A robust hybrid methodology between applied linear regression model (alrm) and multilayer perceptron (mlp)
DOI:
https://doi.org/10.3329/bjms.v22i1.61850Keywords:
Multiple Linear Regression; Multilayer perceptronAbstract
Background: The goal of this study is to illustrate an optimum variable selection method using established Multiple Linear Regression (MLR) models and to validate the variable using Multilayer Perceptron Neural Network (MLP) models. Initially, all selected variables will be passed through the bootstrap methodology, and they were screened for significant relationships.
Objective: The goal of this work is to analyze and construct a model for the factor linked with total crime cases by combining an Applied Linear Regression Model (ALRM) and a Multilayer Perceptron (MLP).
Material and Methods: Around 200 data was simulated to build the methodology. Advanced computational statistical modeling methodologies were used to evaluate data descriptions of several variables in this retrospective study, including the total victim, gender, age, marital status, social class, adult in the household, children in household, burglary’s victim, sexual’s victim, victim’s report, and household location. The case study was developed and implemented using the R-Studio program and syntax.
Results: The statistical method demonstrated that regression modeling surpasses R-squared and mean square error test in most situations. Researchers observed that when data is divided into two datasets for training and testing, the hybrid model approach performs significantly better at predicting the experiment’s outcome. When it came time to determine variable validity, the well-established bootstrap-integrated MLR approach was applied. Ten characteristics are taken into consideration in this case: Gender (: -0.4369700; p< 0.25), age (: -0.0086757; p< 0.25), marital status (: 0.2646097; p< 0.25), social class ( : 0.0602540; p< 0.25), adult in household (: -0.0211293; p> 0.25), children in household (: -0.0025346; p> 0.25), burglary’s victim (: 1.3473593; p< 0.25), sexual’s victim (: 1.0382444; p< 0.25), victim’s report (: -0.3176104; p< 0.25), and location of household (: -0.1355046; p< 0.25).There is a 0.07745823 MSE for the linear model in this scenario.
Conclusion: The neural network’s Predicted Mean Square Error (PMSE) was used to assess MLP’s performance (MSE-forecasts the Network). PMSE is used to determine how far our projections are from the actual data, and the lowest MSE from the MLP indicates the best achievement. The R syntax for MLR and MLP is also included in this research article.As a result, the study’s conclusion establishes the superiority of the hybrid model technique.
Bangladesh Journal of Medical Science Vol. 22 No. 01 January’23 Page : 38-46
Downloads
34
49
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mohamad Nasarudin Bin Adnan, Wan Muhamad Amir W Ahmada, Nuzlinda Abdul Rahman, Farah Muna Mohamad Ghazali, Nor Azlida Aleng, Zainab Mat Yudin Badrin, Mohammad Khursheed Alam, Nor Farid Mohd Noor
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in the Bangladesh Journal of Medical Science agree to the following terms that:
- Authors retain copyright and grant Bangladesh Journal of Medical Science the right of first publication of the work.
Articles in Bangladesh Journal of Medical Science are licensed under a Creative Commons Attribution 4.0 International License CC BY-4.0.This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.- Authors are able to enter into separate, additional contractual arrangements for the distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as greater citation of published work.