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Abstract 

 

A class of functions has been introduced, leading to the introduction of corresponding class of 

discrete probability distributions. This includes several known as well as newly identified 

distributions as specific cases. Various distributional properties of these proposed distributions 

have been explored. Finally, the proposed distributions are fitted with a zero-truncated Poisson 

distribution to life data, and we also test their goodness of fit. 
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1. Introduction  
 

The geometric distribution, also known as the Furry distribution (Furry 1937), has been illustrated 

in Johnson et al. (1969, 2005). This distribution is a special case of the negative binomial 

distribution and possesses the non-aging or Markovian property, similar to the exponential 

distribution (Johnson et al. 1995, 2005). It is often considered an exponential distribution and is a 

specific case of the grouped exponential distribution (Spinelli 2001). The geometric distribution 

and its properties have been extensively studied by various researchers, as reported in Johnson et 

al. (1969, 2005), Marco (2021), among others. Much of this work requires updating in the book by 

Johnson et al. (2005). Parameter estimation for the geometric distribution is straightforward due to 

its classification as a power series distribution, with the first-moment equation also serving as the 

maximum likelihood equation (Johnson et al. 2005). 
 

The logarithmic distribution has been documented in Johnson et al. (1969, 2005). It is a one-

parameter generalized power series distribution with infinite support on the positive integers 

(Johnson et al. 2005). Comprehensive studies on the logarithmic distribution can be found in the 

works of Jonson et al. (1969, 1995, and 2005). The polylogarithm function finds its application in 

quantum statistics, where it appears as the closed form of integrals of the Fermi–Dirac and Bose-

Einstein distributions, also known as the Fermi–Dirac integral or the Bose-Einstein integral. The 

contributions of the polylogarithmic distribution are documented in Kemp (2004), Gallardo et al. 

(2018), and Valero et al. (2022).   
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The concept of weighted distributions was developed by Rao (1965), with a comprehensive review 

of their applications found in Rao (1985) and Patil et al. (1986). These distributions are modified 

either through the method of ascertainment or the recording process when an event occurs 

(Johnson et al. 2005). A detailed description of weighted distribution has been illustrated in 

Johnson et. al. (1969, 1995, 2005), highlighting the contributions of Patil and Rao (1978), and Patil 

et al. (1986). Patil et al. (1986) suggested 10 types of useful weight functions in scientific work. 

The weighted distribution is also known as the moment distribution (Berg, 1978).   
 

This study introduces and examines a class of discrete probability distributions (CDPD), proposing 

a new class of useful functions. This encompasses several familiar as well as newly identified 

distributions as specific cases. The distributional properties of the proposed distributions have been 

thoroughly examined. R language has been utilized for mathematical calculations and chart 

preparation. Finally, these proposed distributions are fitted with a zero-truncated Poisson 

distribution to life data and the test their goodness of fit. 

 

2. Class of Useful Functions  
A class of useful functions has been proposed for non-negative integer values of 𝑥 as 

                        𝐿𝜈(𝛼, 𝛽, 𝜃) = ∑ (𝛼 + 𝛽𝑥𝜈)𝜃𝑥∞
𝑥=0 , 𝜐 ≥ 0, 𝛼 ≥ 0, 𝛽 > 0 and (0 < 𝜃 < 1)    (2.1) 

A list of functions can be obtained for different integer values of the parameter ν from (2.1).  

Special Case: For 𝛼 = 0, 𝛽 = 1 the function (2.1) is denoted by 𝐿𝜐(𝜃) ≡ 𝐿𝜐(0,1, 𝜃), and we term 

it a 𝐿-function of order 𝜐. It is expressed as 

                      𝐿𝜐(𝜃) = ∑ 𝑥𝜐𝜃𝑥 ,   𝜐 ≥ 0, 0 < 𝜃 < 1∞
𝑥=0                                                                    (2.2) 

It is also defined as a power series in 𝜃. 

The other form of the above function may be proposed for strictly positive integer value of 𝑥 as  

                      𝐿−ν(α, β, θ) = ∑ (α + β𝑥−ν)θ𝑥∞
𝑥=1 , 𝜐 ≥ 0, 𝛼 ≥ 0, 𝛽 > 0 and (0 < 𝜃 < 1)   (2.3) 

Special Case: For 𝛼 = 0, 𝛽 = 1, the function (2.3) is known as a polylogarithm (Valero et al. 

2022). It is defined by a power series in 𝜃 also denoted by 𝐿𝑖𝜐(𝜃) and is defined for positive 

integer values of 𝑥 as 

                    𝐿−𝜐(0,1, θ) = 𝐿𝑖𝜐(θ) = ∑
θ𝑥 

𝑥υ  ,    ∞
𝑥=1 𝜐 ≥ 0, 0 < 𝜃 < 1                                     (2.4) 

It is also valid for a negative value of 𝜐, then 𝐿𝑖−𝜐(𝜃) = 𝐿𝜐(𝜃). 
 

3. Class of Discrete Probability Distributions 

Two classes of discrete probability distributions are defined for given integer values of ν and 

α ≥ 0 and 𝛽 > 0 as 

Definition 3.1. A random variable 𝑋 is said to follow a class of discrete probability distributions of 

type I (CDPDI), if it has the probability mass function (pmf) 

                   𝑃(𝑋 = 𝑥) = {
(𝛼+𝛽𝑥𝜈)𝜃𝑥

𝐿𝜈(𝛼,𝛽,𝜃)
, 𝛼 ≥ 0,  𝛽 > 0,  𝜐 ≥ 0, 0 < 𝜃 < 1, 𝑥 = 0,1,2, …

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (3.1) 

where 𝐿𝜈(𝛼, 𝛽, 𝜃) is defined in (2.1). 

Special Case: For 𝛼 = 0, 𝛽 = 1, the pmf (3.1) yields the distribution of 𝐿- function of order 𝜐 and 

is defined as follows.   
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Definition 3.2 A random variable X is said to follow a distribution of 𝐿- function of order 𝜐, if it 

has the probability mass function  

                          𝑝(𝑥) = {

1

𝐿𝜐(𝜃)
 𝑥𝜐𝜃𝑥 , 0 < 𝜃 < 1, 𝜐 > 0, 𝑥 ∈  {1,2,3, … }

0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                             (3.2) 

where 𝐿𝜐(0,1, 𝜃) = 𝐿𝜐(𝜃) = ∑ 𝑥𝜐𝜃𝜐∞
𝑥=1 .  

Definition 3.3 A random variable 𝑋 is said to follow a class of discrete probability distributions of 

type II (CDPDII), if it has the probability mass function 

                         𝑃(𝑋 = 𝑥) = {
(𝛼+

𝛽

𝑥𝜐)𝜃𝑥

𝐿−𝜈(𝛼,𝛽,𝜃)
, 𝛼 ≥ 0,  𝛽 > 0, 0 < 𝜃 < 1, 𝑣 ≥ 0,  𝑥 = 1,2, …

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3.3) 

where 𝐿−𝜐(𝛼, 𝛽, 𝜃) is defined in (2.3).  

Special Case: The pmf (3.3) is said to be a polylogarithmic distributions for 𝛼 = 0, 𝛽 =  1. The 

pmf of polylogarithmic distributions is given by 

                      𝑃(𝑋 = 𝑥) =
𝜃𝑥

[𝐿𝑖𝜐(𝜃)]𝑥𝜈 ,   0 < 𝜃 < 1,  𝑣 ≥ 0, 𝑥 = 1,2, …                                     (3.4) 

where 𝐿𝑖ν(𝜃) is defined in (2.4).  

The pdf (3.3) can also be expressed as 

                                

𝑃(𝑋 = 𝑥) = {
(α+

𝛽

𝑥𝜐)θx

αθ(1−θ)−1+βLiν(θ)
,       α ≥ 0,  β > 0, υ ≥ 0, 0 < θ < 1,  x = 1,2, …

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     (3.5) 

  

Remarks: 

1. For α = 0, and 𝛽 = 1, the pmf’s (3.3) and (3.5) both becomes the pmf (3.4). 

2. Suppose α = 0, 𝛽 = 1 and θ = 1, then the pmf’s (3.3) and (3.5) becomes the zeta distribution 

for positive integer 𝑥 ≥ 1 with pmf (Johnson, 2005, Valero et al. 2022) 

                     P(X = x) =
x−ν

ζ(ν)
,   ν > 1, 𝑥 ∈ {1,2, … },                                                                    (3.6) 

where 𝜁(𝜐) = ∑ 𝑥−𝜐∞
𝑥=1  is the Riemann zeta function. The probability generating function (pgf) of 

a Zipf distributed random variable is 

                    𝐺𝑋(𝑡) = 𝐸(𝑡𝑋) = ∑
𝑡𝑥𝑥−𝜐

𝜁(𝜐)
 =  

𝐿𝑖𝜐(𝑡 )

𝐿𝑖𝜐(1)
, |𝑡| < 1, and ∞

𝑥=1 𝜐 > 1                                     (3.7) 

where the 𝐿𝑖𝜐(𝑡) is known as the polylogarithm function or Li function of order 𝜐 and is given by 

               𝐿𝑖𝜐(𝑡) =  ∑
𝑡𝑥

𝑥𝜐
∞
𝑥=1                                                                         (3.8)  

The Li function of any specified order is defined for any arbitrary complex number and any 

complex number t, for |t| < 1. Through analytic continuation, this function extends across the entire 

complex plane. For Re(t) > 0, and all t except those that are real and greater than or equal to one, 

the polylogarithm function can be expressed using the integral of Bose-Einstein distribution as 

(Valero et al. 2022)  
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              𝐿𝑖𝜐(𝑡) =
1

Γ(𝜐)
∫

𝑢𝜐−1

exp(𝑢)

𝑡
 – 1

 𝑑𝑢
∞

0
                                        (3.9) 

1. Suppose α = 0, and 𝜃 = 1, then the pmf (3.3) and (3.5) yields a new distribution call it a 

modified zeta distribution for positive integer 𝑥 ≥ 1 with pmf  

                          P(X = x) =
βx−ν

ζ(β,ν)
,   ν > 1,  β > 1                                                                               (3.10) 

where ζ(β, ν) = ∑ β𝑥−ν∞
𝑥=1 . 

4. Some Distributional Properties of CDPDs 

4.1 Probability Generating Function of CDPDI 

The probability generating function (pgf) of the CDPDI is  

                            𝐺𝑋(𝑡) =
𝐿ν(α,β,𝑡θ)

𝐿ν(α,β,θ)
                           (4.1) 

Remark 4: For 𝛼 = 0, 𝛽 = 1, the pgf of the distribution of 𝐿- function of order 𝜐 is given by  

                           𝐺𝑋(𝑡) =
𝐿ν(0,1,𝑡θ)

𝐿ν(0,1,θ)
=

𝐿ν(𝑡θ)

𝐿ν(θ)
                         (4.1a) 

The probability distributions of different CDPDIs are obtained from the probability generating 

functions using the following relation 

                         𝑃(𝑋 = 𝑥) = 𝑝(𝑥) =
1

𝑥!

𝑑𝑥

𝑑𝑡𝑥  
𝐿ν(α,β,𝑡θ)

𝐿ν(α,β,θ)
|𝑡=0                        (4.2) 

The descending factorial moments of the probability distributions of different CDPDI’s are 

obtained from the pgf using the following relation 

                       μ(𝑟)
′ =  

𝑑𝑟

𝑑𝑡𝑟  
𝐿ν(α,β,𝑡θ)

𝐿ν(α,β,θ)
|𝑡=1                          (4.3) 

For different values of 𝛼, 𝛽  and 𝜐 , one may get the descending factorial moments of the 

distributions putting 𝑟 = 1,2,3,4, …. in (4.3). 

The pgf of the CDPDII is  

                      𝐺𝑋(𝑡) =
𝐿−ν(α,β,𝑡θ)

𝐿−ν(α,β,θ)
                                        (4.4) 

Remark 5: For 𝛼 = 0, 𝛽 = 1, the pgf of the polylogarithmic distributions is given by 

                𝐺𝑋(𝑡) =
𝐿−ν(0,1,𝑡θ)

𝐿−ν(0,1,θ)
=

𝐿𝑖ν(𝑡θ)

𝐿𝑖ν(θ)
                                       (4.4a) 

The probability distributions of different CDPDIIs are obtained from the probability generating 

functions using the following relation 

                   𝑃(𝑋 = 𝑥) = 𝑝(𝑥) =
1

𝑥!

𝑑𝑥

𝑑𝑡𝑥  
𝐿−ν(α,β,𝑡θ)

𝐿−ν(α,β,θ)
|𝑡=0                                       (4.5) 

The descending factorial moments of the probability distributions of different CDPDII’s are 

obtained from the pgf using the following relation 

                   μ(𝑟)
′ =  

𝑑𝑟

𝑑𝑡𝑟  
𝐿−ν(α,β,𝑡θ)

𝐿−ν(α,β,θ)
|𝑡=1                          (4.6) 

 

For different values of 𝛼, 𝛽  and 𝜐 , one may get the descending factorial moments of the 

distributions putting 𝑟 = 1,2,3,4, …. in (4.6). 
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4.2 Moments of the CDPDs 

The 𝑟th raw moment of the CDPDI is given by 

                                            𝜇𝑟
′ =

𝛼𝐿𝑟(𝜃)

𝐿𝜐(𝛼,𝛽,𝜃)
+

𝛽𝐿𝜐+𝑟(𝜃)

𝜃𝑟𝐿𝜐(𝛼,𝛽,𝜃)
                                             (4.7) 

Remark 6: For 𝛼 = 0, 𝛽 = 1, the 𝑟th raw moment of the distribution of 𝐿- function of order 𝜐 is 

given by  

                                              𝜇𝑟
′ =

𝐿𝜐+𝑟(𝜃)

𝜃𝑟𝐿𝜐(0,1,𝜃)
=

𝐿𝜐+𝑟(𝜃)

𝜃𝑟𝐿𝜐(𝜃)
                                             (4.8) 

One can obtain different raw moments by putting 𝑟 = 1,2,3,4, … in (4.7) and (4.8). 

The 𝑟th raw moment of the CDPDII is given by 

                                            𝜇𝑟
′ =

𝛼𝐿𝑟(𝜃)

𝐿−𝜐(𝛼,𝛽,𝜃)
+

𝛽𝜃𝑟𝐿𝑖𝜐−𝑟(𝜃)

𝐿−𝜐(𝛼,𝛽,𝜃)
                                          (4.9) 

Remark 7: For 𝛼 = 0, 𝛽 = 1, the 𝑟th raw moment of the polylogarithmic distribution is given by  

                                              𝜇𝑟
′ =

𝜃𝑟𝐿𝑖𝜐−𝑟(𝜃)

𝐿−𝜐(0,1,𝜃)
=

𝜃𝑟𝐿𝑖𝜐−𝑟(𝜃)

𝐿𝑖𝜐(𝜃)
                                       (4.10) 

One can obtain different raw moments by putting 𝑟 = 1,2,3,4, … in (4.9) and (4.10). 

 

4.3 A Few Distributions Derived from the CDPDI 

In this subsection, a few known as well as new distributions will be derived from (3.2) for different 

values of ν.  

 

4.3.1 Geometric Distribution  

The 𝐿- function of order 𝜐 = 0 is represented by a geometric distribution with the probability mass 

function (pmf): 

                                  𝑃(𝑋 = 𝑥) = (1 − 𝜃)𝜃𝑥 ,    𝑥 = 0,1,2, … ,   0 < 𝜃 ≤ 1                         (4.11) 

If θ = (1 − 𝑝) is taken as the probability of failure, the geometric distribution (4.11) is used to 

model the number of failures before the first success. The pmf (4.11) indicates the probability that 

the first success occurs at (𝑥 + 1)th independent trials, each trial having a failure probability of θ.  

                               𝑃(𝑋 = 𝑥) = 𝑝(1 − 𝑝)𝑥,    𝑥 = 0,1,2,…                                                  (4.12) 

Again, if 𝑋  follows a geometric distribution with parameter 𝑝 , then 𝑌 = 𝑋 + 1  represent the 

shifted geometric distribution with the pmf 

                              𝑃(𝑌 = 𝑦) = (1 − 𝑝)𝑦−1𝑝,    𝑦 = 1,2,…                                                  (4.13) 

The pmfs' (4.11), (4.12) and (4.13) all describe the geometric distribution. Specifically, pmf (4.11) 

models the number of successes before the first failure, pmf (4.12) models the number of failures 

before the first success, and pmf (4.13) models the total number of trials up to and including the 

first success. There are numerous references discussing the geometric distribution (e.g., Johnson, 

1969; Johnson et al., 2005; Marco, 2021). 
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4.3.2 A Few Distributions Derived from the 𝑳- function of order 𝝊  

The distribution of the 𝐿- function of order 𝜐 = 1 becomes the size biased geometric distribution 

of order 1, which is defined in the following sub-section.  

4.3.2.1 Size Biased Geometric Distribution (SBGD) of order 1 

The size biased geometric distribution of order 1 is defined as  

Definition 4.1 A random variable X is said to follow size biased geometric distribution of order 1 

if it possesses the following probability mass function  

 𝑃(𝑋 = 𝑥) = 𝑝(𝑥) = {
(1 − 𝜃)2𝑥 𝜃𝑥−1, 0 < 𝜃 < 1, 𝑥 = 1,2, …

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (4.14) 

The distributional properties of the size biased geometric distribution of order 1 are described in 

the following sections.  

4.3.2.2 Probability Generating Function 

The pgf of the size biased geometric distribution of order 1 is given by 

                           𝐺𝑋(𝑡) = 𝐸(𝑡𝑋) =
𝑡(1− 𝜃)2

(1− 𝑡𝜃)2                       (4.15) 

4.3.2.3 Moments of the Distribution 

The mean and the variance of the size biased geometric distribution of order 1 are given below:  

Mean of the distribution, 𝜇1
′ =

(1+𝜃)

(1−𝜃)
 

Variance of the distribution, 𝜇2 =
2𝜃

(1−𝜃)2 

4.3.2.4 Estimation 

The parameter of the size biased geometric distribution of order 1 is estimated by the method of 

moments and the maximum likelihood estimation.  

By the Method of Moments 

Let the random sample 𝑥1, 𝑥, … , 𝑥𝑛  be of 𝑛 observations from the size biased geometric population 

of order 1 with parameter θ. Let 𝑚1 be the mean obtained from the observations. Then the mean of 

the size biased geometric distribution of order 1 is  θ̂ =
𝑚1−1

𝑚1+1
 , 𝑚1 > 1.  

By the Method of Maximum Likelihood Estimation 

The maximum likelihood estimates of random sample  𝑥1, 𝑥, … , 𝑥𝑛  of 𝑛 observations from the size 

biased geometric population of order 1 is θ̂ =
𝑥̅−1

𝑥̅+1
 ,   𝑥̅ > 1. 

It is seen that the estimate of the parameter 𝜃  by the method of moments and the maximum 

likelihood estimator method is the same.  

4.3.2.5 Graphical representation of the sized biased geometric distribution of order 1 

The following plots represent the pattern of the size biased geometric distribution of order 1 for 

different values of 𝜃.  
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Figure 1: Plots of the size biased geometric distribution of order 1 for different values of θ 
 

Proposition 4.1.1 Let X be a random variable following size biased geometric distribution of order 

1. Then the size biased geometric distribution of order 1 does not possess the non-aging properties, 

i.e.,   

                                            𝑃(𝑋 = 𝑥 + 𝑗|𝑋 ≥ 𝑗) ≠ 𝑃(𝑋 = 𝑥)                                              (4.16) 

unless j = 0. 

 

4.3.3.1 Size Biased Geometric Distribution (SBGD) of Order 2 

The distribution of 𝐿- function of order 𝜐 = 2 gives the size biased geometric distribution of order 

2 and is defined as   

Definition 4.2 A random variable X is said to follow sized biased geometric distribution of order 2, 

if it has the probability mass function  

𝑃(𝑋 = 𝑥) = 𝑝(𝑥) = {
(1−𝜃)3

(1+𝜃)
𝑥2 𝜃𝑥−1, 0 < 𝜃 < 1, 𝑥 = 1,2, …

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (4.17) 

The distributional properties of the size biased geometric distribution of order 2 are described in 

the following sections. 

4.3.3.2 Probability Generating Function 

The pgf of the size biased geometric distribution of order 2 is given by 

 𝐺𝑋(𝑡) = 𝐸(𝑡𝑋) =
(1− 𝜃)3

(1− 𝑡𝜃)3  
𝑡(1+𝑡𝜃)

(1+𝜃)
                                     (4.18) 
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4.3.3.3 Graphical representation of the sized biased geometric distribution of order 2 

The following plots represent the pattern of the sized biased geometric distribution of order 2 for 

different values of 𝜃. 

 

Figure 2: Plots of the size biased geometric distribution of order 2 for different values of θ 
 

4.3.3.4 Estimation 

By the Method of Moments 

Let the random sample 𝑥1, 𝑥, … , 𝑥𝑛 be of 𝑛 observations from the size biased geometric population 

of order 2 with parameter θ. Let 𝑚1 be the mean obtained from the observations. Then the mean of 

the size biased geometric distribution of order 2 is obtained by solving a quadratic equation and 

considering the positive value of 𝜃 as the estimate of 𝜃. Thus, the estimate of 𝜃 by the method of 

the moment is 𝜃 =
√𝑚1

2+3−2

𝑚1+1
 and 𝑚1 must be greater than 1. 

By the Method of Maximum Likelihood Estimation 

The maximum likelihood estimates of random sample  𝑥1, 𝑥, … , 𝑥𝑛  of 𝑛 observations from the size 

biased geometric population of order 2 is θ̂ =
√𝑥̅2+3−2

𝑥̅+1
 ,   𝑥̅ > 1. 

It is also seen that the estimate of the parameter 𝜃 of size biased geometric distribution of order 2 

by the method of moments and the maximum likelihood estimator method are the same. 

4.3.3.5 Moments of the Distribution 

The mean and the variance of the size biased geometric distribution of order 2 are given below: 

Mean of the distribution, 𝜇1
′ =

θ2+4θ+1

(1−θ2)
  

Variance of the distribution, 𝜇2 =
4θ(θ2+θ+1)

(1−θ2)2  
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5. Fitting of Some Distributions to Numerical Data 

In the following, we present the fitting of the size-biased geometric distribution (SBGD) of order 1 

and order 2 to numerical data, alongside the zero-truncated Poisson distribution. Tables 5.1 and 5.2 

compare the expected frequencies with the corresponding observed frequencies. It is observed that 

in Table 5.1, the SBGD of order 2 fits the data better than the SBGD of order 1 and the truncated 

Poisson distribution. Conversely, in Table 5.2, the SBGD of order 1 fits the data better than the 

zero-truncated Poisson distribution and the SBGD of order 2.  
 

Table 5.1: The following gives the distribution of the number of albino children in families of live 

children indicating at least one albino child (Pearson’s data). 
  

Albino children in families of five children 
No. of albinos in 

family 
No. of 

families 
Zero 

truncated 
Poisson 

SBGD of 
order 1 

SBGD of order 
2 

1 25 30.03 29.90 27.50 
2 23 18.84 17.59 20.27 
3 10 7.88 7.76 8.40 
4 1 2.47 3.04 2.75 
5 1 0.78 1.71 1.08 

Total 60 60 60 60 
Estimated value 

of the parameter 
 1.255 0.294 0.184 

Degrees of 
freedom 

 2 2 2 

Chi-square  3.2683 4.78 2.07 
 

(Source: J.B.S. Haldane, The estimation of the frequencies of recessive conditions in man, Annals 

of Eugenics, Vol.8.) 
 

Table 5.2: gives the frequencies of eggs laid by gallflies in flower heads. The count of flower 

heads with no eggs is not available. 
 

No. of eggs No. of 
flower heads 

Zero truncated 
Poisson 

SBGD of order 
1 

SBGD of order 2 

1 22 12.65 21.63 16.04 
2 18 19.76 21.81 23.75 
3 18 20.57 16.50 19.79 
4 11 16.04 11.09 13.03 
5 9 10.04 6.99 7.54 
6 6 5.22 4.23 4.02 
7 3 2.33 2.49 2.02 
8 0 0.91 1.43 0.98 
9 1 0.48 1.83 0.83 

Total 88 88 88 88 
Estimated value 

of the parameter 
 3.124 0.504 0.370 

Degrees of 
freedom 

 5 5 5 

Chi-square  11.79 3.71 7.44 
 

(Source: Handbook of Methods of Applied Statistics, Vol. 1, I. M. Chakravarty, R. G. Laha, and J. 

Roy, Wiley.) 
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