PLoS One*. 2013;8(2):e54978.
2. Liow E, Kassam R, Sekiwunga R. How unlicensed drug vendors in rural Uganda perceive their role in the management of childhood malaria. *Acta Trop*. 2016;164:455-62.
3. Khare S, Purohit M, Sharma M, Tamhankar AJ, Lundborg CS, Diwan V, et al. Antibiotic Prescribing by Informal Healthcare Providers for Common Illnesses: A Repeated Cross-Sectional Study in Rural India. *Antibiotics*. 2019;8(3).
4. Nair M, Tripathi S, Mazumdar S, Mahajan R, Harshana A, Pereira A, et al. Knowledge, attitudes, and practices related to antibiotic use in Paschim Bardhaman District: A survey of healthcare providers in West Bengal, India. *PLoS One*. 2019;14(5):e0217818.
5. Suy S, Rego S, Bory S, Chhorn S, Phou S, Prien C, et al. Invisible medicine sellers and their use of antibiotics: a qualitative study in Cambodia. *BMJ Glob Health*. 2019;4(5):e001787.

## EDITORIAL

6. Matin MA, Khan WA, Karim MM, Ahmed S, John-Langba J, Sankoh OA, et al. What influences antibiotic sales in rural Bangladesh? A drug dispensers' perspective. *J Pharm Policy Pract.* 2020;13:20.
7. Nahar P, Unicomb L, Lucas PJ, Uddin MR, Islam MA, Nizame FA, et al. What contributes to inappropriate antibiotic dispensing among qualified and unqualified healthcare providers in Bangladesh? A qualitative study. *BMC Health Serv Res.* 2020;20(1):656.
8. Schäfermann S, Hauk C, Wemakor E, Neci R, Mutombo G, Ngah Ndze E, et al. Substandard and Falsified Antibiotics and Medicines against Noncommunicable Diseases in Western Cameroon and Northeastern Democratic Republic of Congo. *Am J Trop Med Hyg.* 2020;103(2):894-908.
9. Gautham M, Spicer N, Chatterjee S, Goodman C. What are the challenges for antibiotic stewardship at the community level? An analysis of the drivers of antibiotic provision by informal healthcare providers in rural India. *Soc Sci Med.* 2021;275:113813.
10. Gautham M, Miller R, Rego S, Goodman C. Availability, Prices and Affordability of Antibiotics Stocked by Informal Providers in Rural India: A Cross-Sectional Survey. *Antibiotics.* 2022;11(4).
11. Das J, Daniels B, Ashok M, Shim EY, Muralidharan K. Two Indias: The structure of primary health care markets in rural Indian villages with implications for policy. *Soc Sci Med.* 2022;301:112799.
12. Kumah E. The informal healthcare providers and universal health coverage in low and middle-income countries. *Global Health.* 2022;18(1):45.
13. Rousham EK, Nahar P, Uddin MR, Islam MA, Nizame FA, Khisa N, et al. Gender and urban-rural influences on antibiotic purchasing and prescription use in retail drug shops: a one health study. *BMC Public Health.* 2023;23(1):229.
14. Wildbret S, Stuck L, Luchen CC, Simuyandi M, Chisenga C, Schultsz C, et al. Drivers of informal sector and non-prescription medication use in pediatric populations in a low- and middle-income setting: A prospective cohort study in Zambia. *PLOS Glob Public Health.* 2023;3(7):e0002072.
15. Das S, Khare S, Eriksen J, Diwan V, Stålsby Lundborg C, Skender K. Interventions on informal healthcare providers to improve the delivery of healthcare services in low-and middle-income countries: a systematic review. *Front Public Health.* 2024;12:1456868.
16. Edessa D, Kumsa FA, Dinsa G, Oljira L. Drug providers' perspectives on antibiotic misuse practices in eastern Ethiopia: a qualitative study. *BMJ Open.* 2024;14(8):e085352.
17. Odii A, Arize I, Agwu P, Mbachu C, Onwujekwe O. To What Extent Are Informal Healthcare Providers in Slums Linked to the Formal Health System in Providing Services in Sub-Saharan Africa? A 12-Year Scoping Review. *J Urban Health.* 2024;101(6):1248-58.
18. Tandan M, Thapa P, Bhandari B, Gandra S, Timalsina D, Bohora S, et al. Antibiotic dispensing practices among informal healthcare providers in low-income and middle-income countries: a scoping review protocol. *BMJ Open.* 2024;14(6):e086164.
19. Tesema GA, Biney GK, Wang VQ, Ameyaw EK, Yaya S. Antibiotic prescription sources and use among under-5 children with fever/cough in sub-Saharan Africa. *Int Health.* 2024.
20. Nizame FA, Shoaib DM, Rousham EK, Akter S, Islam MA, Khan AA, et al. Barriers and facilitators to adherence to national drug policies on antibiotic prescribing and dispensing in Bangladesh. *Journal of Pharmaceutical Policy and Practice.* 2021;14(1):85.