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Abstract

Simulation-based statistical inference (SBI) leverages computer simulations to
help scientists understand and analyze complex data. This paper explores how
SBI techniques can be used to analyze transportation data. We use mod-
ern computational methods, including machine learning models, to improve
the accuracy of predictions and decision-making in transportation planning.
Our study focuses on two SBI methods, Approximate Bayesian Computation
- Markov Chain Monte Carlo and Synthetic Likelihood, to create synthetic
data for training machine learning models. These models show the potential
of SBI to handle uncertain transportation data. It also highlights the practical
benefits of SBI in making better decisions for transportation systems.
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1. Introduction

Simulation-based statistical inference (SBI) leverages computer simulations to help scien-
tists understand and analyze complex data. Simulators’ flexibility has made them indis-
pensable tools for predicting system behavior across numerous scientific and engineering
disciplines. SBI represents a significant advancement in the methodological evolution of
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statistical practice, finding applications in fields such as statistics, computer science, engi-
neering, and robotics.

In the past, implementing SBI faced various challenges, including limitations in compu-
tational power and the complexity of high-dimensional data. However, with the rise of
artificial intelligence (AI) and machine learning, people can now work with more complex
data, significantly improving the quality and range of their inferences.

Transportation systems are vital in modern societies, impacting economic development,
environmental sustainability, and social equity. Analyzing transport data is essential for
understanding travel patterns, optimizing infrastructure investments, and improving the
efficiency of transportation networks. However, traditional statistical inference methods
may face challenges in capturing the complexity and uncertainty inherent in transportation
systems. This research explores applying simulation-based statistical inference techniques
to analyze transport data, leveraging their strengths to enhance predictive modeling and
decision-making processes in transportation planning and management.

2. Literature Review

2.1. Trend of SBI Articles in Recent Years

Figure 1: Number of Simulation-based Inference Papers by Year [20]
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From 2001 to 2019, the number of SBI papers published each year remained low, generally
below 40 papers per year. However, starting in 2020, there was a notable increase in the
publication of SBI papers, with a significant rise observed between 2021 and 2023. In
the current year, 2024, the trend is predicted to continue with an increasing number of
publications.

The sharp rise in publications suggests that SBI has become a crucial area of research in
recent years. This could be due to advancements in computational power, especially in
AI and machine learning, which have led to the development of new methods and broader
recognition of SBI’s utility across various fields.

2.2. Classical Methods

2.2.1. Density Estimation

Density estimation methods are used to approximate the distribution of the summary
statistics from samples generated by the simulator.

Density estimation is used to make inferences from complex statistical models. People focus
on using the kernel method for non-parametric density estimation, which involves using a
smooth, flexible function to estimate the probability distribution of simulated data. The
kernel density estimator is chosen for its simplicity and effectiveness, allowing for accurate
estimation even when the underlying data distribution is complex or unknown.

Figure 2: Density Estimation [3]

This method is particularly valuable for continuous data, where it estimates the log-
likelihood function by summing the logarithms of the kernel estimates at each observed
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data point. This approach helps make inferences about the parameters of implicit statisti-
cal models, providing a practical solution where traditional likelihood-based methods are
not applicable.

2.2.2. Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC) is another popular method where scientists
compare real-world data with simulated data. However, because it approximates results,
ABC might not always be as precise as other methods like Markov Chain Monte Carlo
(MCMC), especially when exact calculations are possible.

Figure 3: Approximate Bayesian Computation (ABC) [3]

It has been used for many years to tackle complex problems in genetics, where traditional
methods are too slow or difficult, primarily to make inferences about population size,
growth rates, and other genetic parameters.

Today, ABC is still important in genetics but is also used in other fields like epidemiology,
ecology, and evolutionary biology. With the advancement of technology and improved
methods, ABC has become more accurate and useful. Scientists use it to study the spread of
diseases, track changes in animal populations, and understand complex biological processes.

2.3. Improvement over Classical Methods

Recent advancements in Simulation-Based Inference (SBI) techniques have significantly
improved over classical methods. Neural Likelihood Estimation (NLE) utilizes neural net-
works to estimate likelihood functions from simulated data, offering flexibility in modeling
complex, high-dimensional distributions [12]. Normalizing Flows transform simple proba-
bility distributions into complex ones through invertible transformations, enabling effective
density estimation for intricate data structures [13]. Feature Selection Through Likelihood
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Marginalization (FSLM) efficiently identifies important data features without repeated full
estimations, reducing computational costs [2]. Approximate Bayesian Computation using
Markov Chain Monte Carlo simulation (DREAM(ABC)) employs the Differential Evolu-
tion Adaptive Metropolis algorithm for efficient sampling in high-dimensional spaces [16].
The sequential Monte Carlo (SMC) method improves sampling from sequences of proba-
bility distributions, improving exploration and efficiency [17]. Integrating Graph Neural
Networks (GNNs) with Approximate Bayesian Computation (ABC) automates the ex-
traction of summary statistics, boosting accuracy and computational efficiency [6]. These
advancements leverage machine learning and computational power to handle complex data
and improve inference quality.

2.4. Application in transportation

In transportation, SBI methods, including Approximate Bayesian Computation and Den-
sity Estimation, are applied to large, high-dimensional datasets to estimate travel time reli-
ability and route choice preferences. Manole and Niles-Weed (2024) used high-dimensional
data points from particle collisions in high-energy physics experiments at the Large Hadron
Collider (LHC) [9]. Unnikrishnan, Kochar, and Figliozzi used travel time data from the
Portland, OR metropolitan region, with 17,491 observations after removing outliers [19].
These methods improve the accuracy of utility function coefficient estimations that describe
travelers’ route choices and improve traffic flow [9], [7], [19].

ABC is utilized for likelihood-free inference in high-dimensional problems where the like-
lihood function is computationally prohibitive. It estimates parameters without explicit
likelihood functions, offering flexibility and scalability. However, it is computationally
intensive and sensitive to the choice of summary statistics and tolerance levels.

Density estimation methods improve the modeling of background events, providing detailed
insights into distributional properties. Techniques such as density ratio extrapolation ad-
just for shifts between auxiliary and background distributions, while empirical optimal
transport coupling refines background estimates [9]. Non-parametric methods like Kernel
Density Estimation offer flexibility without assuming a specific form for the distribution
but can suffer from boundary issues and performance dependence on bandwidth choice
[19]. Integrating these methods ensures more accurate and feasible background modeling,
which is crucial for identifying rare events in high-energy physics experiments.

SBI techniques have the potential to significantly improve transportation models. These
methods offer flexible and adaptable solutions for complex, high-dimensional problems.
However, their computational intensity and sensitivity to various parameters present chal-
lenges, especially when applied to smaller datasets due to limited resources.

3. Methodology

Despite the effectiveness of these methods with high-dimensional and large datasets, our
resources did not permit handling such extensive data. Therefore, we applied these tech-
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niques to much smaller datasets.

We used the Bureau of Transportation Statistics data on Indiana transportation from 2010
to 2021 to predict the data for 2022. We decided to do this because we could compare the
prediction data with the actual data.

We conducted tests using progressively increasing data points to test the method’s effec-
tiveness. We started using from 1 data point and gradually added more until 10 data points
for predictions. This approach helps us to check whether the method can be effective even
when using minimal data.

This is the dataset we used:

Table 1: Indiana transportation data from the Bureau of Transportation Statistics1

Year Licensed drivers Vehicles

2010 5,550,469 5,698,010

2011 5,669,665 6,132,770

2012 5,375,973 6,004,370

2013 4,500,403 5,574,030

2014 4,448,099 6,012,600

2015 4,467,848 6,045,114

2016 4,553,259 6,140,530

2017 4,553,584 6,170,034

2018 4,589,405 6,190,736

2019 4,589,405 6,223,460

2020 4,532,708 6,199,901

2021 4,636,114 6,241,291

2022 4,653,808 6,256,479

After exploring several Simulation-Based Inference (SBI) techniques, we implemented them
in our transportation prediction model.

We used two different techniques: Approximate Bayesian Computation - Markov Chain
Monte Carlo (ABC-MCMC) and Synthetic Likelihood methods. The synthetic data gener-
ated by these methods was then used to train machine learning models, specifically Random
Forest and Gradient Boosting Machine (GBM). We implemented all of these in R.

Both GBM and Random Forest are highly regarded machine learning models for prediction.
At first, we trained both models with our data and found that the GBM provided better
results. Consequently, we chose to continue using only the GBM model.

One disadvantage of these models is their requirement for a large amount of data for
accurate prediction. SBI techniques are particularly useful when dealing with limited or

1Bureau of Transportation Statistics. (n.d.). State highway travel. Retrieved June 3, 2024, from
https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/

state-highway-travel

https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/state-highway-travel
https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/state-highway-travel
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hard-to-find data.

We generated synthetic data using ABC-MCMC and Synthetic likelihood methods to over-
come data shortage and train the GBM model. The synthetic Likelihood method produced
slightly better results than the ABC-MCMC for our data, and altering the initial guess
for the Synthetic Likelihood method could potentially improve its results. However, the
differences were minimal, indicating consistency between the SBI methods. Increasing the
number of simulations improved the results, but achieving high accuracy required signifi-
cant computational power.

3.1. ABC MCMC

The ABC Markov chain Monte Carlo algorithm, also known as ABC-MCMC, was originally
proposed by Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré in 2003
[10] (According to Paul Marjoram [11])

Bayesian inference is a statistical methodology that updates beliefs about model parameters
based on observed data. This is typically articulated through Bayes’ Law:

p(θ|Ỹ ) ∝ p(θ)p(Ỹ |θ)

where p(θ) is the prior distribution of the parameters, p(Ỹ |θ) is the likelihood of observing
the data given the parameters, and p(θ|Ỹ ) is the posterior distribution, which represents
the updated beliefs about the parameters after observing the data Ỹ . [16]
We used the JAGS model in R. MCMC is used within JAGS to efficiently sample from
the posterior distribution. The algorithm implemented in JAGS for Bayesian inference
through MCMC starts with defining a probabilistic model where the data for the year i,
Datai, is modeled as normally distributed:

Datai ∼ N (µ+ β × (Y eari − 2021), τ−1)

This formulation aligns with the Bayesian framework, where the mean ofDatai is influenced
by µ (baseline data for the year 2021), and β (rate of change per year), τ is the precision
of the distribution, related to variance through τ = σ−2. The parameters µ, β, and σ
are assigned prior distributions: µ ∼ N (mean, variance), β ∼ N (mean, variance), and
σ ∼ U(lower, upper) with τ = σ−2.

Parameter initialization follows, where µ, β, and σ are either set to specific starting values
or randomly generated based on their prior distributions. During the MCMC sampling
phase, new parameter values are proposed using either a random walk or an autoregressive
approach. The likelihood of observing the given data with these proposed parameters is
calculated, and the acceptance probability for the new parameters is determined using the
Metropolis-Hastings rule:

α = min

(
1,

p(θnew|Data) · q(θold|θnew)
p(θold|Data) · q(θnew|θold)

)
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Based on this probability, the algorithm decides whether to accept the new parameters or
retain the old ones for the next iteration. This process repeats until the parameter values
converge, as evidenced by stabilization in their distributions or using diagnostic tools.

After sufficient iterations and a burn-in period, the sampled posterior distributions of the
parameters are analyzed to estimate their statistics, such as mean, median, and confidence
intervals. Finally, predictive checks and model validation are conducted by generating new
data based on the posterior distributions and comparing these predictions with the actual
observed data to assess the model’s fit.

This is our algorithm for the model:

Algorithm 1 ABC - MCMC Algorithm

1: Inputs:
2: Data(t): N(µ+ β · (Year(t)− 2021), σ2t−1)
3: Prior distributions:
4: µ ∼ N(mean, variance)
5: β ∼ N(mean, variance)
6: σ2 ∼ U(lower,upper)
7: Initialize:
8: Initialize parameters µ, β, σ2

9: for each iteration t from 1 to T do
10: Generate proposals for µ, β, σ2

11: Calculate likelihood
12: Apply Metropolis-Hastings algorithm
13: Update parameters
14: if convergence criteria met then
15: Analyze posterior distribution
16: Predictive check and model validation
17: Generate new data
18: Compare predictions
19: if increase check needed then
20: Increase simulation
21: end if
22: else
23: Continue MCMC sampling
24: end if
25: end for
26: Train Gradient Boosting Machine (GBM) model with the simulated data
27: End
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At first, we generated only 100 new data counts for each year, and the data was significantly
different from the true value. We then increased the number of simulations to 10,000 new
data counts for each year in the training data, resulting in a total of 100,000 simulated
data points, giving us a much better result. After that, we use these data to train a GBM
Model.

We chose this method because it is useful when the likelihood function is difficult to cal-
culate directly. It allows us to generate samples from the posterior distribution without
explicitly calculating the likelihood, making it suitable for complex models. The use of
MCMC ensures that we can explore the parameter space efficiently

3.2. Synthetic Likelihood Method

Our approach builds on the method established by David T. Frazier, Christopher Drovandi,
David J. Nott [5], and L. F. Price, C. C. Drovandi, A. Lee, D. J. Not [14]. This approach
was first mentioned by M. A. Beaumont, W. Zhang, and D. J. Balding in 2002. [1]

We use the synthetic likelihood function to compare the summary statistics of the observed
data to those of the simulated data. The goal is to find parameters that make the simulated
data as similar as possible to the observed data.

Instead of working with the full dataset, this method allows us to reduce the data to
a set of summary statistics that capture essential information. The summary statistics
are the mean and standard deviation of the observed data, which are assumed to follow
an approximate Gaussian distribution. This is very important because working with full
datasets can be computationally expensive and complex.

The core idea of synthetic likelihood is to assume that these summary statistics follow
a multivariate normal distribution. This allows us to approximate the likelihood of the
summary statistics using their mean and covariance matrix. The approximation is mathe-
matically expressed as:

L(θ) ≈ N (Ŝobs;µ(θ),Σ(θ))

where Ŝobs are the observed summary statistics, and µ(θ) and Σ(θ) are the mean and
covariance of the summary statistics under the model with parameters θ.

Next, the data is simulated from the model for various parameter values to estimate the
mean and covariance of the summary statistics. Our data is simulated as follows:

zi ∼ N (µ+ β · (Yeari − 2021), σ2)

Summary statistics for this simulated data are then calculated and compared to the ob-
served statistics using normal density functions. If the summary statistics of the simulated
data are close to those of the observed data, it indicates that the model with the current
parameters is a good fit. Otherwise, the model parameters need to be adjusted. The
likelihood of the observed summary statistics given the simulated ones is calculated as
follows:

Lµ = N (µ̂obs; µ̂sim,
√
σ̂sim)
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Lσ = N (σ̂obs; σ̂sim,
√

σ̂sim)

The total synthetic likelihood is the product of these individual likelihoods:

L(θ) = Lµ · Lσ

To find the parameters that best explain the observed data, we minimize the negative
log-likelihood:

θ∗ = argmin
θ

− log(L(θ))

This optimization uses the optim function in R to explore the parameter space iteratively.

Using the optimized parameters θ∗, a larger synthetic dataset is generated:

zi ∼ N (µ∗ + β∗ · (Yeari − 2021), (σ∗)2)

The simulated dataset includes polynomial terms for the year to capture non-linear trends.
We then trained the GBM model based on this simulated dataset. The trained model
predicted the future year 2022.

The synthetic likelihood approach ensures that the simulated data used for training the
GBM model is statistically similar to the observed data. This improves the model’s pre-
dictive accuracy by providing a robust framework for parameter estimation, even when the
likelihood function is not directly accessible. The synthetic likelihood method combines
simulation, summary statistics, and optimization to approximate the likelihood function,
making it a powerful tool for complex statistical modeling.

Initial parameters are optimized, and 10,000 simulated driver counts are generated for
each year in the training data, similar to the ABC-MCMC method. This results in another
100,000 simulated data points used to train a GBM model to make predictions for the year
2022.
This is our algorithm for the model:

Algorithm 2 Synthetic Likelihood Algorithm

1: Start
2: Calculate summary statistics of observed data
3: Initialize parameter values
4: while not converged do
5: Simulate data from model for current parameter values
6: Calculate summary statistics for simulated data
7: Calculate synthetic likelihood
8: Adjust parameters
9: end while

10: Generate new data with parameters from the posterior distribution
11: Train GBM model
12: End
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This approach is useful when we can define summary statistics that capture the essential
characteristics of the data. We can ensure that our model accurately reflects the underlying
data distribution by optimizing parameters to match these summary statistics.

4. Results

The findings of the study are categorically described in two sections: (i) licensed driver,
(ii) vehicle

4.1. Licensed Driver

After implementing SBI techniques starting with one data point and gradually adding
more, going from two data points up to ten, the table shows the results below.

Table 2: Predictive Results for Licensed Drivers for 2022

Year of
Prediction

Data Used
for Predic-
tion

Predicted Value
ABC - MCMC

Predicted Value
Synthetic Likeli-
hood

Actual
Value
(2022)

Error ABC -
MCMC

Error Syn-
thetic
Likelihood

2022 2021 4,980,499 - 4,653,808 7.02% -
2022 2020 - 2021 5,048,870 4,473,007 4,653,808 8.49% 3.89%
2022 2019 - 2021 4,965,700 4,479,193 4,653,808 6.70% 3.75%
2022 2018 - 2021 5,031,747 4,475,731 4,653,808 8.12% 3.83%
2022 2017 - 2021 4,977,580 4,476,725 4,653,808 6.96% 3.81%
2022 2016 - 2021 5,008,449 4,532,928 4,653,808 7.62% 2.60%
2022 2015 - 2021 4,997,746 4,497,615 4,653,808 7.39% 3.36%
2022 2014 - 2021 5,046,348 4,506,261 4,653,808 8.43% 3.17%
2022 2013 - 2021 4,968,533 4,482,934 4,653,808 6.76% 3.67%
2022 2012 - 2021 4,965,588 4,524,628 4,653,808 6.70% 2.78%
2022 2011 - 2021 4,967,668 4,473,072 4,653,808 6.74% 3.88%
2022 2010 - 2021 4,957,763 4,539,187 4,653,808 6.53% 2.46%

When we compared our results to a standard value, it was clear that the Synthetic Likeli-
hood method performed better than the ABC - MCMC method. The Synthetic Likelihood
method showed smaller errors, between 2.46% and 3.89%, compared to the ABC - MCMC
method, which had errors between 6.53% and 8.49%. However, the Synthetic Likelihood
method needs at least two data points to work.

This study also shows that both methods are effective even with minimal data. This is an
encouraging aspect for situations where little data is available. We also found that adding
more historical data does not always make the predictions better for either method. This
suggests that the quality and relevance of the data are more important than how much
data we have. Further research into how these models use historical data and the specific
data types might help us improve how the models perform, possibly by focusing on newer,
more relevant data if older data is less useful. However, we also observed that the error
rates of both methods tend to be more consistent when using more than nine original data
points.
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Generating more data could significantly improve the performance of both methods. How-
ever, due to the limitations of our computing power, we are currently unable to produce
additional data. In the future, improvements in modeling techniques that reduce the de-
mand on computing resources could enable us to generate better prediction data.

Figure 4: Predicted Values by Years of Data Used with Actual Data

Figure 5: Error Percentages by Years of Data Used

4.2. Vehicle

After implementing SBI techniques starting with one data point and gradually adding
more, going from two data points up to ten, the table shows the results below.
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Table 3: Predictive Results for Vehicles for 2022

Year of
Predic-
tion

Data Used
for Predic-
tion

Predicted Value
ABC - MCMC

Predicted Value
Synthetic Likeli-
hood

Actual
Value

Error ABC -
MCMC

Error Syn-
thetic Like-
lihood

2022 2021 5,972,366 - 6,256,479 4.54% -
2022 2020 - 2021 6,054,325 6,265,311 6,256,479 3.23% 0.14%
2022 2019 - 2021 5,967,138 6,155,121 6,256,479 4.62% 1.62%
2022 2018 - 2021 6,025,977 6,241,047 6,256,479 3.68% 0.25%
2022 2017 - 2021 5,984,276 6,171,556 6,256,479 4.35% 1.36%
2022 2016 - 2021 6,005,393 6,210,436 6,256,479 4.01% 0.74%
2022 2015 - 2021 5,998,655 6,196,025 6,256,479 4.12% 0.97%
2022 2014 - 2021 6,022,922 6,254,881 6,256,479 3.73% 0.03%
2022 2013 - 2021 5,980,963 6,161,209 6,256,479 4.40% 1.52%
2022 2012 - 2021 5,981,432 6,159,552 6,256,479 4.40% 1.55%
2022 2011 - 2021 5,984,445 6,165,321 6,256,479 4.34% 1.45%
2022 2010 - 2021 5,978,703 6,155,011 6,256,479 4.44% 1.62%

Below is the graph:

Figure 6: Predicted Values by Years of Data Used with Actual Data

When we compared our results to an actual value, it was clear that the Synthetic Likeli-
hood method outperformed the ABC—MCMC method. The Synthetic Likelihood method
showed smaller errors, between 0.03% and 1.62%, compared to the ABC—MCMC method,
which had errors between 3.23% and 4.16%. However, it is important to note that the Syn-
thetic Likelihood method requires at least two data points to work.

Similar to the previous results, these results also show that both methods are effective
even with minimal data. This is an encouraging aspect for situations where little data
is available. We also found that adding more historical data does not always make the
predictions better for either method. This suggests that the quality and relevance of the
data are more important than how much data we have. Further research into how these
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models use historical data and the specific data types might help us improve how the
models perform, possibly by focusing on newer, more relevant data if older data is less
useful. However, the error rates of both methods tend to be more consistent when using
more than nine original data points.

Figure 7: Error Percentages by Years of Data Used

Overall, the Synthetic Likelihood method is superior for predictions in this dataset, offering
very low errors. The ABC-MCMC method may require further adjustment to improve its
accuracy in this dataset. Improvements in modeling techniques that reduce the demand
for computing resources could enable us to generate better prediction data.

5. Advantages and Limitations

After applying two simulation-based inference (SBI) methods, ABC-MCMC and Synthetic
Likelihood, combined with Gradient Boosting Machines (GBM) to Indiana transportation
data, we found that both methods effectively used simulated data to capture trends and
variability in historical data, leading to reliable predictions. The ABC-MCMC method
estimated the distribution of model parameters, while the Synthetic Likelihood method
optimized parameters to match observed data. Depending on the data, although the
Synthetic Likelihood provides better results, the differences between these two methods
are minimal.

These methods have several advantages. They can simulate data when we have limited or
expensive data. Combining SBI methods with machine learning models (GBM) provides
reliable predictions. Using simulated data enables the training of robust machine-learning
models to handle large and complex datasets.
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However, both methods have limitations. Both methods require significant computational
resources and time. The accuracy of the predictions depends on the correctness of the
model assumptions and the quality of the input data. Incorrect assumptions or poor data
quality can lead to inaccurate predictions. Additionally, simulated data might not always
capture real-world complexities. While real-world data would be ideal for predictions,
it is often challenging to obtain in large quantities. Thus, these methods offer a viable
alternative.

6. Implications for Transportation Planning

Applying Simulation-Based Inference (SBI) techniques in transportation planning offers
several key benefits that can transform decision-making processes. Firstly, SBI methods
allow transportation planners to generate synthetic data, enabling accurate predictions
about future trends even when actual data is scarce. This capability leads to better-
informed decisions regarding infrastructure investments and policy-making.

Another advantage of SBI techniques is cost efficiency. Generating synthetic data reduces
the need for extensive and expensive data collection. This makes it feasible to perform
detailed analyses and forecasts without incurring substantial expenses, thereby making the
planning process more economical.

Using the predicted data from SBI methods, transportation planners can more effectively
optimize routes, schedules, and resource allocations. This includes enhancing public transit
systems, reducing carbon emissions, and promoting eco-friendly travel options. Addition-
ally, these models help planners anticipate potential risks, leading to more resilient and
reliable transportation networks. Consequently, SBI techniques contribute to more effi-
cient transportation systems, reducing congestion and improving overall service quality.

7. Conclusion

Our research shows the significant potential of Simulation-Based Inference techniques in
enhancing predictive modeling and decision-making within the transportation sector. By
applying Approximate Bayesian Computation - Markov Chain Monte Carlo (ABC-MCMC)
and Synthetic Likelihood methods, we effectively generated synthetic data to train machine
learning models, particularly the Gradient Boosting Machine (GBM). The results show that
SBI techniques are reliable in dealing with complex and uncertain data, allowing for more
accurate predictions even with limited real-world data.

Our findings demonstrate that both ABC-MCMC and Synthetic Likelihood methods offer
substantial benefits in predicting transportation-related metrics such as the number of
licensed drivers, vehicle counts, and highway vehicle miles traveled. The differences between
those methods were generally minimal, indicating the reliability and consistency of both
approaches.



178 International Journal of Statistical Sciences, Vol. 24(2)s, 2024

However, this research also highlights certain limitations, including the need for substantial
computational resources and the heavy dependency on model assumptions and data quality.
Despite these challenges, integrating SBI methods with machine learning models presents
a solution for making informed transportation planning and management decisions when
the data is limited or expensive. Adapting SBI techniques to smaller datasets can still
provide valuable insights and improvements in modeling and inference, making them a
viable option even when resources are constrained.

Overall, using SBI techniques and advanced machine learning models can significantly im-
prove the accuracy and reliability of predictions in transportation systems. This approach
can assist in optimizing infrastructure investments, enhancing the efficiency of transporta-
tion networks, and promoting sustainable and equitable transportation solutions. Future
research could focus on combining SBI with other methods to reduce computational re-
source requirements and identify better assumptions, thereby increasing the accuracy of
data predictions.
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