Introduction

It is known that most strains of Escherichia coli are harmless and live in the intestines of healthy humans and animals; however, some of the E. coli strains can cause a wide variety of intestinal and extra-intestinal diseases, such as diarrhea, urinary tract infections, septicemia, and neonatal meningitis. The presence of Escherichia coli in environmental sample is implicit evidence for fecal contamination and represents a threat to human and environmental health.

The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. Comparison of the bacterial 16S rRNA gene sequence has emerged as a preferred genetic technique. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, can be routinely used for identification of bacteria, and can lead to the recognition of novel pathogens and non-cultured bacteria.

Phylogeny is the study of evolutionary relatedness among various groups of organism. Phylogenetic analyses have shown that E. coli strains fall into four main phylogenetic groups (A, B1, B2, and D) and that virulent extra-intestinal strains belong mainly to group B2 and to a lesser extent, to group D.

Methods and Materials

Bacteria

A total of 19 E. coli isolates from urine samples at Medinova Medical service were used for the study, 11 of which were sequenced for dendogram construction.
Detection of 16s rDNA gene of E. coli sequences by PCR

PCR primers for universal 16s rDNA were used to detect the samples as bacterial isolates. Bacteria grown on Nutrient agar medium were used for preparation of template DNA. Sterile toothpick was used to pick a bacterial colony and mixed with 20 µl sterile distilled water. The mixture was heated at 100°C for 5 minutes in a PCR block (MJ Research, USA). Heat lysed cells were centrifuged for 3 mins in a short spin machine (ABC-M6 mini centrifuge, USA). Cell debris were pelleted at the bottom and the supernatant contained DNA. This was used as template DNA for subsequent PCR. Commercial Master mix (Taq 2x master mix, NEB, UK) was used in all PCR. It was two times (2x) concentrated and contained dNTPs, Taq polymerase, MgCl₂ and buffer. A sterile eppendorf was taken and the tube was labeled. Measured volume of water and MgCl₂ were taken in the eppendorf. Then the master mix was added. During addition of master mix the eppendorf was placed on icebox because Taq polymerase might lose its activity if it was not placed in ice. Though the master mix contained MgCl₂, extra MgCl₂ was added for greater efficiency of Taq polymerase present in the master mix. After that forward and reverse primers were added in appropriate volumes. Table 2 shows the reaction components in a 20 µl PCR reaction mixture. A total of 18µl reaction mixture was dispensed in each PCR tube. Two µl of template was added to each tube and mixed with a pipette tip. PCR reaction was carried out in a programmable Gradient cycler (MJ Research, USA) that involved an initial DNA denaturation, followed by a number of cycles of denaturation, primer annealing, and product extension. A final DNA extension step completed the reaction. The PCR for Universal 16s rDNA was performed using an initial denaturation step at 95°C for 5 minutes, followed by 35 cycles each consisting of an initial denaturation step at 95°C for 30 seconds, primer annealing at 58°C for 30 seconds and extension at 68°C for 30 seconds. A final extension step was carried out at 68°C for 10 minutes. PCR amplicons were analyzed using agarose gel electrophoresis in 1% agarose (w/v). The gel was then stained in Ethidium bromide solution (40 µg/ml) for 30 min and destained in distilled water for 5 minutes. Then stained gel was observed with a UV transilluminator (Gel Doc, Bio-Rad, USA). Photographs were taken and bands were analyzed with “Quality One®” software (Bio-Rad, USA). The molecular mass marker, 1 kb DNA ladder marker (Promega, UK) was used for Universal 16s rDNA.

PCR primers

The sequences of primers used in this study are shown in Table 1.

DNA Purification

DNA was purified by Invisorb DNA CleanUp (STRATEC Molecular GmbH, Germany). It was used for purification of DNA fragments after PCR reactions and purification of contaminated DNA after DNA purification.

DNA sequencing

DNA sequencing is performed in CARS (Centre for Advanced Research in Sciences).

Genotypic characterization

The 16s rDNA sequences generated with universal forward and reverse primers were aligned in MUSCLE (www.ebi.ac.uk) with known sequence of E. coli (KR148984.1) deposited in GenBank (http://www.ncbi.nlm.nih.gov/) and edited manually. Genotypic characterization was done using MEGA 5.2 version software. The phylogenetic analysis was constructed using neighbor-joining algorithm⁸,⁹.

Results

Amplification of 16s rDNA by using universal primer

Molecular genotypic technique involves the amplification of any phylogenetically informative target such as 16S rRNA gene for genera identification³. So amplification of 16S rRNA marker gene was performed to conform the test E. coli.

A 1kb amplicon corresponding to part of the 16s rDNA was obtained using PCR (Figure 1).
Genetic Relatedness among test isolates

The genetic relatedness among the test isolates was determined by plotting a dendogram based on 16s rDNA partial sequences using Neighbour-joining method (Figure 2). The evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch length = 21.73223416 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number of base substitutions per site. The analysis involved 14 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 474 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

In this study, sequences of 16s rDNA of two uropathogenic E. coli (GenBank IDs: KX816955.1, strain DS-04 and JX290084.1, strain KVP104) isolated in India and a commensal E. coli (GenBank ID: AB269763.1) isolated in Japan were used for comparison with the test isolates. From the dendogram, it is observed that isolate M34 showed similarity to uropathogenic and commensal E. coli. On the other hand, isolate M6 was in the same cluster as uropathogenic E. coli strain KVP104. The rest of the isolates showed sequence variation with the reference bacteria used.

![Dendogram showing genetic relatedness among test isolates](image)

Table 1. Primers for 16s rDNA used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
<th>Tm (°C)</th>
<th>Amplicon size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal forward</td>
<td>5′AGAGTTTGATCCTGGCTCAG3′</td>
<td>54.3</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>Universal reverse</td>
<td>5′CTTGTGCGGGCCCCGCAATCC3′</td>
<td>65.1</td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Volume of Reagents for preparation of PCR Reaction mixture

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume(µl)</th>
<th>Stock solution</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclaved distilled H₂O</td>
<td>04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer 1 forward</td>
<td>01</td>
<td>10 µM</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>Primer 2 reverse</td>
<td>01</td>
<td>10 µM</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>01</td>
<td>25mM</td>
<td>2.0 mM</td>
</tr>
<tr>
<td>DMSO</td>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master mix</td>
<td>10</td>
<td>2x</td>
<td>1x</td>
</tr>
<tr>
<td>Template</td>
<td>02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Evolutionary relationships of studied taxa

Table 1. Primers for 16s rDNA used in this study

Table 2. Volume of Reagents for preparation of PCR Reaction mixture
Discussion

This study was undertaken to investigate genetic relatedness among Uropathogenic E. coli isolated from human patients. With the invention of polymerase chain reaction (PCR) and automated DNA sequencing, the genome of some bacteria has been sequenced completely. A comparison of the genomic sequences of bacterial species showed that the 16S ribosomal RNA (rRNA) gene is highly conserved within a species and among species of the same genus and, hence, can be used as the new gold standard for the specification of bacteria11. To study bacterial phylogeny and taxonomy, the 16S rRNA gene sequences are very useful. With the gene presence in almost all bacteria, often existing as a multigene family or operons, the function of the 16S rRNA gene over time has not changed, suggesting that random sequence changes are a more accurate measure of time and the 16S rRNA gene (1500 bp) is large enough for informatics purposes12. Using 16S rRNA sequences, numerous bacterial genera and species have been reclassified and renamed; classification of uncultivable bacteria has been made possible, phylogenetic relationships have been determined, and the discovery and classification of novel bacterial species have been facilitated11. This method has been successful in identifying Enterobacteriaceae species from a bone marrow transplant recipient12, and the use of this method to identify or discover novel bacteria in clinical microbiology laboratories has successfully been reported11,13.

Sequence analysis of the test isolates indicated sequence difference among them in terms of 16s rDNA sequences. Hence, the technique was able to differentiate among the isolates. In earlier studies12 16S rRNA gene sequencing was successfully used for bacterial pathogen identification in the clinical laboratory. 16S rRNA gene sequencing has been used for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories11, and 16S rRNA was developed as a PCR target for detection of E. coli in Rainbow Trout14. E. coli isolated from human and animal sources were successfully discriminated using 16s rDNA sequences by earlier studies15. Furthermore, it was reported that the use of 16S rRNA gene sequence to study bacterial taxonomy has been used widely for a number of reasons12. These reasons include (i) its presence in almost all bacteria, often existing as a multigene family or operons; (ii) the fact that the function of the 16S rRNA gene over time has not changed, suggesting that random sequence changes are a more accurate measure of time (evolution); and (iii) the fact that the 16S rRNA gene (1,500 bp) is large enough for informatics purposes.

In the present study, comparison of test sequences with reference sequences indicated that one isolate M34 showed similarity to Uropathogenic (GenBank IDs: KX816955.1) as well as commensal E. coli (GenBank ID: AB269763.1), whereas M6 showed similarity to UPEC (GenBank ID: JX290084.1). The rest of the isolates were in different clusters. This result indicates that the isolate which was similar to commensal E. coli was most likely opportunistic. The rest of the isolates might have accumulated sufficient mutations to be different from others. On the other hand, they might have been phylogenetically pathogenic in origin possessing virulence traits. These results could be confirmed if further phylogenetic tests were done. For example, the isolates could have been tested for the presence of phylogenetic markers.

Conclusions

In the present investigation, the genetic relationship among 11 E. coli isolated from human was studied. Comparison of the test isolates with uropathogenic and commensal E. coli indicated that whereas two isolates showed similarity to the reference strains the rest were in different clusters. This could indicate to accumulation of mutation in the sequences or differences in phylogeny. Further confirmation regarding the origin could be obtained by supporting tests, e.g. detection of phylogenetic markers. Other tests such as ERIC PCR, Rep PCR, Ribotyping, etc. could also be performed for studying variation among the isolates. Increasing the number of test isolates would increase the statistical validity of such results.

Acknowledgement

This study was supported by the Department of Microbiology of University of Dhaka, Bangladesh and a grant (2012-2013) provided by the University Grants Commission, Government of Bangladesh.

Conflict of interest

Authors declare no conflict of interest.

References

Genetic Relatedness among *Escherichia coli* Isolated from Clinical Samples

