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Abstract

In general, the well known Chebyshev’s inequality is used to determine the sample size in order to conduct
a survey using direct responses. The same technique intending to cover for sensitive variables are attempted
recently by many statisticians. However it has been observed that in many cases the acceptable sample sizes
are hard to be obtained, mainly because of appearance of some easily non-controllable part. Chaudhuri
and Sen (2020), Chaudhuri and Patra (2023) and others have illustrated different situations and solutions
are proposed therein. In this paper, following Chaudhuri, Bose and Dihidar (2011), we have made an
attempt to deterimine the sample size corresponding to the estimators of sensitive population proportion
using multiple randomized responses from distinct persons sampled. Along with the theoretical derivations,
some numerical illustrations are presented. Based on the important extractions of our numerical illustration
results, the recommendable sample size in practical real survey situations are observed.

Keywords and Phrases: Randomized response survey; Sample-size determination; Mul-
tiple randomized responses.
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1 Introduction

Surveys to collect information on sensitive or stigmatizing attributes face the problem
of untruthful responses or non-cooperation by respondents, both of which lead to bi-
ased estimates. To avoid this evasive answer bias and to preserve the privacy of the
respondent, Warner (1965) introduced an innovative technique commonly referred to
as randomized response (RR) technique. In his model, a sampled respondent answers
‘Yes’ or ‘No’ about the matching or non-matching of his/her own characteristic to
either the sensitive question of interest or the complementary question, the question
being chosen by randomly drawn cards, unnoticed by the inteviewer. Since then, many
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contributors have enriched the randomized response literature by providing alterna-
tive models and proving their efficiencies in comparison to the existing techniques.
Important contributions are available for quantitative sensitive variables also.

However, prior to conducting a survey, it is mandatory to have the number of the
units from whom we need to collect the data, called as the sample size. For direct
surveys, Cochran (1953, 1963, 1977) and several others have prescribed the solutions
mainly demanding normality in the distribution of the standardized difference between
the estimate and the estimand parameter it seeks to estimate. Chaudhuri (2010,
2014, 2018, 2020) have shown the use of the Chebyshev’s inequality in tackling this
issue, where the assumption of normality is avoided. Chaudhuri & Dutta (2019) have
considered a different approach while discussing the sample-size problem. In case a
closed form expression of the variance formula is difficult to obtain, but an unbiased
estimator for the variance is available at our hand, Chaudhuri & Dutta (2019) proposed
to use that unbiased estimator for the variance to determine the sample size.

The situation is much more hard when the survey is about gathering data on the sen-
sitive variables. Contributory researches are available in lierature in this regard, such
as in Chaudhuri and Sen (2020), Chaudhuri and Patra (2023) and others. However it
has been observed that in many cases the reasonably acceptable sample sizes are hard
to be obtained. The difficulty arires to the point is that there is one part that may be
controlled by an appropriately chosen sampling design and there is another part that
is very hard to get suitably and naturally controlled. In this regard, various situations
are illustrated and solutions are proposed in Chaudhuri and Sen (2020), Chaudhuri
and Patra (2023) and others.

Chaudhuri, Bose and Dihidar (2011) have considered the estimation of the propor-
tion of persons bearing a sensitive characteristic unbiasedly by Warner (1965)’s device
using the multiple responses from distinct persons sampled. The problem studied in
Chaudhuri et al. (2011) stems from the observation that in direct response surveys
Basu (1958), Raj and Khamis (1958), Pathak (1962), Korwar and Serfling (1970) and
others have shown that if one uses the responses from the distinct units sampled by
simple random sampling with replacement (SRSWR) method, alternative unbiased
estimators performng better than the classical estimator i.e. the sample mean, are
available. Chaudhuri et al. (2011) investigated the similar things for the randomized
responses. Mangat et al. (1995) gave an unbiased estimator based on only one ran-
domized response for every distnct unit sampled and studied the relative efficiencies.

Being motivated by above researches, in this paper we have made an attempt to
deterimine the sample size corresponding to the estimators of sensitive population
proportion using multiple randomized responses from distinct persons obtained in an
SRSWR sample. Details are given in the following sections.
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2 Preliminaries on the sample size determination based
on the direct surveys

Let us consider a finite population U = (1, 2, . . . , N) of N units, N being known and
a real valued variable y with unknown values Yi for i ∈ U . Suppose our objective is
to estimate the population total Y =

∑N
i=1 Yi or the population mean Ȳ = 1

N

∑N
i=1 Yi

by a suitably drawn probability sample s of size n(2 ≤ n < N) with the selection
probability p(s) by a design p. Suppose we consider an estimator t to unbiasedly
estimate Y which has a variance Vp(t). Also suppose we need the estimator t to be
so accurate that for a given positive proper fraction f , say, f = 0.1, or f = 0.2, etc.
we want to maintain the absolute difference in between the estimate values and the
unknown fixed Y value to be less than or equal to fY for many of the all possible
samples, i.e. choosing a small positive value of α close to 0, say as 0.1, 0.05, 0.01,

P (|t− Y | ≤ fY ) ≥ 1− α. (1)

As per the definition of the mean squared error Mp(t) = Ep(t − Y )2 of the estimator
t, where Ep() is the expectation operator with respect of the sampling design p, for a
positive number K, we can have the result as

P (t−K ≤ Y ≤ t+K) ≥ 1− Mp(t)

K2
. (2)

Taking K = λ
√

Vp(t) for a positive number λ, and on noting that Mp(t) = Vp(t) +
B2

p(t), where Bp(t) denotes the bias of the estimator t, we have the result as

P

(
t− λ

√
Vp(t) ≤ Y ≤ t+ λ

√
Vp(t)

)
≥
(
1− 1

λ2

)
−

B2
p(t)

λ2Vp(t)
. (3)

For t being an unbiased estimator, Bp(t) = 0, and the Chebyshev’s inequality tells us

P
(

t− λ
√

Vp(t) ≤ Y ≤ t+ λ
√

Vp(t)
)

≥

(

1−
1

λ2

)

=⇒ P
(

|t− Y | ≤ λ
√

Vp(t)
)

≥

(

1−
1

λ2

)

. (4)

Now combining the Eqns. (1) and (4) of above, let us take α = 1
λ2 and fY = λ

√
Vp(t),

and on writing the coefficient of variation CV of t as CV (t) =

√
Vp(t)

Y × 100, we have
the relation as

α =
Vp(t)

f2Y 2
=⇒ α =

(CV (t))2

1002f2
. (5)

In case a simple random sampling, with or without replacement i.e. SRSWR or SR-
SWOR, Nȳ with ȳ as the sample mean, in either case is used to unbiasedly estimate
Y .
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For SRSWR, V (Nȳ) = N2 σ
2
y

n = N(N−1)
n S2

y , where σ2
y = 1

N

∑N
i=1(Yi − Ȳ )2 and S2

y =
1

N−1

∑N
i=1(Yi − Ȳ )2 are two forms of the population variance of y, and CV (ȳ) =

100 ×
√

V (ȳ)

Ȳ
= 100 ×

√
N−1
Nn

Sy

Ȳ
.

Now on denoting CV as the CV =
Sy

Ȳ
100, the cooefficient of variation of N population

values Yi’s, utilizing the given values of α, f , CV and N , the sample size may be
determined by solving the above equation for n. For example, for SRSWR case, the
sample size determination formula takes the following form.

SRSWR case : n =

(
N − 1

N

)
1

αf2

(
CV

100

)2

. (6)

For SRSWOR case, on noting that V (ȳ) = ( 1n − 1
N )S2

y , the sample size determination
formula takes the following form.

SRSWOR case : n =
n0

1 + n0
N

, where n0 =
1

αf2

(
CV

100

)2

. (7)

In Chaudhuri (2010, 2014, 2018) this is illustrated in details.
It is to be noted that in above formulae, the population CV of y values or the values of
Sy and Ȳ separately are required in advance from any reliable source, for example, from
the results of recently conducted similar surveys or from some admininstrative sources.
Many times this information are unavailable. In that situation, some important binary
variable as per the objective of the survey is required to be identified and based on that
binary variable, the sample size is determined. In both the SRSWR and SRSWOR
cases, the sample proportion p is used to unbiasedly estimate the population proportion
P associated to the considered binary variable. The variance of p are :

for SRSWR case:V (p) =
P (1− P )

n
and for SRSWOR case : V (p) =

N − n

N − 1

P (1 − P )

n
. (8)

Using these, the Chebyshev’s sample size determination relation α =
V (p)

f2P 2
gives the

formulae as:

SRSWR case : n =
1

αf2

(
1− P

P

)
. (9)

SRSWOR case : n =
n0

1 + n0
N

, where n0 =

(
N

N − 1

)
1

αf2

(
1− P

P

)
. (10)

However, in community level surveys in health, nutrition etc., it is most common to
use the following Cochran’s formula for determining the sample size for estimating a
population proportion parameter,

n =
n0

1 + n0
N

, where n0 =
z2α × (p× (1− p))

d2
, (11)
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where p is a reasonable guess value of the population proportion P , d is the margin of
error and zα is the value of the normal deviate corresponding to level of significance α.
The margin of error d is usually taken as d = e× p, where e is the relative permissible
margin in error. If a reasonable guess value p about the population proportion P is
not available beforehand, the middle value 0.5 is used in place of p.

It is to be noted that our present work is intended to avoid the usual normality assump-
tion and to study in general the sample size determination problem corresponding to
the estimators of sensitive population proportion using multiple randomized responses
from distinct persons sampled.

For general sampling schemes and designs with suitable estimators, especially for un-
equal probability sampling designs, appealing to the concept of the coefficient of varia-
tion does not yield a useful solution to the problem of finding an appropriate value for
n. For this reason, Chaudhuri & Dutta (2018) have recommended to solve this prob-
lem by postulating a regression model in between y and some well related auxiliary
variable x as :

yi = βxi + ǫi, i ∈ U, (12)

where xi are known for all i ∈ U and β is an unknown constant and ǫi’s are independent
random variables with mean Em(ǫi) = 0 ∀i ∈ U and variances Vm(ǫi) = σ2xgi with
an unknown σ > 0 and an unknown constant g(0 ≤ g ≤ 2), where Em() and Vm()
denote respectively the model-based expectation and variance operators. Based on
this model, they recommended to solve for n from :

α =
Em(Vp(t))

f2Em(Y 2)
. (13)

It is to be noted that to implement this formula, we need to use the given values
of N , f , α, σ2, β, g, and the known values of xi’s for all i ∈ U . Chaudhuri and
Dutta (2018) have presented the illustrations of sample size determinations for several
unequal probability sampling designs. Every time they have noted that the sampling
fractions obtained are quite reasonable in each case with numerical illustrations.
However, in the current research, we consider the equal probability and with replace-
ment (SRSWR) design and study the details of finding the sample size based on the
randomized responses from the distinct units obtained to cover sensitive issues. The
details of our research are disclosed in the following sections. Unequal probability
sampling designs will be considered in some consequent research work.

3 Preliminaries on the sample size determination based

on the randomized response (RR) surveys

Let us consider the problem of estimation of the population proportion of a sensitive
qualitative characteristic, say, A and the use of Warner (1965)’s RR technique. Let us
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define the variable y taking the value for unit i as Yi = 1/0 according to bearing/non-
bearing of the characteristic A, for i ∈ U . Our objective is to estimate the sensitive
population proportion θ = Ȳ . Let a sampled person i be approached with a box
of cards in p ( 6= 0.5) proportion with marked A and the rest (1 − p) proportion
marked with Ac , with a request to draw randomly one card from the box and to
truthfully answer if he/she gets a match or non-match of his/her own characteristic
with the marks on the card randomly drawn. The generation of such randomized
response data is done unnoticed by the interviewer, thus protecting the privacy of the
respondent. Following Chaudhuri (2011) and Chaudhuri & Christofides (2013) let us
define the random variable I denoting the numerical values of the RRs as :

Ii = 1 if the person i gets a match

= 0 if the person i gets a non-match .

Let ER, VR denote the expectation and variance operators with respect to the RR
collection from the sampled respondents, and EP , VP denote the expectation and
variance operators with respect to the sampling of the respondents. Also let us sup-
pose E and V denote the overall expectation and variance operators. Then ER(Ii) =

pyi+(1− p)(1− yi) = (1− p)+ (2p− 1)yi. This implies that on defining ri =
Ii−(1−p)
(2p−1) ,

we have ER(ri) = yi. On noting that yi = 1/0 and Ii = 1/0, and hence I2i = Ii and

y2i = yi, we have VR(Ii) = p(1− p), and hence VR(ri) =
p(1−p)
(2p−1)2

= φW , say.

In order to estimate θ = Ȳ =
∑N

i=1 Yi

N , assuming that the population size N is known,

the problem reduces to the estimation of the total Y =
∑N

i=1 Yi. So utilizing the
notation t for direct survey based unbiased estimator for Y , but for the RR data, let
us call the estimator as e and e is defined as

e = t|yi=ri,∀i∈s. (14)

This estimator e has the property that

ER(e) = t and E(e) = EPER(e) = EP (t) = Y. (15)

Thus e is an unbiased estimator for Y , for RR-based survey.

V (e) = VPER(e) + EPVR(e) = VP (t) + EPVR(e). (16)

It has been observed earlier by Chaudhuri and Sen (2020), Chaudhuri and Patra
(2023) and others, that the EPVR(e) part has shown much larger numerical values in
comparison to the VP (t) part, resulting in absurd values for the sample sizes n using
Chebyshev’s inequality for the RR-based surveys. For example, for Warner (1965)’s
RR technique, for both cases of SRSWR and SRSWOR designs, an unbiased estimator
of θ, say, θ̂W is :
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θ̂W =
e

N
=

1

n

n∑

i=1

ri. (17)

And about the variance of the estimator, on noting that σ2
y = θ(1− θ),

SRSWR case : V (θ̂W ) =
σ2
y

n
+

φW

n
=

θ(1− θ)

n
+

φW

n
, (18)

and

SRSWOR case : V (θ̂W ) =

(
1

n
− 1

N

)
S2
y +

φW

n
=

(
1

n
− 1

N

)
Nσ2

y

N − 1
+

φW

n
. (19)

Taking advantage from Chebyshev’s inequality, for SRSWR design, the sample size
can be determined by solving the equation

SRSWR case : α =
V (θ̂W )

f2θ2
=

θ(1−θ)
n + φW

n

f2θ2
=⇒ n =

θ(1− θ) + φW

αf2θ2
. (20)

Similarly for SRSWOR design, the sample size is determined from the relation :

SRSWOR case : α =
V (θ̂W )

f2θ2
=

(
1
n − 1

N

) Nσ2
y

N−1 +
φW

n

f2θ2
=⇒ n =

N
N−1θ(1− θ) + φW

αf2θ2 + θ(1−θ)
N−1

.

(21)

Some numerical illustrations are presented below in Table 1.

Table 1: Sample size for direct and RR surveys for various parameters
(Warner’s RRT)

N f α CV p( 6= 0.5) θ n(DR:SRSWR) n(RR:SRSWR) n(DR:SRSWOR) n(RR:SRSWOR)
80 0.10 0.05 10.00 0.45 0.25 20 798000 16 10372
60 0.10 0.05 8.00 0.45 0.25 13 798000 11 7772
100 0.10 0.05 10.00 0.45 0.25 20 798000 17 12955
50 0.10 0.05 5.00 0.45 0.25 5 798000 5 6466

From the outputs of this table, we see that the determinations of n for direct response
(DR) surveys seem reasonable for both the designs SRSWR and SRSWOR, while
the determinations of n for randomized response (RR) surveys seem quite absurd. A
natural question arises, what happens about the sample size determination problem if
we concentrate on the randomized responses obtained from the distinct units appearing
in an SRSWR sample. Later sections are devoted to this direction.
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4 Sample size determination based on the distinct units
RR data in randomized response (RR) surveys

Let us consider Warner (1965)’s randomized response device with device parameter
p(6= 0.5) and SRSWR sampling for choosing the respondents. For an SRSWR sample
s of size n(2 ≤ n ≤ N) drawn from U , let ν(1 ≤ ν ≤ n) be the number of distinct
persons appeared in s. We consider various estimators based on the distinct units’
RRs and study the sample size determination problem for each of them. The details
are given in the following subsections.

4.1 Sample size determination for Mangat et al. (1995)’s model

Mangat et al. (1995) studied the case where in an SRSWR sample chosen in n draws,
the ν(1 ≤ ν ≤ n) distinct persons found are requested to perform Warner’s RR trial
only once each. They proposed an unbiased estimator for θ based on these ν RR’s and
gave its variance. Let us denote this estimator by θ̂W1 and is given by the following.

θ̂W1 =
(ν

′
/ν)− (1− p)

2p − 1
, (22)

where ν
′
is the number of persons out of the ν distinct persons, who find match with

attribute A/Ac in Warner’s RRD. Mangat et al. (1995) have given its variance as :

V (θ̂W1) = φWEP

(
1

ν

)
+

[
NEP

(
1

ν

)
− 1

]
θ(1− θ)

N − 1
. (23)

From Pathak (1962) and others, it is known to us that :

EP

(
1

ν

)
=

1

Nn

N∑

j=1

jn−1. (24)

Utilizing this, the above variance expression takes the following form as :

V (θ̂W1) =
φW

N

N∑

j=1

(
j

N

)n−1

+



N−1∑

j=1

(
j

N

)n−1

 θ(1− θ)

N − 1
. (25)

Mangat et al. (1995) noted that θ̂W1 outperforms θ̂W , in the sense that V (θ̂W1) <

V (θ̂W ) if N , n, p and θ happen to be such that :

θ(1− θ) >

[
n(N − 1)(6N + n− 1)

N{6Nn − 12N − n(n− 1}

]
× φW . (26)

In particular, they remarked that when N = 100, n = 10 and p = 0.9, θ̂W1 ≻ θ̂W for
0.236 ≤ θ ≤ 0.764 and θ̂W ≻ θ̂W1 otherwise. However, it is to be noted that a value of
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p acceptable to a respondent should be away from 0 and 1 and most preferably near
0.5 on either side, say, 0.45 ≤ p < 0.5 or 0.5 < p ≤ 0.55. Now let us investigate about
the sample sizes if some realististic sample size can be obtained for some acceptable
ranges of p values.

From Chebyshev’s inequality, the sample size n can be determined by solving the
equation :

α =
V (θ̂W1)

f2θ2
=

φW

N

∑N
j=1

(
j
N

)n−1
+

[∑N−1
j=1

(
j
N

)n−1
]

θ(1−θ)
N−1

f2θ2
. (27)

This shows that n can be obtained by solving the following equation as :

f2θ2α− φW

N
φW

N + θ(1−θ)
N−1

=
N−1∑

j=1

(
j

N

)n−1

. (28)

Some numerical illustrations are given below.

Table 2: Sample size for RR surveys for various parameters (Mangat et
al. (1995) model), SRSWR

N f α p(6= 0.5) θ Soln. of n within N Soln. of n beyond N
80 0.10 0.05 0.45 0.25 No solns within N Even no solns within ≤ 20N
60 0.10 0.05 0.45 0.25 No solns within N Even no solns within ≤ 20N
100 0.10 0.05 0.45 0.25 No solns within N Even no solns within ≤ 20N
50 0.10 0.05 0.45 0.25 No solns within N Even no solns within ≤ 20N

From the outputs of the above table, we see that it is very hard to find out the
sample size for the parameters mentioned in the table. At this moment, let us perform
our attempt by altering the device parameter, i.e. increasing p, as control of device
parameter is at the hand of the statistician, and keeping the θ value as fixed because
it is by nature. The following table shows some numerical results for N = 100.

Table 3: Sample size for RR surveys for various parameters (Mangat et
al. (1995) model), SRSWR, attempt by increasing p

N f α p( 6= 0.5) θ Soln. of n within N Soln. of n beyond N

100 0.10 0.05 0.65 ≤ p ≤ 0.99 0.25 No solns within N Even no solns within ≤ 20N

100 0.10 0.05 0.995 0.25 No solns within N Even no solns within ≤ 20N

100 0.10 0.05 0.996 0.25 No solns within N Even no solns within ≤ 20N

100 0.10 0.05 0.997 0.25 No solns within N 775

From the outputs of the above table, we see that for many of the commomly used
device parameter p values, even for large p values, neither any solution of n is obtained



124 International Journal of Statistical Sciences, Vol. 24(1), 2024

within ≤ N , nor within ≤ 20N . However, a very large value of n is obtained for
extraordinarily large value p = 0.997, which is very hard for a respondent to be agreed
to participate in the survey because of not protecting his/her privacy enough. Let us
continue our attempts to investigate for n for various values of θ and p. Below are the
results of our further attempts.

Table 4: Sample size for RR surveys for various parameters (Mangat et
al. (1995) model), SRSWR, attempt for various values of θ and p (p values

not mentioned means no solution.)

N f α p(6= 0.5) θ Soln. of n within N Soln. of n beyond N
100 0.1 0.05 Any p ∈ [0.01, 0.99] ≤ 0.45 No solns within N Even no solns within ≤ 20N
100 0.1 0.05 p = 0.01 or 0.99 0.5 No solns within N 478
100 0.1 0.05 p = 0.01 or 0.99 0.55 No solns within N 399
100 0.1 0.05 p = 0.01 or 0.99 0.6 No solns within N 351
100 0.1 0.05 p = 0.01 or 0.99 0.65 No solns within N 313
100 0.1 0.05 p = 0.01 or 0.99 0.7 No solns within N 280
100 0.1 0.05 p = 0.02 or 0.98 0.7 No solns within N 428
100 0.1 0.05 p = 0.01 or 0.99 0.75 No solns within N 249
100 0.1 0.05 p = 0.02 or 0.98 0.75 No solns within N 344
100 0.1 0.05 p = 0.01 or 0.99 0.8 No solns within N 218
100 0.1 0.05 p = 0.02 or 0.98 0.8 No solns within N 288
100 0.1 0.05 p = 0.01 or 0.99 0.85 No solns within N 185
100 0.1 0.05 p = 0.02 or 0.98 0.85 No solns within N 240
100 0.1 0.05 p = 0.03 or 0.97 0.85 No solns within N 393
100 0.1 0.05 p = 0.01 or 0.99 0.9 No solns within N 146
100 0.1 0.05 p = 0.02 or 0.98 0.9 No solns within N 191
100 0.1 0.05 p = 0.03 or 0.97 0.9 No solns within N 284
100 0.1 0.05 p = 0.01 or 0.99 0.95 98 (n/N is very high) —
100 0.1 0.05 p = 0.02 or 0.98 0.95 No solns within N 136
100 0.1 0.05 p = 0.03 or 0.97 0.95 No solns within N 202

From above outputs, we see that for very large value of the device parameter p we may
have some solution for n. However, only within ≤ N solution for n with very high
sampling fraction is observed for θ = 0.95 and p = 0.01 or 0.99. In other cases, for very
high p values, some solution of n is observed, but not within ≤ N , much exceeding N .
Now as so large value of p is not acceptable for a respondent because of harming their
privacy and at the same time the value of n exceeding much of N together conclude
the impractical result for conducting a RR survey. So, at this monemt, let us study
some other possible estimators and investigate if some practicable solutions of n can
be obtained for those.

4.2 Sample size determination for Chaudhuri et al. (2011)’s model

Let for a sample s drawn by SRSWR scheme in n draws, fi be the number of times
unit i appears in the sample s. Let Iij = 1/0 according as the ith person in his jth

apparance in s gets a ‘match’ or ’mis-match’ of his/her true attribute A or Ac and
the statement written on the card drawn randomly from Warner’s device with device
parameter p(6= 0.5). Then clearly

∑N
i=1 fi = n.
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Let u denote the the set of distinct persons in s, and as ν(1 ≤ ν ≤ n) is defined as the
number of distinct persons appeared in s, ν is equal to the cardinality of u. Now for
i ∈ s, fi > 0. Chaudhuri et al. (2011) defined the following transformed randomized
responses for i ∈ s as :

mi =
1

fi

fi∑

j=1

Iij, gi =
mi − (1− p)

2p − 1
. (29)

Then
ER(Iij) = (1− p) + (2p − 1)yi = ER(mi), (30)

VR(Iij) = ER(Iij)(1− ER(Iij)) = p(1− p) and VR(mi) =
p(1− p)

fi
, (31)

ER(gi) = yi and VR(gi) =
φW

fi
. (32)

Based on these transformed randomized responses, Chaudhuri et al. (2011) proposed
two alternative estimators for θ. In the two following subsections, we present Chaud-
huri et al. (2011)’s alternative estimators and their properties. Additionally for each
of them, we make an attempt to solve the sample size determination problem.

4.2.1 Sample size determination for Chaudhuri et al. (2011)’s first esti-
mator of θ

Chaudhuri et al. (2011) proposed an estimator of θ, say, θ̂W2 defined as :

θ̂W2 =
1

ν

∑

i∈u

gi. (33)

They have shown that it is unbiased for θ, since E(θ̂W2) = EPER(θ̂W2) = EP (
1
ν

∑
i∈u yi) =

Ȳ = θ.

Utilizing some results on direct surveys from Pathak (1962) and others, Chaudhuri et

al. (2011) have obtained the variance of θ̂W2 as follows.

V (θ̂W2) =


 1

Nn−1(N − 1)

N−1∑

j=1

jn−1


 (θ − θ2) + φWEP

(
1

ν2

∑

i∈u

1

fi

)
. (34)

On noting that fi ≥ 1 and fi ≤ n for all i ∈ u, and hence
∑

i∈u
1
fi

≤ ν and
∑

i∈u
1
fi

≥ ν
n ,

Chaudhuri et al. (2011) observed that V (θ̂W2) ≤ V (θ̂W1). Hence they concluded that

θ̂W2 uniformly outperforms θ̂W1.
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Here since it is hard for V (θ̂W2) to have a closed form expression, to take advantage
of Chaudhuri and Dutta (2019)’s approach for sample size determination by solving

α = (Estimate(CV (t)))2

1002f2 , we consider the variance estimator. In this regard, following

Chaudhuri et al. (2011), let

C1a = (N − 1)

[
(1− 1

N
)n − (1− 2

N
)n
]

and (35)

C1b = N(1− 1

N
)n −N2(1− 1

N
)2n +N(N − 1)(1 − 2

N
)n. (36)

An unbiased estimator for θ2 is

θ̃2 =
1

C1b +N2π2
i − C1a

N
N−1


∑ ∑

i 6=j,i,j∈u

gigj − θ̂W2(C1a
N

N − 1
−Nπi)


 , (37)

where πi is the first order inclusion probability for i ∈ s. For SRSWR sampling design,
πi = 1− (1− 1

N )n for every i.

An unbiased estimator for V (θ̂W2) is given by

V̂ (θ̂W2) =


 1

Nn−1(N − 1)

N−1∑

j=1

jn−1


 (θ̂W2 − θ̃2) + φW (

1

ν2

∑

i∈u

1

fi
). (38)

However, in practice the estimates of the coefficient of variation are usually higher
for randomized response surveys than the direct response surveys, while the quantity
100f

√
α = T , say, ranges from 0.1 to 6.3245 for commonly taken measures of f ranging

from 1% to 20% and the measures of α as 0.1, 0.05, 0.01, it is very unlikely to expect
the estimates of CV in percentages to be near about T . This point needs much more
investigation to follow Chaudhuri and Dutta (2019)’s approach in our case. Rather
we try to get some range of the sample size using the comparison critertia and Cheby-
shev’s inequality.

Utilizing the comparison criteria V (θ̂W2) ≤ V (θ̂W1), from Chebyshev’s inequality, the
sample size n in this case can be determined by solving the equation

α =
V (θ̂W2)

f2θ2
≤ V (θ̂W1)

f2θ2
=

φW

N

∑N
j=1

(
j
N

)n−1
+

[∑N−1
j=1

(
j
N

)n−1
]

θ(1−θ)
N−1

f2θ2
. (39)

This shows that n can be obtained by solving the following inequality as :

f2θ2α− φW

N
φW

N + θ(1−θ)
N−1

≤
N−1∑

j=1

(
j

N

)n−1

. (40)
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Some numerical illustrations are given below. Since the sample size determining equa-
tion is an inequality, we concentrate on the range of n. It is to be noted that the

function
f2θ2α−

φW
N

φW
N

+
θ(1−θ)
N−1

−∑N−1
j=1

(
j
N

)n−1
is an increasing function of n, keeping the other

parameters as fixed. So in this case, we try to find the maximum value of n that
satisfies the above mentioned inequality. Once these are obtained, we will be free to
take any sample size within that limit. Our observations are presented in the following
table.

Table 5: Maximum value of n determined for Chauduri et al. (2011)’s

first estimator θ̂W2 for various values of p and θ

N f α p(6= 0.5) θ Maximum value of n(RR:SRSWR)
100 0.1 0.05 Any p ∈ [0.01, 0.99] ≤ 0.9 True for any n within N
100 0.1 0.05 p = 0.01 or 0.99 0.95 97
100 0.1 0.05 Other p values 0.95 True for any n within N

From above table, we see that many admissible choices of p values are available to
perform the RR survey with any sample size within N and to use Chaudhuri et al.
(2011)’s first estimator of θ based on the distinct units’ multiple randomized responses.

4.2.2 Sample size determination for Chaudhuri et al. (2011)’s second
estimator of θ

Chaudhuri et al. (2011) defined another estimator of θ, namely, the Horvitz Thompson

estimator in this case, say, θ̂W3 defined as :

θ̂W3 =
1

N

∑

i∈u

gi
πi
, (41)

where πi = 1− (1− 1
N )n, as defined earlier, is the first order inclusion probability for

i ∈ s for SRSWR. This estimator θ̂W3 is unbiased for θ.

The second order inclusion probability πij for every pair of units i and j(6= i) for
SRSWR design is πij = 1− 2(1 − 1

N )n + (1− 2
N )n. Utilizing this and some results on

direct surveys from Pathak (1962) and others, Chaudhuri et al. (2011) obtained the

variance of θ̂W3 as :

V (θ̂W3) =
φW

N2π2
i

EP

[
∑

i∈u

1

fi

]
+

θ(1− θ)

N(N − 1)π2
i

[
(N − 1)

{
(1− 1

N
)n − (1− 2

N
)n
}]

+
θ2

N2π2
i

[
N(1− 1

N
)n −N2(1− 1

N
)2n +N(N − 1)(1 − 2

N
)n
]
. (42)



128 International Journal of Statistical Sciences, Vol. 24(1), 2024

On writing two constants, namely A1and A2 defined repectively as :

A1 =
1

Nn

N−1∑

j=1

jn−1 − N − 1

N2π2
i

[
(1− 1

N
)n − (1− 2

N
)n
]
, (43)

and

A2 =
1

Nπ2
i

[
(1− 1

N
)n −N(1− 1

N
)2n + (N − 1)(1− 2

N
)n
]
, (44)

and also utilizing a relation from Korwar and Serfling (1970) which states that

Q− 1

720N
< EP

(
1

ν

)
≤ Q, where Q =

1

n
+

1

2N
+

n− 1

12N2
, (45)

Chaudhuri et al. (2011) obtained the conditions for comparison in between θ̂W3 and

θ̂W1 . These are as follows.

V (θ̂W1) ≤ V (θ̂W3) if
Nθ(1− θ)

N − 1
A1 − θ2A2 ≤ φW

(
1

nNπi
−Q

)
, (46)

and

V (θ̂W3) < V (θ̂W1) if
Nθ(1− θ)

N − 1
A1 − θ2A2 ≥ φW

(
1

Nπi
−Q+

1

720N

)
. (47)

In practice, since it usually happens that 1
720N ≈ 0, Chaudhuri et al. (2011) concluded

that

V (θ̂W3) < V (θ̂W1) if
Nθ(1− θ)

N − 1
A1 − θ2A2 ≥ φW

(
1

Nπi
−Q

)
. (48)

Following Pathak (1962), for large N , A1 and A2 can be approximated respectively by
Ã1 and Ã2 shown as below :

Ã1 =
1

2nN
+

5(n − 1)

12nN2
and Ã2 =

n− 1

2nN
− (n− 1)(n − 2)

3nN2
. (49)

Utilizing these approximations, for some given N , n and p values, Chaudhuri et al.
(2011) have computed the range of θ for which θ̂W3 ≻ θ̂W1 . Their results of illustra-
tive computaions show that for most small θ values which usually may arise in reality
for many of the cases and where we decide to apply the RR technique, the θ̂W3 will
outperform θ̂W1.

Now we note that here also it is hard for V (θ̂W3) to have a closed form expression. So
to take advantage of Chaudhuri and Dutta (2019)’s approach for sample size determi-
nation, we consider the variance estimator. In this regard, following Chaudhuri et al.
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(2011), let

vHT (g) =
1

N2



∑

i∈u

g2i (
1− πi
π2
i

) +
∑ ∑

i 6=i′,∈u

gigi′(
πii′ − πiπi′

πii′πiπi′
)


 . (50)

Then an unbiased estimator for V (θ̂W3) is given by

V̂ (θ̂W3) = vHT (g) +
φW

N2

∑

i∈u

1

πifi
. (51)

Due to the same reasons i.e. of high value estimates of CV’s which are far away from
the T values as mentioned earlier in case of θ̂W2, instead of following Chaudhuri and
Dutta (2019)’s approach, here also we try to get some range of the sample size using
the comparison critertia and Chebyshev’s inequality.

Utilizing the comparison criteria V (θ̂W3) ≤ V (θ̂W1), from Chebyshev’s inequality, the
sample size n in this case can be determined by solving the two equations simultane-
ously :

α =
V (θ̂W3)

f2θ2
≤ V (θ̂W1)

f2θ2
=

φW

N

∑N
j=1

(
j
N

)n−1
+

[∑N−1
j=1

(
j
N

)n−1
]

θ(1−θ)
N−1

f2θ2
. (52)

and
Nθ(1− θ)

N − 1
A1 − θ2A2 ≥ φW

(
1

Nπi
−Q

)
. (53)

This shows that n can be obtained by solving the following two inequalities simulta-
neously as :

f2θ2α− φW

N
φW

N + θ(1−θ)
N−1

≤
N−1∑

j=1

(
j

N

)n−1

and
Nθ(1− θ)

N − 1
A1 − θ2A2 ≥ φW

(
1

Nπi
−Q

)
. (54)

Some numerical illustrations utilizing the approximations ofA1 and A2 are given below.
Since the sample size determining equations here are two inequalities, we concentrate
on the range of n, for which two inequalities are satisfied together. Once these are
obtained, we will be free to take any sample size within that range. Our observations
are shown in the following table.

Here the word ‘Success’ means the above two inequalities together are true, otherwise
‘No success’.
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Table 6: Results for solution of n < N for Chaudhuri et al. (2011)’s

second estimator θ̂W3 for various values of p and θ

N f α p(6= 0.5) θ Remarks on n for Success
100 0.1 0.05 Any p ∈ [0.02, 0.98] 0.05 Success for any n within N
100 0.1 0.05 Any p ∈ [0.15, 0.85] 0.1 Success for any n within N
100 0.1 0.05 Any p ∈ [0.25, 0.75] 0.15 Success for any n within N
100 0.1 0.05 Any p ∈ [0.31, 0.69] 0.2 Success for any n within N
100 0.1 0.05 Any p ∈ [0.35, 0.65] 0.25 Success for any n within N
100 0.1 0.05 Any p ∈ [0.37, 0.63] 0.3 Success for any n within N
100 0.1 0.05 Any p ∈ [0.39, 0.61] 0.35 Success for any n within N
100 0.1 0.05 Any p ∈ [0.40, 0.60] 0.40 Success for any n within N
100 0.1 0.05 Any p ∈ [0.42, 0.58] 0.45 Success for any n within N
100 0.1 0.05 Any p ∈ [0.43, 0.57] 0.5 Success for any n within N
100 0.1 0.05 Any p ∈ [0.43, 0.57] 0.55 Success for any n within N
100 0.1 0.05 Any p ∈ [0.44, 0.56] 0.6 Success for any n within N
100 0.1 0.05 Any p ∈ [0.45, 0.55] 0.65 Success for any n within N
100 0.1 0.05 Any p ∈ [0.45, 0.55] 0.7 Success for any n within N
100 0.1 0.05 Any p ∈ [0.45, 0.55] 0.75 Success for any n within N
100 0.1 0.05 Any p ∈ [0.46, 0.54] 0.8 Success for any n within N
100 0.1 0.05 Any p ∈ [0.46, 0.54] 0.85 Success for any n within N
100 0.1 0.05 Any p ∈ [0.46, 0.54] 0.90 Success for any n within N
100 0.1 0.05 Any p ∈ [0.46, 0.54] 0.95 Success for any n within N

From above table, we see that many admissible choices of p values are available to per-
form the RR survey with any sample size withinN and to use Chaudhuri et al. (2011)’s
second estimator of θ based on the distinct units’ multiple randomized responses.

5 Conclusion
The well known Chebyshev’s inequality to determine the sample size prior to conduct-
ing a randomized response based survey for sensitive variables are attempted recently
by many statisticians. It has been observed that in many cases the acceptable sam-
ple sizes are hard to be obtained. The reason is that there is one part that may be
controlled by an appropriately chosen sampling design and there is another part that
is not easy to get it suitably and naturally controlled. Various situations are illus-
trated and solutions are proposed in Chaudhuri and Sen (2020), Chaudhuri and Patra
(2023) and others. In this paper we have made an attempt to deterimine the sample
size corresponding to the estimators of sensitive population proportion using multi-
ple randomized responses from distinct persons sampled as in Mangat et al. (1995),
Chaudhuri, Bose and Dihidar (2011). We have derived the necessary theoretical equa-
tions to find the sample sizes based on our commitment as our estimator t to be so
accurate that for a given positive proper fraction f , say, f = 0.1, or f = 0.2, etc.,
we want to maintain the absolute difference in between the estimate values and the
unknown fixed θ value to be less than or equal to fθ for many of the all possible
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samples, i.e. for (1−α)×100 cases, choosing a small positive value of α close to 0, say
as 0.1, 0.01, 0.05, etc. We also tried to follow Chaudhuri and Dutta (2019)’s approach
to use the unbiased variance estimator in case it is difficult for the variance expression
to have the closed form expression. But due to the frequently obtained high value
estimates of CV’s which are far away from the T values for commonly taken values of
f and α, instead of using that approach, we decide to find the range of n following
the Chebyshev’s inequality utilizing some comparison criteria. We have presented the
results of our numerical illustrations.

Based on the results of our numerical illustrations, it can be concluded that though in
general the sample sizes obtained for RR surveys are seen to be absurd in many cases,
the results for distinct units RRs based estimators are rather impressive. However we
see that for Mangat et al (1995)’s estimator based on the distinct units’ randomized
responses once, very large value of the device parameter p has some solution for n, but
also not within N , much exceeding N . But so large value of p may not be acceptable
for a respondent because of harming their privacy and at the same time the value
of n exceeding much of N together conclude the impractical result for conducting a
RR survey and to use Mangat et al (1995)’s estimator. Instead we see that many
admissible choices of p values are available to perform the RR survey with any sample
size within N and to use Chaudhuri et al. (2011)’s both the estimators of θ based
on the distinct units’ multiple randomized responses. So this result may be used to
choose the sample size in the real practical RR surveys scenario as per the available
budget of conducting the survey. This is the justification of this research.
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