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Abstract

Multi-treatment two stage adaptive design for survival responses is generally devel-
oped under different assumptions. In this work, we explore the performance of such
a design when the assumptions are violated. As a choice of design, we consider a
specific design of Bhattacharya and Shome (2019), which uses random censoring,
exponential response, Koziol-Green model (Koziol and Green, 1976), etc. Several
ethical and inferential criteria of the design are studied under model misspecifica-
tion for different parameter configurations as well as for a data arising from a real
clinical trial.

Keywords: Clinical Trials, Two Stage Allocation, Random Censoring, Model mis-
specification.
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1. Introduction

Clinical trial generally deals with new drugs/therapies tested on human patients by
studying its relative performance in terms of several parameters over the other com-
peting treatments. In the era of adaptive randomization, allocation designs which
can skew the allocation to the better performing treatment satisfying ethical norms
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of a trial, have become popular and subject to study over several decades. Two stage
design is one of such data dependant adaptive procedure for the purpose of skewing
the allocation to the treatment doing better, where the first stage uses complete ran-
domization (CR), which allocates the available treatments with equal probabilities to
the patients. After an interim analysis, second stage allocation probabilities are deter-
mined with an objective to assign more patients to the better performing treatment
of the first stage and the second stage patients are allocated with those probabilities.
Several two stage design are discussed in the works of Colton (1963) and Coad (1992,
1994). As their designs used deterministic procedures for the second stage patients,
selection bias is natural (Matthews, 2006). Consequently, Bandyopadhyay and Bhat-
tacharya (2007) developed an ethical allocation incorporating randomization at both
stages.

Sometimes, the responses of the patients are time to event data (e.g. the lifetimes of
cancer patients in terms of progression free survival (PFS) or overall survival (OS)).
However, in a clinical trial with survival outcome, it is not always possible to continue
the study until all patient respond as survival times may vary from time to fatal event
(i.e. death, relapse or remission). Naturally, censoring is common in this situation.
But survival data analysis becomes difficult by the presence of censoring and hence, to
update the allocation strategy after each response is not feasible in practice. Therefore,
a purely sequential adaptive procedure like response adaptive design (Rosenberger
and Lachin, 2015) can not be applied in a simple way and it is better to update the
allocation strategy after a group of responses are observed. Thus, a two stage design
is a better alternative to carry out the analysis with censored observations. Several
two stage adaptive designs have been studied in the literature in the recent past. One
of them is a multi-treatment two stage design by Bhattacharya and Shome (2019).
They proposed a two stage procedure where the second stage allocation probabilities
are determined by asymptotic p values (Silvapulle and Sen, 2005) of a suitable score
test for testing the presence of a unique superior treatment based on the accrued data
from the first stage patients. Although the procedure is well studied, several rigid
assumptions were deployed to develop the design. First of all, they assumed that the
lifetime and censoring variables both follow exponential distributions. Secondly, they
used Koziol-Green model (Koziol and Green, 1976), where not only the lifetime and
censoring variables are independent but also the log of their survival functions are
proportional. Moreover, they assumed the presence of a unique superior treatment.
But in reality, neither of these assumptions may be valid and hence it is of interest
to study the behaviour of this design under the violation of the assumptions with
respect to relevant operating characteristics. Specifically, in the present paper, we
consider some lifetime distributions like Gamma, Weibull and Lognormal and then
use their method as if the distributions are misspecified as Exponential. Moreover,
we introduce dependent exponential responses and apply the two stage design as if
they are independent. Lastly, we allow some configurations where there is no unique
superior treatment and observe how such a two stage design performs. Additionally,
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we redesign the same real clinical trial (i.e. recurrent glioblastoma trial of Batchelor et
al. (2013) as considered in Bhattacharya and Shome (2019) and study the deviations
under model misspecification.

After a brief discussion of the two stage design of Bhattacharya and Shome (2019)
in section 2, we evaluate the performance of the design empirically under model vi-
olations in section 3. In section 4, we discuss how model misspecification affects the
performance of a real clinical trial and lastly, we conclude the work with a relevant
discussion in section 5.

2. The two stage allocation design of Bhattacharya and
Shome (2019)

Consider a clinical trial involving ¢(> 3) treatments and N prefixed subjects where
tm(< N) subjects are assigned to ¢ treatments, m to each treatment, in the first
stage. Depending on the results of the first stage, a set of allocation probabilities
(P1ms P2ms - - - » Ptm) satisfying 22:1 prm = 1 is derived for the allocation of second
stage patients.

First, denoting the survival (censoring) time corresponding to the i th patient when
given treatment k by Xy; (C;) and defining the censoring indicator I; = I (Xg; < Ch;),
k=1,2,..,t, i = 1,2,..., the observations are obtained as (Yj;, Iy;), where Yy; =
min(Xp;, Ck;). Moreover, denoting fx(gx) as the density function of the survival (cen-
soring) distribution and F} (G}) as the corresponding survival function corresponding
to treatment k, they assumed the exponential distributions under Koziol-Green model
(Koziol and Green, 1976) as Fy(t) = exp (—ﬁ), Gr(t) = (Fk(t))y’“, k=1,2,...,t
under the independence of Xj; and Cy; for each 7 and k.

Secondly, for the derivation of second stage allocation probabilities, the framework
of multiple comparisons with the best (Hsu, 1996) is implemented. In particular,
taking treatment k as the best, the following statistical hypotheses is considered:
Hoy, : p < max,2p pty against Hyy : py, > max,p (1, where g, is the treatment effect
measure for treatment r, r = 1,2,...,t. As it is easy to observe that Hgy is equivalent
to the union of a number of sub hypotheses Hog, : pur < pr and similarly, Hy; can
be expressed as the intersection of the sub hypotheses Hiyx, @ pur > pr, the global
null hypothesis Hy; is rejected if all the tests for Hog, against Hqg,, k = 1,2,..,t are
rejected. Then the corresponding asymptotic p values (Silvapulle and Sen, 2005) of
relevant score tests for testing directional hypotheses are obtained as pg,.. As, lower
value of pi, indicates higher evidence of superiority of treatment k over treatment r
based on the first stage data, qr, = 1 — pi,- was defined as evidence of superiority
of treatment k over treatment r. Following the notions of intersection union tests of
hypothesis (Berger and Hsu, 1996), an evidence measure of the superiority of treatment
k over all the treatments is simply 7y, = min,; qx,, where the higher the value of
Trm, the higher is the superiority of treatment & among others. Combining all these,
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they suggested to assign any incoming subject of second stage to treatment k with
probability pgm, = — +7r27;’23’; v

Moreover, denoting Vi as the number of patients assigned treatment k, Bhattacharya
and Shome (2019) also proved that, as m, N — oo, m/N — 6 with 6 € (0,1/t), the
observed allocation proportion to treatment k (i.e. %) approaches (1 — 6) or 6 in
probability as g > max,.p pr Or p < max,.i .. Hence, the observed allocation
proportion to treatment k behaves ethically in the limit, whenever p, > max, 4 p.,

that is, when treatment k is the unique superior.

3. Performance Evaluation under misspecification

Beside stating the asymptotic properties of their design, Bhattacharya and Shome
(2019) also performed some small sample studies with ¢ = 3 treatments under the as-
sumptions, they used for developments. As operating characteristics, they considered

1. Type I error rates

2. The distribution of expected allocation proportion (EAP) to different treatments along
with the standard deviations and

3. The power of a test of the superiority of treatment 1 considering the hypothesis Hy :
p1 < maxy—g 3t against Hy : pu; > maxp—g 3 iy based on the data from two stages.

To study the design after relaxing the assumptions, we consider the following aspects:

1. The density f of data generating process is different from exponential. Specifi-
cally, we use Gamma, Weibull and Lognormal as the alternative lifetime distri-
butions.

2. Xi; and Cy; are dependent with a structure described through Clayton copula
(Clayton, 1978) in data generating process; Kendall’s 7 gives the strength of
association.

3. Existence of more than one superior treatment.

Under these model violating situations, we consider several configurations to study
how the operating characteristics vary from the original cases. The parameters of the
distributions are so taken that the expected values for lifetime as well as censoring
random variables remain same for head to head comparison. After a simulation with
20,000 repetitions of the relevant procedure for m = 30 and N = 150, we report the
results in Tables 1-3. On the other hand, the comparison is provided through boxplots
and power curves (Figures 1 and 2, respectively) in case of m = 40 and N = 200 for
visual representations. Moreover, in practical situations, there may present more than
one superior treatment. But Bhattacharya and Shome (2019) developed their design
assuming only one superior treatment. So, here we allow more than one superior
treatment and study the effect of it under different values of m, n, v;’s and u;’s in
Table 4.
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Table 1: Operating characteristics for v;1 = 1o = v3 =1 and ps = p3 = 2 with varying
w1 for m = 30 and N = 150.

L1 Model Trt-1 Trt-2 Trt-3 Power
Exponential (mean=yy) 0.340 (0.170)  0.330 (0.170)  0.320 (0.170)  0.050

Gamma (shape=3, scale=yi; /3) 0.340 (0.166)  0.341 (0.167)  0.320 (0.166)  0.050

Weibull (shape=3, scale=p,/0.893)  0.340 (0.166) 0.340 (0.166)  0.320 (0.166)  0.050

2.0 Lognormal (meanlog=log(ux), sdlog=3) 0.340 (0.169) 0.341 (0.170)  0.319 (0.169)  0.050
Associated Exponential (r = 0.091)  0.341 (0.167) 0.340 (0.167)  0.320 (0.167)  0.050
Associated Exponential (7 = 0.500) 0.339 (0.167) 0.342 (0.168)  0.319 (0.167)  0.050
Associated Exponential (7 = 0.909) 0.339 (0.167) 0.341 (0.167)  0.321 (0.167)  0.050
Exponential (mean=py) 0.450 (0.170)  0.290 (0.140)  0.270 (0.140)  0.250

Gamma (shape=3, scale=p/3) 0.472 (0.162) 0.273 (0.125)  0.254 (0.126)  0.345

Weibull (shape=3, scale=puy/0.893) 0.480 (0.158)  0.271 (0.122)  0.249 (0.121)  0.357

2.6 Lognormal (meanlog=log(ux), sdlog=3) 0.371 (0.178) 0.324 (0.163)  0.305 (0.163)  0.089
Associated Exponential (7 = 0.091) 0.441 (0.173)  0.289 (0.139)  0.270 (0.141)  0.243
Associated Exponential (7 = 0.500)  0.439 (0.174) 0.292 (0.142)  0.269 (0.140)  0.221
Associated Exponential (7 = 0.909) 0.445 (0.172) 0.288 (0.139)  0.266 (0.137)  0.247
Exponential (mean—pz) 0.520 (0.140) _ 0.250 (0.100) _ 0.230 (0.100) _ 0.530

Gamma (shape=3, scale=py/3) 0.541 (0.110) 0.239 (0.079)  0.220 (0.082)  0.688

Weibull (shape=3, scale=y1,/0.893)  0.549 (0.099) 0.235 (0.073)  0.216 (0.074)  0.720

3.2 Lognormal (meanlog=log(us), sdlog=3)  0.398 (0.180) 0.312 (0.157)  0.289 (0.155)  0.127
Associated Exponential (7 = 0.091) 0.513 (0.140) 0.253 (0.104)  0.234 (0.105)  0.510
Associated Exponential (7 = 0.500) 0.507 (0.144) 0.256 (0.108)  0.237 (0.109)  0.473
Associated Exponential (7 = 0.909)  0.516 (0.137) 0.252 (0.102)  0.233 (0.102)  0.517
Exponential (mean=y,) 0.550 (0.090)  0.230 (0.070) _ 0.220 (0.070) _ 0.740

Gamma (shape=3, scale=yi; /3) 0.568 (0.067) 0.226 (0.051)  0.206 (0.052)  0.874

Weibull (shape=3, scale=py/0.893) 0.571 (0.060) 0.224 (0.047)  0.204 (0.047)  0.894

3.8 Lognormal (meanlog=log(iux), sdlog=3) 0.422 (0.179) 0.299 (0.150)  0.278 (0.149)  0.175
Associated Exponential (r = 0.091)  0.548 (0.104) 0.236 (0.076)  0.216 (0.077)  0.710
Associated Exponential (7 = 0.500) 0.543 (0.111) 0.238 (0.082)  0.219 (0.082)  0.675
Associated Exponential (7 = 0.909) 0.551 (0.101)  0.235 (0.074) 0.215 ( 0.074) 0.724
Exponential (mean—j) 0.570 (0.070) _ 0.230 (0.060) _ 0.210 (0.050) _ 0.860

Gamma (shape=3, scale=j/3) 0.577 (0.046)  0.222 (0.038)  0.202 (0.038)  0.948

Weibull (shape=3, scale=p,/0.893)  0.578 (0.043) 0.222 (0.037)  0.201 (0.036)  0.956

4.4 Lognormal (meanlog=log(ur), sdlog=3) 0.440 (0.177) 0.291 (0.144) 0.270 (0.143)  0.219
Associated Exponential (7 = 0.091) 0.566 (0.076) 0.227 (0.056)  0.207 (0.058)  0.837
Associated Exponential (7 = 0.500) 0.562 (0.083)  0.229 (0.062)  0.209 (0.062)  0.807
Associated Exponential (7 = 0.909) 0.566 (0.074) 0.227 (0.055)  0.207 (0.057)  0.851

SD of each EAP is inside the braces. Power under equal p’s denotes the type I error rate.
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Table 2: Operating characteristics for vy
varying p1 for m = 30 and N = 150.

=2,vp =wv3 =1 and uy = pu3 = 2 with

L1 Model Trt-1 Trt-2 Trt-3 Power
Exponential (mean=yy) 0.340 (0.170)  0.330 (0.170)  0.320 (0.170) 0.050

Gamma (shape=3, scale=yi; /3) 0.428 (0.175)  0.297 (0.145)  0.275 (0.144)  0.050

Weibull (shape=3, scale=py/0.893) 0.461 (0.167) 0.279 (0.131)  0.260 (0.131) 0.050

2.0 Lognormal (meanlog=log(ux), sdlog=3) 0.279 (0.130) 0.370 (0.176)  0.351 (0.176) 0.050
Associated Exponential (r = 0.091)  0.353 (0.171)  0.332 (0.165) 0.315 ( 0.165)  0.050
Associated Exponential (7 = 0.500) 0.448 (0.173)  0.287 (0.139)  0.265 (0.138) 0.050
Associated Exponential (7 = 0.909) 0.577 (0.051) 0.222 (0.041)  0.201 (0.040) 0.050
Exponential (mean=py) 0.440 (0.170)  0.290 (0.140)  0.270 (0.140) 0.220

Gamma (shape=3, scale=p/3) 0.526 (0.128)  0.246 (0.093)  0.227 (0.095) 0.245

Weibull (shape=3, scale=j,/0.893)  0.546 (0.105) 0.238 (0.080)  0.216 (0.076)  0.249

2.6 Lognormal (meanlog=log(ux), sdlog=3) 0.297 (0.146) 0.363 (0.175)  0.340 (0.175) 0.087
Associated Exponential (7 = 0.091) 0.443 (0.173)  0.288 (0.139)  0.269 (0.140) 0.203
Associated Exponential (7 = 0.500) 0.516 (0.139)  0.253 (0.105)  0.231 (0.102) 0.158
Associated Exponential (7 = 0.909) 0.580 (0.039)  0.220 (0.035)  0.200 (0.034) 0.074
Exponential (mean—pz) 0.510 (0.150)  0.260 (0.110) _ 0.240 (0.110) _ 0.480

Gamma (shape=3, scale=yi;, /3) 0.565 (0.077)  0.228 (0.057)  0.208 (0.058)  0.502

Weibull (shape=3, scale=p/0.893) 0.572 (0.058) 0.224 (0.046)  0.204 (0.045) 0.494

3.2 Lognormal (meanlog=log(u), sdlog=3) 0.318 (0.158) 0.352 (0.172)  0.330 (0.171) 0.132
Associated Exponential (7 = 0.091) 0.507 (0.145)  0.256 (0.108)  0.237 (0.110)  0.425
Associated Exponential (7 = 0.500) 0.549 (0.103) 0.236 (0.077)  0.215 (0.075)  0.288
Associated Exponential (r = 0.909)  0.581 (0.034) 0.219 (0.032)  0.200 (0.032)  0.099
Exponential (mean=py) 0.540 (0.110)  0.240 (0.080)  0.220 (0.080) 0.690

Gamma (shape=3, scale=yi; /3) 0.576 (0.049)  0.222 (0.040)  0.202 (0.040)  0.700

Weibull (shape=3, scale=p,/0.893)  0.579 (0.039) 0.221 (0.034)  0.201 (0.035)  0.687

3.8 Lognormal (meanlog=log(ux), sdlog=3) 0.333 (0.165) 0.344 (0.170)  0.323 (0.170)  0.180
Associated Exponential (7 = 0.091) 0.544 (0.110)  0.237 (0.079)  0.219 (0.083) 0.632
Associated Exponential (7 = 0.500) 0.565 (0.079) 0.227 (0.058)  0.207 (0.059)  0.421
Associated Exponential (7 = 0.909) 0.581 (0.033) 0.220 (0.031)  0.199 (0.031)  0.119
Exponential (mean=py) 0.560 (0.080) 0.230 (0.060)  0.210 (0.050) 0.820

Gamma (shape=3, scale=py/3) 0.579 (0.038) 0.220 (0.034)  0.201 (0.033)  0.814

Weibull (shape=3, scale=j,/0.893)  0.581 (0.034) 0.220 (0.032)  0.200 (0.033)  0.799

4.4 Lognormal (meanlog=log(ux), sdlog=3) 0.352 (0.173) 0.335 (0.167)  0.313 (0.166)  0.234
Associated Exponential (7 = 0.091) 0.562 (0.084) 0.229 (0.062)  0.210 (0.062)  0.777
Associated Exponential (7 = 0.500) 0.573 (0.060) 0.223 (0.046)  0.203 (0.047) 0.533
Associated Exponential (7 = 0.909) 0.582 (0.033)  0.219 (0.031)  0.199 (0.031) 0.140

SD of each EAP is inside the braces. Power under equal p’s denotes the type I error rate.
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1,vg = v3 = 2 and pug = psz = 2 with

L1 Model Trt-1 Trt-2 Trt-3 Power
Exponential (mean=yy) 0.340 (0.170)  0.340 (0.170)  0.320 (0.170)  0.050

Gamma (shape=3, scale=yi; /3) 0.273 (0.124)  0.374 (0.175)  0.353 (0.176)  0.050

Weibull (shape=3, scale=y,/0.893) 0.254 (0.102)  0.382 (0.177) 0.364 (0.177)  0.050

2.0 Lognormal (meanlog=log(ux), sdlog=3)  0.415 (0.177)  0.302 (0.147) 0.238 (0.148)  0.050
Associated Exponential (r = 0.091)  0.329 (0.163)  0.346 (0.169)  0.326 (0.169)  0.050
Associated Exponential (7 = 0.500) 0.257 (0.107)  0.383 (0.178) 0.361 (0.178)  0.050
Associated Exponential (7 = 0.909) 0.224 (0.032)  0.399 (0.181) 0.377 (0.181)  1.000
Exponential (mean=yy) 0.440 (0.170)  0.290 (0.140) 0.270 (0.140)  0.210

Gamma (shape=3, scale=p/3) 0.370 (0.174)  0.325 (0.160)  0.305 (0.161)  0.298

Weibull (shape=3, scale=jiy,/0.893) 0.339 (0.166)  0.343 (0.168) 0.318 (0.166)  0.320

2.6 Lognormal (meanlog=log(ux), sdlog=3)  0.451 (0.171)  0.286 (0.137) 0.263 (0.134)  0.083
Associated Exponential (7 = 0.091) 0.420 (0.176)  0.300 (0.147) 0.280 (0.147)  0.200
Associated Exponential (r = 0.500)  0.312 (0.155)  0.355 (0.173)  0.333 (0.172  0.187
Associated Exponential (7 = 0.909) 0.224 (0.035)  0.400 (0.181) 0.376 (0.181)  1.000
Exponential (mean—pz) 0.500 (0.150) _ 0.260 (0.110) _0.240 (0.110) _ 0.430

Gamma (shape=3, scale=py/3) 0.458 (0.167)  0.281 (0.132) 0.261 (0.132)  0.618

Weibull (shape=3, scale=py/0.893) 0.433 (0.174)  0.294 (0.142) 0.273 (0.141)  0.664

3.2 Lognormal (meanlog=log(u), sdlog=3)  0.479 (0.161)  0.270 (0.122)  0.252 (0.124)  0.121
Associated Exponential (7 = 0.091) 0.487 (0.155)  0.266 (0.119) 0.247 (0.119)  0.399
Associated Exponential (7 = 0.500) 0.368 (0.175)  0.327 (0.163) 0.306 (0.162)  0.371
Associated Exponential (r = 0.909)  0.226 (0.043)  0.396 (0.181)  0.378 (0.181)  1.000
Exponential (mean=py) 0.540 (0.110)  0.240 (0.080) 0.220 (0.080)  0.610

Gamma (shape=3, scale=yi; /3) 0.518 (0.133)  0.251 (0.099) 0.231 (0.099)  0.830

Weibull (shape=3, scale=py/0.893) 0.501 (0.146)  0.260 (0.112) 0.238 (0.109)  0.875

3.8 Lognormal (meanlog=log(ux), sdlog=3)  0.499 (0.150)  0.260 (0.113) 0.240 (0.112)  0.150
Associated Exponential (r = 0.091)  0.527 (0.126)  0.245 (0.092)  0.227 (0.096)  0.571
Associated Exponential (7 = 0.500) 0.419 (0.177)  0.302 (0.149) 0.279 (0.147)  0.558
Associated Exponential (7 = 0.909) 0.230 ( 0.057 ) 0.395 (0.181) 0.375 (0.181)  1.000
Exponential (mean—j) 0.560 (0.090) _ 0.230 (0.070) _0.210 (0.060) _ 0.730

Gamma (shape=3, scale=py/3) 0.548 (0.101)  0.236 (0.075) 0.216 (0.074)  0.927

Weibull (shape=3, scale=/1;/0.893)  0.537 (0.114)  0.241 (0.082)  0.222 (0.085)  0.957

4.4 Lognormal (meanlog=log(ur), sdlog=3)  0.516 (0.138)  0.253 (0.103) 0.232 (0.102)  0.187
Associated Exponential (7 = 0.091) 0.551 (0.099)  0.234 (0.072) 0.215 (0.074)  0.702
Associated Exponential (7 = 0.500) 0.459 (0.167)  0.279 (0.131) 0.261 (0.133)  0.696
Associated Exponential (7 = 0.909) 0.234 (0.070)  0.393 (0.181) 0.373 (0.180)  1.000

SD of each EAP is inside the braces. Power under equal p’s denotes the type I error rate.
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Table 4: Operating characteristics for different parameter configurations under the
presence of more than one superior treatment.
m = 30, N = 150

(v1,v2,v3) (1, pi2, p13) Trt-1 Trt-2 Trt-3 Power
(2.6, 2.6, 2.0) 0.378 (0.176) 0.379 (0.177) 0.243 (0.113) _ 0.074
(1,1,1) (32 32,2.0) 0392 (0.178) 0.392 (0.178) 0.216 (0.070)  0.091
(3.8, 3.8,2.0) 0.396 (0.178) 0.397 (0.179) 0.207 (0.048) 0.108
(4.4, 4.4, 2.0) 0.399 (0.179) 0.396 (0.179) 0.205 (0.037)  0.103
(2.6, 2.6, 2.0) 0.375 (0.176) 0.380 (0.176) 0.244 (0.115)  0.075
(2,1,1) (32,32 2.0) 0.388 (0.177) 0.395 (0.178) 0.217 (0.072)  0.081
(3.8, 3.8,2.0) 0.390 (0.179) 0.402 (0.178)  0.208 (0.049)  0.088
(4.4, 4.4,2.0)  0.392 (0.179)  0.404 (0.178)  0.205 (0.038)  0.089
(2.6, 2.6, 2.0) 0.378 (0.176) 0.370 (0.176) 0.252 (0.123)  0.069
(1,2,2) (32 3220) 0392 (0.178) 0.385 (0.177) 0.223 (0.085) 0.083
(3.8,3.8,2.0) 0.400 (0.179) 0.389 (0.178) 0.212 (0.061)  0.095
(44, 4.4,2.0) 0401 (0.179) 0.392 (0.179)  0.207 (0.048)  0.098
m =50, N = 200
(2.6, 2.6, 2.0) 0.367 (0.119) 0.368 (0.110) _0.265 (0.069) _ 0.069
(1,1,1)  (3.2,32,20) 0.375(0.119) 0.376 (0.119) 0.249 (0.039)  0.079
(3.8, 3.8,2.0) 0.377 (0.119) 0.376 (0.119) 0.247 (0.031)  0.081
(4.4, 4.4,2.0) 0.377 (0.120)  0.376 (0.119)  0.247 (0.030)  0.085
(2.6, 2.6, 2.0) 0.367 (0.119) 0.368 (0.110) _0.265 (0.069) _ 0.066
(2,1,1)  (32,32,20) 0372 (0.119) 0.378 (0.120) 0.250 (0.040)  0.073
(3.8,3.8,2.0) 0.373 (0.120) 0.380 (0.119) 0.247 (0.032)  0.076
(4.4,4.4,2.0) 0.372 (0.120) 0.381 (0.120)  0.247 (0.030)  0.078
(2.6, 2.6, 2.0) 0.366 (0.119) 0.363 (0.118) 0.271 (0.076) _ 0.072
(1,2,2) (32 32,20) 0376 (0.119) 0.371 (0.119) 0.253 (0.047)  0.088
(3.8, 3.8,2.0) 0.378 (0.119) 0.374 (0.119) 0.248 (0.035)  0.096
(44, 4.4,2.0) 0.380 (0.119) 0.373 (0.119) 0.247 (0.031)  0.099

SD of each EAP is inside the braces.
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Figure 1: Boxplots of observed allocation proportions to treatment 1 for 1 = 2.6, s =
w3 =2, v =vp =v3 =1 with m =40 and N = 200.
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Figure 2: Comparison of powers for pus = us = 2, 11 = v9 = v3 = 1 with varying ue

from 2.0 to 4.4 under m = 40 and N = 200.

Remarks: First of all, the type I error rates are more or less maintained at the nominal
level for all the cases except one. From Tables 1-2 and Figures 1-2, it is evident that
higher proportion of patients are assigned to the best treatment with higher power
when the response is originally Gamma or Weibull rather than the Exponential but
it is lower when the response variable changes to Lognormal. Moreover, when the
response variable is Exponential but associated, then the power gradually drops as
we increase the intensity of association (i.e. 7). The EAP’s for best treatment are
fluctuating without specifying any pattern.

Moreover, Tables 2-3 are showing that, even if y’s are same, all the three treatments
have different EAP values if v;’s are different when the model assumption is violated.
One very unusual situation for Table 3 is when the Exponential distributions have
high association. In those cases, all the operating characteristics (i.e. type I error
rate, EAP and power) are giving such values which are completely unexpected and
non-interpretable.

In addition, Table 4 shows that the EAP figures do not vary for the two superior
treatments and have higher values than inferior treatment, which is expected. But the
powers are really very low for all the cases. Hence, the performance of the design is
not satisfactory when the actual situation is different from the assumed conditions.

4. Redesigning Recurrent Glioblastoma trial of Batchelor
et al. (2013)

For the evaluation of the allocation design of Bhattacharya and Shome (2019) from
the perspective of a real clinical practitioner, we consider the same real clinical trial
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considered in Bhattacharya and Shome (2019), that is, the recurrent glioblastoma
trial of Batchelor et al. (2013), where the efficacies of combination of Cediranib 20 mg
and Lomustine (Treatment 1), Cediranib 30 mg (Treatment 2) and Lomustine (Treat-
ment 3) alone are evaluated. 325 patients with recurrent glioblastoma were randomly
assigned using a 2:2:1 randomization to receive treatments 1, 2 and 3, respectively.
However, the study did not show significant prolongation in progression free survival
(PFS) for any treatment.

As only the summary statistics of the trial data are given publicly by Batchelor et al.
(2013), it is not possible to check the validity of the Koziol-Green model. So, we have
assumed that PFS for these treatments follow the Koziol-Green model and estimated
the parameters. It is worthwhile to mention that Bhattacharya and Shome (2019)
assumed the same to carry out the relevant analysis based on this data. According
to the Koziol-Greeen model, the relevant estimates (in months) are i1 = 6.011, jip =
4.423, 13 = 3.943 and ;1 = 0.554, 09 = 0.456, 3 = 0.757. Treating these estimates as
the true ones, we redesign the trial in two stages with the trial size N = 325 for two
choices of # as 1/5 and 1/4 under different models. Relevant findings with respect
to expected allocation proportions (EAP) and expected allocation counts (EAC) with
their respective SD’s are reported in Table 5.

The figures from the Table 5 show that the two stage adaptive procedure of Bhat-
tacharya and Shome (2019) performs better than the actual situation and may save a
number of patients assigning to the inferior treatment whatever be the distribution of
responses.
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5. Recommendations

The present paper discusses the effect of model misspecification on the two stage de-
sign of Bhattacharya and Shome (2019). Although the procedure is meritorious when
all the assumptions made by them are valid, it has been revealed that, the procedure
may perform poorly in certain situations. So it is necessary to check the model va-
lidity before performing any particular design which is very much dependent on some
assumptions. Real clinical trials should also be performed very cautiously under these
scenarios. Some distribution free and robust methods may be applied, in general, to
get rid of some unsatisfactory results.
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