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 Abstract  

COVID-19 transmission has been a significant public health issue in Bangladesh since March 8, 

2020. Environmental factors such as temperature, humidity, wind speed, rainfall, and visibility are 

thought to influence the rapid spread of the virus. This study aims to compare various count 

regression models to explore the relationship between these environmental factors and COVID-19 

incidence. We focused on the Negative Binomial, Discrete Lindley, and Discrete Weibull 

regression models due to the over-dispersed nature of the COVID-19 data. Our analysis indicated 

that the Discrete Weibull regression model provided the best fit, as determined by AIC and 

dispersion values. Diagnostic plots confirmed that this model met all necessary assumptions. 

Additionally, a simulation study with three different scenarios was conducted to validate our 

findings from the real COVID-19 data. Our analysis revealed that minimum temperature and 

visibility are positively associated with COVID-19 transmission, while maximum temperature and 

humidity show a negative correlation. These insights enhance our understanding of how 

environmental factors impact COVID-19 outbreaks in Dhaka, offering valuable guidance for 

developing effective strategies to mitigate transmission in Bangladesh.  
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1. Introduction 
 

The Coronavirus Disease 2019 (COVID-19), caused by the novel severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), has become a significant global public health challenge 

(Wei et al., 2022). The COVID-19 pandemic first emerged in Wuhan, China, in December 2019 

and rapidly spread worldwide due to the high transmissibility and infectivity of the virus (SILVA, 

& VETTORE, 2024). As of September 1, 2024, the World Health Organization (WHO) has 

documented over 776 million confirmed cases and approximately 7.1 million deaths globally. The 

most frequently reported symptoms among COVID-19 patients include fever, cough, shortness of 

breath, and fatigue. In more severe cases, patients have presented with radiographic ground-glass 

lung opacities and, in some instances, progressed to acute respiratory distress syndrome (ARDS), 

which can prove fatal (Azuma et al., 2020). 
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The spread of COVID-19 is influenced by various factors, including population density, individual 

lifestyle habits and mobility, government restrictions, vaccination rates, and personal 

susceptibility. Additionally, meteorological factors such as temperature, wind speed, rainfall, 

humidity, sunshine duration, and visibility also play a role in shaping transmission dynamics 

(Zhang et al., 2024). In many Asian tropical low- and middle-income countries (LMICs), including 

Bangladesh, the growth rate of COVID-19 cases has been relatively slower (Haque & Rahman, 

2020). Since the initial detection of cases on March 8, 2020, the WHO has reported nearly 2.1 

million confirmed cases and 29,499 deaths in Bangladesh as of September 1, 2024. Despite 

challenges like high population density and limited testing capacity, the slower spread of COVID-

19 in Bangladesh may be influenced by meteorological factors. However, the daily rise in 

infections and deaths continues to heighten public concern, underscoring the need to understand 

how Bangladesh’s tropical climate may affect the spread of COVID-19. Accurately predicting 

these transmission patterns is essential for effective management and informed decision-making. 
 

The literature highlights a range of meteorological factors influencing the transmission of COVID-

19 worldwide. For example, Zhang et al. (2024) applied a generalized additive model (GAM) and 

a distributed lag nonlinear model (DLNM) to examine the relationship and lag effects between 

daily COVID-19 cases and meteorological factors, including temperature, relative humidity, wind 

speed, solar radiation, surface pressure, and precipitation in seven countries across the Americas. 

Their findings revealed a non-linear impact of these factors on COVID-19 transmission. 

Temperature exhibited two key thresholds: a positive correlation below 5°C and above 23°C, and a 

negative correlation in between. Similarly, relative humidity and solar radiation showed negative 

correlations, with slope shifts occurring around 74% humidity and 750 kJ/m² solar radiation. Lin et 

al. (2024) investigated how local weather conditions affect COVID-19 transmission in Taiwan 

using Spearman’s rank correlation test. They found that new COVID-19 cases were positively 

linked to maximum daily temperature and relative humidity, while wind speed and diurnal 

temperature range were negatively related to case numbers. Ng et al. (2024) employed Pearson’s 

and Spearman’s correlation tests to analyze the relationship between weather conditions and 

COVID-19 cases across Malaysia. Their results indicated that average wind speed was positively 

correlated with confirmed COVID-19 cases, whereas average relative humidity, maximum 

temperature, average temperature, and minimum temperature were negatively correlated with the 

number of cases. Nottmeyer et al. (2023) discovered that lower temperatures and lower absolute 

humidity were associated with higher COVID-19 incidence. This analysis, conducted using time 

series analysis assuming a quasi-Poisson distribution, covered 20 different countries. Yin et al. 

(2022) discovered that colder, drier, and less windy conditions intensified COVID-19 transmission 

in Brazil using two-way fixed-effect models. Their analysis showed that daily average 

temperature, humidity, and wind speed negatively influenced the number of new daily cases, with 

humidity and temperature being the most significant factors. Khursheed et al. (2021) demonstrated 

that temperature, relative humidity, and absolute humidity have a significant but negative impact 

on the COVID-19 mortality rate in Italy, as determined using GAM and penalized spline methods. 

This suggests that cooler and drier conditions may facilitate virus transmission, potentially leading 

to higher COVID-19 death rates. Liu et al. (2020) discovered that meteorological factors 

independently affect COVID-19 transmission, even after accounting for population migration. 

Their analysis showed that low temperatures, a mild range in daily temperature, and low humidity 

likely promote the spread of the virus. A study in 122 cities in China, Xie and Zhu (2020), 

indicated that the relationship between mean temperature and confirmed COVID-19 cases was 

roughly linear when temperatures were below 3 °C but levelled off at temperatures above 3 °C, 
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based on their use of generalized additive models. That means, no significant correlations were 

detected when the mean temperature exceeded 3°C. 
 

Although there is extensive research on the impact of meteorological factors on COVID-19 

transmission worldwide, research specifically targeting Bangladesh is relatively scarce. Miah et al. 

(2024) employed a multivariate generalized linear negative binomial regression model to assess 

the influence of climatic factors on Omicron transmission. Their analysis indicated that maximum 

temperature, sky clearness, wind speed, relative humidity, and air pressure all had a significant 

impact on the transmission of COVID-19 Omicron in Bangladesh. Parvin (2024) demonstrated a 

significant and positive relationship between the spread of COVID-19 and climatic factors such as 

temperature, humidity, rainfall, and wind speed. The Auto Regressive Distributed Lag (ARDL) 

model revealed that temperature and wind speed have pronounced lag effects on COVID-19 

transmission in Bangladesh, while the effects of humidity and rainfall are comparatively minimal. 

Hasan et al. (2023) reported that both wind speed and surface pressure have a significant negative 

impact on COVID-19 cases and deaths. Karim and Akter (2022) found that high humidity and 

temperature significantly reduced the severity of COVID-19 deaths, based on their analysis using 

Generalized Additive Models (GAM) and Generalized Additive Models for Location, Scale, and 

Shape (GAMLSS). Masum and Pal (2021) used Spearman’s rank correlation analysis to explore 

the relationship between weather-related variables and the SARS-CoV-2 outbreak in Bangladesh. 

Their study found a significant positive association between relative humidity and COVID-19 

cases, with temperature showing mixed correlations. Humidity was also positively linked to death 

cases, while both rainfall and wind speed were positively associated with both the number of cases 

and deaths. Haque and Rahman (2020) found that, within a linear regression framework, both high 

temperatures and high humidity significantly lower COVID-19 transmission. This suggests that the 

onset of summer and the rainy season in Bangladesh could effectively reduce the spread of the 

virus. 
 

A review of existing research reveals a lack of consensus on the impact of meteorological factors 

on COVID-19 transmission. For example, while some studies suggest a positive correlation 

between temperature and daily new cases (Lin et al., 2024; Parvin, 2024), others report a negative 

correlation (Ng et al., 2024; Yen et al., 2022; Khursheed et al., 2021). Additionally, some studies 

find mixed correlations (Zhang et al., 2024; Masum and Pal, 2021), and others observe no 

significant correlation at all (Islam et al., 2021a; Xie & Zhu, 2020). Consequently, evidence 

regarding the impact of weather on COVID-19 transmission remains inconclusive, likely due to 

significant variations in data sources, methodological approaches, study periods, socioeconomic 

conditions, and other factors (Wei et al., 2022). This highlights the need for more thorough and 

systematic research to better understand the impact of meteorological factors on the spread of 

COVID-19. 
 

To the best of our knowledge, no previous study in Bangladesh has utilized the most recent 

meteorological data (2023). Furthermore, while most research has focused on the meteorological 

factors including temperature, humidity, rainfall, and wind speed, they have often neglected the 

role of visibility. This study addresses this gap by examining all six factors such as minimum 

temperature, maximum temperature, wind speed, rainfall, visibility, and humidity to understand 

their effects on COVID-19 transmission in Dhaka, Bangladesh. The study is innovative in its use 

of the latest meteorological data (2021-2023) and its application of a range of count regression 

models, including Negative Binomial, Discrete Lindley, and Discrete Weibull, with thorough 

diagnostic checks and simulation study to identify the key meteorological factors influencing 

COVID-19 in Bangladesh. 
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2. Data and Methodology 
2.1 Data and Variables 
 

Data from multiple sources were gathered for analyzing COVID-19 outbreaks in the present study. 

The response variable, “Daily COVID-19 Infected Cases”, was collected from January 1, 2021, to 

November 9, 2023, using data on daily confirmed new cases and lab tests, which were sourced 

from the Directorate General of Health Services (DGHS) website (https://www.dghs.gov.bd). To 

investigate the impact of environmental factors on COVID-19 cases, daily data on minimum 

temperature, maximum temperature, wind speed, rainfall, visibility, and humidity were included. 

The daily data for minimum temperature, maximum temperature, wind speed, rainfall, and 

visibility were obtained from the Bangladesh Meteorological Department (BMD). Additionally, 

daily humidity data was sourced from the website: 

https://www.timeanddate.com/weather/bangladesh/dhaka/ext. 

 

2.2 Methodology 
 

Given that our dependent variable, the daily number of COVID-19 cases, is a count variable 

exhibiting over-dispersion, we applied various classical count regression models specifically 

designed to handle over-dispersion to analyze the data. The candidate models used include the 

Negative Binomial (NB), Discrete Lindley (DL), and Discrete Weibull (DW) regression models. 
 

Let 𝑌𝑖  (𝑖 = 1,2, … , 𝑛), denote a count response variable associated with a (𝑝 + 1) dimensional 

vector of covariates, 𝒙𝑖 = (1, 𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇  and 𝜷  = (𝛽0, 𝛽1, … , 𝛽𝑝)𝑇  is the (𝑝 + 1) × 1  vector of 

regression coefficients corresponding to 𝒙𝑖.  
 

Negative Binomial Regression Model 
 

The most widely used count regression model for analyzing over-dispersed count data is the 

Negative Binomial (NB) model, where 𝑌𝑖 ∼ NB (𝜇𝑖, 𝜈), having probability mass function (pmf), 

𝑃(𝑌𝑖 = 𝑦𝑖  | 𝜇𝑖 , 𝜈) =
Γ(𝑦𝑖 + 𝜈)

Γ(𝜈)Γ(𝑦𝑖 + 1)
(

𝜇𝑖

𝜇𝑖 + 𝜈
)

𝑦𝑖

(
𝜈

𝜇𝑖 + 𝜈
)

𝜈

,    𝑦𝑖 ∈ {0,1,2, … }, 

where Γ(∙) is the gamma function, 𝜇𝑖 (> 0) is the mean for the NB distribution, and 𝜈 denotes the 

dispersion parameter, which accounts for the additional variability. The mean can be modelled 

within the generalized linear model (GLM) framework as:  

                                                      𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷) = exp(𝛽0 + ∑  

𝑝
𝑗=1 𝛽𝑗𝑥𝑖𝑗).                                     (1) 

 

Discrete Lindley Regression Model 

The Discrete Lindley (DL) regression model is an adaptation of the continuous Lindley 

distribution, tailored specifically for count data. It is particularly useful for handling over-dispersed 

data, where the variance exceeds the mean, a frequent issue encountered in real-world count 

datasets. Suppose 𝑌𝑖 ∼ 𝐷𝐿 (𝜃𝑖), which has the following form (Nguyen et al. 2023), 

 𝑃(𝑌𝑖 = 𝑦𝑖  | 𝜃𝑖) = (1 − 𝑒−𝜃𝑖)
2

(1 + 𝑦𝑖)𝑒−𝜃𝑖𝑦𝑖 ,    𝑦𝑖 ∈ {0, 1, 2, … },  𝜃𝑖 > 0, 

where                                        𝐸(𝑌𝑖) =
2

𝑒𝜃𝑖−1
    and    Var(𝑌𝑖) =

2𝑒𝜃𝑖

(𝑒𝜃𝑖−1)
2.  

Under GLM framework, the model can be defined as 

                                               𝜇𝑖 = 𝐸(𝑌𝑖  | 𝑥𝑖) = exp(𝒙𝑖
𝑇𝜷)    or    log(𝜇𝑖) = 𝒙𝑖

𝑇𝜷.                             (2) 
 

where 𝜇𝑖  is the mean and 𝜃𝑖  is a shape parameter that controls the over-dispersion. A key 

advantage of the Discrete Lindley model is its flexibility in managing data with different levels of 

over-dispersion, making it a viable alternative to the NB model. 

https://www.dghs.gov.bd/
https://www.timeanddate.com/weather/bangladesh/dhaka/ext
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Discrete Weibull Regression Model 

In real-world situations, various types of dispersion in count data can occur. To address such 

variability, the Discrete Weibull (DW) model is a suitable choice, as it can effectively handle any 

form of dispersion in count response data. The most commonly used is the Type I DW, with 

probability mass function, 

𝑃(𝑌𝑖 = 𝑦𝑖  | 𝑞𝑖 , 𝛾) = {𝑞
𝑖

𝑦𝑖
𝛾

− 𝑞𝑖
(𝑦𝑖+1)𝛾

 𝑓𝑜𝑟  𝑦𝑖 =   0, 1, 2, … ,

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
 

where 0 < 𝑞𝑖 < 1 and 𝛾 (> 0) are the parameters with 

 𝐸(𝑌𝑖) = 𝜇𝑖 = ∑  ∞
𝑦𝑖=1 𝑞

𝑖

𝑦𝑖
𝛾

    and    Var(𝑌𝑖) = 2 ∑  ∞
𝑦𝑖=1 𝑦𝑖𝑞

𝑖

𝑦𝑖
𝛾

− 𝜇𝑖 − 𝜇𝑖
2. 

Specifically, varying values of the shape parameter  𝛾   can accommodate different scenarios  

(Klakattawi et al. 2018), 
 

● 𝛾 ∈ (0, 1] represents over-dispersion, 𝛾 ≥ 3 represents under-dispersion, regardless of the values 

of 𝑞𝑖 
 

● 𝛾 ∈ (1, 3) holds both over and under-dispersion depending on the values of 𝑞𝑖 

Under GLM framework, to incorporate the effects of covariates, the Type I DW model can be 

written as 

                                 log(−log(𝑞𝑖)) = 𝒙𝑖
𝑇𝜷,                                                         (3) 

 

The model that best fits our data among the three used models, will be chosen based on the lowest 

Akaike Information Criterion (AIC) and dispersion, with 

AIC = 2k − 2 ln(L), 

where, k is the number of regression coefficients and ln(L) is the log-likelihood of the model, and 

dispersion = 
Pearson 𝜒2

𝑑𝑓
 = 

∑ (
(𝑦𝑖−𝜇̂𝑖)

2

𝑉𝑎𝑟(𝜇̂𝑖)
)𝑛

𝑖=1

𝑑𝑓
 . 

A model is classified as over-dispersed if the dispersion value is greater than 1, equi-dispersed if it 

is 1, and under-dispersed if it is less than 1. 
 

3. Result  
 

Table 1 provides an overview of the distribution of key variables, including climate factors. These 

descriptive statistics, which encompass measures such as mean, median, and standard deviation, 

offer insights into the overall distribution and variability of the data. This foundational overview 

helps in understanding the context of the data and serves as a basis for subsequent analysis and 

interpretation of the effects on dengue incidence. 
 

Table 1: Summary statistics of dependent and other climatic variables from  

Jan 1, 2021 to Nov 9, 2023 

Variable Mean (SD) Minimum Maximum 

COVID-19 Infected Cases              1469 (3028.36) 0 16230 

Min. temperature (°C) 23.30 (4.67) 10 30.70 

Max. temperature (°C) 32.07 (3.77) 15.4 40.6 

Wind speed (knots) 2.49 (1.07) 0 15 

Rainfall (mm) 5.08 (15.50) 0 255 

Visibility (km) 4.33 (0.70) 0.4 6 

Humidity (%) 74.79 (14.44) 27 100 
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On average, there were 1,469 COVID-19 infections per day in Dhaka, Bangladesh. Furthermore, 

as shown in Table 1, the variance of COVID-19 cases exceeds the mean, highlighting the over-

dispersion characteristic of the count data. Additionally, summary information on the climatic 

factors can also be observed from Table 1. To determine if the count response exhibits any 

inflation, both a histogram (Figure 1) and a frequency table (Table 2) of the response were 

presented. Table 2 shows that during the study period, only 0.67% of people in Dhaka marked 

themselves safe from COVID-19 infection. Thus, overdispersion needs to be taken into account 

while modelling the daily COVID-19 incidence. Therefore, NB, DL, and DW regression models 

were fitted to analyze this data. Afterwards, to find out the most suitable model, results from 

goodness-of-fit tests (AIC and dispersion) were evaluated.     

 

Table 2: Distribution of the number of daily COVID-19 cases in Dhaka city from Jan 1, 2021 

to Nov 9, 2023 
 

Distribution Number of daily COVID-19 cases Total 

0 1 2 3 4+ 

Frequency 7 0 1 7 1028 1043 

% 0.67 0 0.09 0.67 98.56 100 
 

 
 

Figure 1: Histogram of daily COVID-19 cases in Dhaka city from Jan 1, 2021 to Nov 9, 2023 
 

The AIC is a commonly used criterion for model selection, with lower AIC values indicating a 

better fit. Table 3 reveals that the AIC values for the NB, DL, and DW models are 15.08, 19.55, 

and 14.98, respectively. Thus, the DW model is preferred based on its lower AIC value. Another 

key criterion for selecting a count model is the dispersion parameter. For models handling over-

dispersed count responses, the dispersion value should ideally be close to 1. A value near 1 

suggests that the model effectively accounts for over-dispersion. Table 3 shows that, of the three 

models used, the DW model has a dispersion value of 0.93, which is quite close to 1.  

Table 3: Goodness-of-fit tests 

Model AIC Dispersion 

NB 15.08 1.43 

DL 19.55 8.54 

DW 14.98 0.93 
 

This suggests that the DW model effectively captures the over-dispersion in the data. Therefore, 

based on the combined result of AIC and dispersion, DW was selected as the most appropriate to 

analyze the over-dispersed daily COVID-19 cases. 
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To identify the significant climate factors affecting dengue incidence, the regression results from 

the Discrete Weibull model were used. Results from Table 4 show that climatic factors such as 

minimum temperature, maximum temperature, visibility, and humidity have a significant effect on 

daily COVID-19 cases, with p-values less than 0.001. However, wind speed and rainfall do not 

have statistically significant effects on COVID-19 incidence. The incidence risk ratio (IRR) results 

in Table 4 indicate that, when all predictors (minimum temperature, maximum temperature, wind 

speed, rainfall, visibility, and humidity) are set to zero, the baseline incidence rate of COVID-19 

cases is 34,641.7 times higher. Furthermore, controlling for all other climatic factors, a 1ºC 

increase in minimum temperature raises the COVID-19 incidence rate by 13.7%, while a 1ºC 

increase in maximum temperature reduces the incidence rate by 25.8%. Additionally, for every 1 

km increase in visibility, the COVID-19 incidence rate is 2.504 times higher. Similar to maximum 
 

Table 4: Outputs for DW model for daily COVID-19 infected cases (Jan 1, 2021 – Nov 9, 2023) 

Variable Estimate SE p-value IRR 95% CI for IRR 

Intercept 10.52 0.788 <0.001
***

 34641.7 (7907.13,17.3e+4) 

Min. temperature 0.128 0.028 <0.001
***

 1.137 (1.08, 1.20) 

Max. temperature -0.298 0.039 <0.001
***

 0.742 (0.69, 0.80) 

Wind speed 0.008 0.065 0.897 1.008 (0.89, 1.15) 

Rainfall 0.005 0.005 0.325 1.005 (0.99, 1.01) 

Visibility 0.918 0.155 <0.001
***

 2.504 (1.85, 3.39) 

Humidity -0.021 0.006 <0.001
***

 0.979 (0.97, 0.99) 

*p<0.05, **p<0.01, ***p<0.001 
 

temperature, humidity has a negative effect on COVID-19 cases, with a 1% rise in humidity 

decreasing the incidence rate by 2.1%, assuming all other significant covariates are held constant. 
 

However, it is important to assess whether the assumptions of the chosen model for analyzing 

daily COVID-19 cases are satisfied. To address this, model diagnostic plots are presented in Figure 

2. The residuals vs. fitted values plot (a) clearly shows that the standardized residuals are 

approximately centred around the y = 0 line, indicating no specific pattern and suggesting 

randomness. In the normal q-q plot (b), the points are closely aligned with the straight line, 

suggesting that the model provides a good fit to the data. 

 

 

 

 
(a)  (b) 

Figure 2: Model diagnostic plots for DW model (a) residuals vs. fitted plot (b) normal q-q plot 
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In practical applications, different models may perform optimally under specific conditions, but 

this does not imply that a particular model will always be the most suitable for similar scenarios. 

Drawing conclusions solely based on real-world observations may not be prudent. It is essential to 

conduct simulations using data that closely mirrors real-world conditions to verify the robustness 

and generalizability of the results. Thus, to verify our results from the real-life application, a 

simulation study was conducted in the following section. 

 

4. Simulation Study 

A simulation study was carried out to validate the findings from our real world COVID-19 

incidence dataset. To achieve this, three different settings were employed to generate count 

responses while preserving the data composition of the COVID-19 dataset. Histograms for each 

simulation setting were presented to see whether the data composition of the simulated count 

responses closely resembled that of the daily COVID-19 incidence. 

 

Setup 1: To generate over-dispersed count data, we assume the climatic factors as regressors and 

the regression parameters as, 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6)𝑇= (11.22, 0.13, -0.29, 0.02, 0.008, 0.8, 

-0.017) with  𝜈 = 0.334. Now, generate a random sample with size n (1043) using the pmf of the 

NB distribution, that is for each 𝜇𝑖, a corresponding 𝑦𝑖  (i = 1, 2, … , 𝑛) was generated.  

 
Figure 3: Histogram of the simulated count (setup 1) 

 

Table 5: Goodness-of-fit tests 

Model AIC Dispersion 

NB 15.45 0.90 

DL 19.22 5.23 

DW 15.51 1.08 
 

 

 

 

 
(a)  (b) 

Figure 4: Model diagnostic plots for DW model (a) residuals vs. fitted plot (b) normal q-q plot 

under setup 1 
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Setup 2: Say, the regression parameters are 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6)𝑇= (11.20, 0.13, -0.29, 

0.02, 0.008, 0.8, -0.02). Now, generate a random sample with size n (1043) using the pmf of the 

DL distribution, that is for each 𝜇𝑖, there was a corresponding 𝑦𝑖  (i = 1, 2, … , 𝑛).  

 
Figure 5: Histogram of the simulated count (setup 2) 

 

 

Table 6: Goodness-of-fit tests 

Model AIC Dispersion 

NB 15.18 0.96 

DL 15.17 0.93 

DW 15.18 0.98 
 

  

 

 

 

 
(a)  (b) 

Figure 6: Model diagnostic plots for DW model (a) residuals vs. fitted plot (b) normal q-q plot 

under setup 2 

 

Setup 3: Suppose the regression parameters for data generation are 𝜷 =
(𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6)𝑇= (10.45, 0.13, -0.29, 0.02, 0.006, 0.92, -0.021) with  𝛾 = 0.472. Now, 

generate a random sample with size n (1043) using the pmf of the Type I DW distribution, that is 

for each 𝑞𝑖, there will be a corresponding 𝑦𝑖  (i = 1, 2, … , 𝑛).  
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Figure 7: Histogram of the simulated count (setup 3) 

 

 

Table 7: Goodness-of-fit tests 

Model AIC Dispersion 

NB 14.95 1.52 

DL 19.07 9.12 

DW 14.93 1.01 
 

 

 

 

 
(a)  (b) 

Figure 8: Model diagnostic plots for DW model (a) residuals vs. fitted plot (b) normal q-q plot 

under setup 3 
 

To verify the data composition, the histograms of the simulated count responses (Figures 3, 5, and 

7) were examined across three setups, revealing signs of over-dispersion. Afterwards, the NB, DL, 

and DW regression models were fitted on the simulated data for each setup. Based on the model 

selection criteria (AIC and dispersion), DW was selected as the best model in each setup, which 

was also supported by the model diagnostic plots (Figures 4, 6, and 8). 
 

In keeping with the real-life data composition, the simulation study generated count responses 

across three different setups. In all scenarios, the results were clearly demonstrated through model 

selection and diagnostic plots, effectively validating the real data application of COVID-19 

infected cases. 

 

5. Discussion 
 

The emergence of the novel SARS-CoV-2 virus has posed a significant threat to global health, 

leading to the COVID-19 pandemic since December 2019 (Hossain et al., 2024). This study 

investigates the impact of climatic factors on daily COVID-19 cases in Dhaka, Bangladesh, over a 

three-year period from 2021 to 2023. Due to the significant fluctuations in daily case counts, 

several count regression models were explored, with adjustments made to address over-dispersion. 
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Among them, the discrete Weibull regression model was identified as the best fit for the data, 

based on the AIC, dispersion, and graphical assessment. 
 

The results of this study indicate that certain meteorological factors, including minimum 

temperature, maximum temperature, visibility, and humidity, significantly influence the spread of 

COVID-19. In contrast, wind speed and rainfall showed no impact on transmission rates. The 

analysis also suggests a potential nonlinear relationship between temperature and daily COVID-19 

cases. Specifically, a minimum temperature range of 10°C to 30.7°C was positively correlated with 

daily case counts, whereas maximum temperatures range between 15.4°C and 40.6°C exhibited an 

inverse association. These results are in line with research by Liu et al. (2022) using 

meteorological and epidemiological data from 153 countries and Islam et al. (2021b) in 

Bangladesh. However, previous studies have produced mixed findings on this topic. For instance, 

Sobral et al. (2020) and Wu et al. (2020) observed a negative correlation between temperature and 

COVID-19 transmission, regardless of whether the temperature was high or low. Conversely, Xie 

and Zhu (2020) found that daily COVID-19 cases increased by 4.86% (95% CI: 3.21%, 6.51%) for 

every 1°C rise in temperature when ambient temperatures were below 3°C in a study of 122 

Chinese cities. Although the findings in this study may not fully replicate those of previous 

research, they offer partial confirmation and useful insights. One plausible explanation is that 

higher temperatures may reduce the viability of SARS-CoV-2, while colder temperatures, 

particularly in winter, may weaken human innate immunity, as noted by Wu et al. (2020). 
 

According to our study findings, wind speed has no significant effect on COVID-19 outbreaks. 

The finding is consistent with the study in Ukraine (Podavalenko, 2023), Bangladesh (Islam et al., 

2021a) and New York (Bashir et al., 2020). Contrary to these results, a significant correlation 

between COVID-19 and wind speed was reported in Bangladesh (Parvin, 2024) and Taiwan (Lin 

et al., 2024). The results of this study also suggest that rainfall is an insignificant risk factor for 

COVID-19 transmission, consistent with the findings of Zhang et al. (2024) in seven countries 

across the Americas, Nawi et al. (2022) in Malaysia, Rendana (2020) in Indonesia, and Bashir et 

al. (2020) in New York. However, studies by Masum and Pal (2021) and Sobral et al. (2020) 

reported contradictory findings. This discrepancy could be attributed to the highly variable 

dynamics of COVID-19 outbreaks across different countries and regions, as noted by Dong et al. 

(2020). 
 

Visibility, defined as the clarity of the atmosphere or the distance at which objects can be clearly 

seen, has emerged as a statistically significant environmental factor for COVID-19 cases, 

contributing to an increase in transmission. This may be because clear skies encourage more 

outdoor gatherings, leading to greater human interaction and a higher potential for transmission, 

especially when social distancing and mask usage are not adequately maintained. Additionally, the 

study found that humid weather reduces the spread of COVID-19, as it has a significant negative 

impact on transmission rates. This finding aligns with previous studies conducted in Bangladesh 

(Karim and Akter, 2022; Haque and Rahman, 2020) and Malaysia (Ng et al., 2024). However, 

contradictory results were reported in studies by Lin et al. (2024) and Rendana (2020). One 

explanation for the protective effect of humidity is that higher moisture levels help keep the nasal 

and throat membranes moist, which aids in capturing dirt, bacteria, and viruses before they reach 

the lungs (Haque and Rahman, 2020). 
 

The findings were validated using simulation studies across three distinct setups. These 

simulations demonstrated that the discrete Weibull regression model provided the best fit for 

analyzing the over-dispersed daily COVID-19 case data. 
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6. Conclusion 
 

This study explores the relationship between climate factors and COVID-19 incidence in Dhaka, 

Bangladesh. To analyze the data, NB, DL, and DW regression models were fitted, with the DW 

model being selected as the most appropriate based on AIC and dispersion criteria. Additionally, 

model diagnostic plots were examined to ensure the assumptions of the chosen model were met. 

The findings from the real data analysis were further validated through a simulation study. Our 

research confirms a significant correlation between COVID-19 transmission and environmental 

factors, particularly minimum temperature, maximum temperature, visibility, and humidity. 

Minimum temperature and visibility show a positive influence on COVID-19 cases, while 

maximum temperature and humidity have a negative impact. However, rainfall and wind speed do 

not appear to influence transmission in this study. These insights can aid policymakers in 

developing a climate-based warning system. Future efforts may involve constructing a 

comprehensive model that incorporates immunological, entomological, demographic, and climatic 

data to more accurately predict COVID-19 cases. 
 

However, this study is not without limitations. First, relying solely on COVID-19 data from Dhaka 

may not reflect conditions in other areas with different environmental and social contexts. 

Additionally, incomplete or inconsistent data such as case underreporting and variability in 

weather station readings could affect findings. While six meteorological factors (minimum 

temperature, maximum temperature, wind speed, rainfall, visibility, and humidity) were analyzed, 

these factors may interact with other variables not included in the study, such as population 

density, transportation patterns, healthcare access, and socioeconomic conditions. Moreover, the 

study did not account for seasonality, which could reveal critical transmission patterns. Future 

research should incorporate broader regional data and seasonal trends to support more targeted 

COVID-19 policies. 
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