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Abstract

This study introduces the concept of inverse exponentiation in formulating calibration weights in
stratified double sampling and proposes a more improved calibration estimator based on Koyuncu
and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration
estimator has been derived under large sample approximation. Calibration asymptotic optimum
estimator (CAOE) and its approximate variance estimator are derived for the proposed logarithmic
calibration estimator. Results of empirical study showed that the proposed logarithmic calibration
estimator (Y,,,,) performs better than the Koyuncu and Kadilar (2014) calibration estimator (¥;;,)
with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed
logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator (Y zzs)]
proved the robustness of the proposed logarithmic calibration estimator and by extension the
efficacy of inverse exponentiation in calibration weightings. Analysis and evaluation are
presented.

Keywords and Phrases: Calibration constraint, large sample approximation, logarithmic
estimator, optimality conditions, percentage relative efficiency.
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1. Introduction

The integration of supplementary information holds significant importance in constructing
efficient estimators for population parameter estimation and enhancing efficiency in diverse
sampling designs. Exploring the knowledge of the supplementary variables, several authors have
developed different estimation techniques for estimating the finite population mean of the study
variable; [Cochran (1977),Singh and Tailor (2003), Gupta and Shabbir (2008), Sharma and Tailor
(2010), Diana et al. (2011), Singh and Audu (2013), Shittu and Adepoju (2014), Lone and Tailor
(2015); Clement and Enang (2015), Clement (2016, 2017), Clement et al (2021), Inyang and
Clement (2023)] among others, have worked on the estimation of population parameters using
supplementary information.
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Calibration estimation extensively explores the use of supplementary information to adjust the
original design weights to improve the precision of survey estimates of population or
subpopulation parameters. The calibration weights are chosen to minimize a given distance
measure (or loss function) and these weights satisfy the constraints related supplementary variable
information. The concept of calibration estimation was introduced by Deville and Sarndal (1992)
and a wealth of research, featuring scholars like Wu and Sitter (2001), Arnab and Singh (2005),
Kim et al. (2007), Sarndal (2007), Kim and Park (2010), Rao et al. (2012), Clement et al. (2014),
Koyuncu and Kadilar (2016), Clement and Enang (2017), Clement (2021, 2022), Clement and
Inyang (2020, 2021), Enang and Clement (2020), has delved into calibration estimation.

Tracy et al. (2003) introduced the concept of calibration estimation to stratified double sampling
using multi-parametric calibration weightings. Multi-parametric calibration weightings is the
formulation of calibration constraints with respect to a given distance measure to obtain expression
of calibration weights using information from two or more parameters of the same supplementary
variable. Work in this aspect include among others, Tracy et al. (2003), Koyuncu and Kadilar
(2016), Clement (2018), Clement (2020) and Clement and Etukudoh (2023).

In the progression to improve calibration estimation, this paper based on Koyuncu and Kadilar
(2014) calibration estimator, introduces a new improved calibration estimator for population mean
in stratified double sampling with equal probability using the concept of inverse exponentiation.
The choice is obvious, because inverse exponentiation reduces both the non-response bias and the
sampling error, thereby increasing the efficiency of the proposed calibration estimator.

2. Sample Design and Procedure

In double sampling for stratification the population is stratified into H strata such that the h-th
stratum consists of N, units and ¥7_, N, = N, ¥f_,n, =n. From the N, units a preliminary
large sample of n;, units is drawn by the simple random sampling without replacement (SRSWOR)
and the supplementary character x;,; is measured only. A subsample of n,, is then selected from the
given preliminary large sample of n,, units by SRSWOR and both the study variable y,,; and the
supplementary variable x;; are measured.

; 1
np—1
respectively for the supplementary variable.

1 1 «n _ _ 1 @n
Zi:hl(xm‘ - xh)2: Yn = n_hzi=h1 Yhi, and
1

Similarly, let %, = — X2 xu;, Sy =
S, = _Z?:hl(yhi —y,)? denote the second phase sample means and variances for the

_ 1 ; . _ . .
Letx, = azl@l Xpi» SiZ = Z?:hl(xhi — Xp,), denote the first phase sample mean and variance

h np-1
np—1

supplementary variable and study variable respectively.
Let the relative errors be defined as follows:

ehy = (?) SO that J_/h = Yh(l + ehy)

_ ) so that X, = X, (1 + ep,q)

_I_ —_
e”lx = (xh)?h h) so that fh = Xh(l + eillxl)

2 2
_ (Shx=Shx
€hs = 52
hx

), so that sZ, = S2, (1 + eys)
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12 _¢2
e = (sh’;ﬁ hx), so that si2 = S, (1 + efs)
X

Let the expected values of the relative errors be defined as follows:
E(ehy) = E(ehx) = (ehs) = E(elllx) = E(ellls) =0
E(ehy) = YnCity E(ei) = YnCitx E(eis) = ¥nCis,
E(er) = YnCitx Eers) = vnCis,
E(ehyehx) = yhphyxChyChx! E(ehyehs) = yhphysChyChSI
E(ehyel;x) = yl;phyxchyChX! E(ehye};s) = V};physchychs:
E(ei,lxehx) = yI:LCI%xv E(ef’lsehs) = yf;Cf%s
E(e},lxehxs) = ]/f,lpthCh.XChS E(e;lsehx) = y};phxschxchs )
E(ei,lxei,ls) = yf;.pthCthhS ’
E(enxens) = YnPhxsChxChs:
’ 1 1 1 1 * ' 1 1
wherey, = (1= ) v = (o= ) ndvi = v = v = (5= 57)
and the parameters are defined wherever they appear as the following:
¥y, 1s the second phase sample stratum mean of the study variable
Y, is the second phase population stratum mean of the study variable
%y is the first phase sample stratum mean of the supplementary variable
Xy, is the second phase sample stratum mean of the supplementary variable
X, is the second phase population stratum mean of the supplementary variable
s, is the first phase sample stratum variance of the supplementary variable
si, is the second phase sample stratum variance of the supplementary variable
SZ, is the second phase population stratum variance of the supplementary variable
CZ, is the coefficient of variation of the supplementary variable
C#, is the coefficient of variation of the supplementary variable
Prxy 18 the correlation coefficient between the supplementary variable and the study variable.
Pnxs 1S the correlation coefficient between the mean and variance of the supplementary
variable.
Prys 1 the correlation coefficient between the mean of the study variable and variance of the
supplementary variable.

3. The Koyuncu and Kadilar (2014) calibration estimator

Motivated by Tracy et al. (2003), Koyuncu and Kadilar (2014) proposed the following calibration
estimator in stratified double sampling:

Yk*k = Zg=1 V. 1)
using the chi-square loss functions of the form:
2
_vH (va~wn)
L(l ‘Vhl Wh) - Zh:l Whan (2)

and subject to the calibration constraints defined by:
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Zlif=1 W, Xy = ZZI=1 Wh fl; (3)
Z;.II=1 ‘Vh Si%x = 221:1 Whp Shzx (4)
h=1V), = Zh=1 W ®)
obtained the calibration weights
Y, = W+ wpqp(A1 %, + ApaShy + A33) (6)

Substituting (6) in [(3), (4), (5)] respectively and solving the resulting system of equations gives
the values of the 4;;s.

On substituting the A;s in (6) and the resulting equation in (1); Koyuncu and Kadilar (2014)
obtained their calibration regression estimator as:

H H
Ve = Ve + Bras Z Wy (X, — %) + B2z Z wi (S5 = Shy) 7
h=1 h=1
where ¥, = YH_, wy, 7, is the Horvitz-Thompson-type estimator; B, ;; and By, ,, are coefficients

of regression and are given by
_ U22V13 — V12V23 _ V11V23 — V12V53
Bh,11 - 2 ) Bh,22 - 2
V11V22 — V12 Va2 = V12
where
— H =2 — H = 2 — H =5 — H 4
V11 = Yh=1Wh¥h, V12 = Xh=1 Wh¥h Shxr V13 = 2h=1 Wh¥nVn V22 = Xh=1Wh Shx
vy3 = 2H_ wysE, Vi, [See Koyuncu and Kadilar (2014) for detail]

3.1 Theoretical Variance Estimation

This section derives the estimator of variance for the Koyuncu and Kadilar (2014) calibration
estimator. Thus, expressing (7) in the relative error terms gives
H

(Ve — Y1 = Z Wh[Vaeny + BriiXnenx + Br2zSixens
h=1
—Bp11Xh€nx — Br22Sixens] (8)
Squaring both sides of (8) gives
H
Voo = V12 = )" wi [Voek, + B 1uXE (e + k)
h=1
+BP21,225i‘llx(ehzs_+ ers) + 2¥,Bp 11 Xnenyen, + Z)ZhBh,ZZSP%xehyehs
+2Bh,11Bh,22XhS}fx(ehicehs + fhxehs) - ZB%l,llXI%ehxehx
_ZBi,zzsﬁxehsehf - ZYhBthXhehyehx - ZYhBh,ZZSi%xehyehs
_ZBh,IIBh,ZZXhSi%x(ehxehs + ehxehs)] 9)
Taking expectation of both sides of (9) gives
H H
V[Yl;k] = Z W}% Yhz)/hci%y + ()’h - Vh) Z Wi% [Bﬁ,n)?ﬁcﬁx - ZYhBh,nXhPhyxChyChx

h=1 h=1
+B7 2257, Cs + 2By, 22 Y SiePhsy ChsCry — 2Bh 11Br,22 Y SivePrxs Chx Chs] (10)
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3.2 Optimality conditions

This section deduces the optimality conditions that would guarantee optimum performance of the
Koyuncu and Kadilar (2014) calibration estimator.

Setting — Wl _  and ‘2;”"" = 0 respectively gives:
h,11 h,22
Y CpyChy — B 55S? Cn, C
Bh,11 — hphyx hy“hx X gzzz hxPhxs Chxbns (11)
_ h%hx _
Y, CpyCrs — Bp 11X Cpn,.C
B, = nPrysChylhs = 2211 hPhxsChxChs (12)
hx“hs

Substituting (11) in (12) or vice verse, gives the optimum values of By, 1, (opt)
and By, 5, (opt) respectively as:
Yh Chy (phyx - physphxs)
_ X(hchx(l ~ Phxs) )
YhChy phys - phyxphxs
B2 (0pt) = (14)
2z Si%xchs(l - pizlxs)
Substituting the value of By 4;(opt) in (13) and By, 5, (opt) in (14) for By 44 and By, 5, in (7),
gives the Koyuncu and Kadilar (2014) calibration asymptotically optimum estimator (CAOE) for
population mean in stratified double sampling as:

Bp,11(opt) (13)

17h Chy (phyx physphxs) Z w (x
h\Ah

v = Z WLy + =
fde.opt h=1 nYn XhChx(1 phxs

7h Chy (phys phyxphxs) z
Spy — S 15
thChs(l phxs h( e hx) ( )

Similarly, substituting the value of Byq1(opt) in (13) and By, ,,(opt) in (14) for B, ,; and
B 5, in (10), gives the variance of Koyuncu and Kadilar (2014) calibration asymptotically
optimum estimator (CAOE) Yy, . [Or minimum variance of Yy, ] as:

Vopt [Yk*k] = Z%:l Wr%yh?hzci%y + Z;I:l Wﬁyhzci%y (1 - pizzxs)_zy;i X

2 2 2

[(phyx - physphxs) + (phsy - phxsphxy) - 2(1 - pxs) X
[phxy(phxy - phxsphsy) + phsy(phsy - phxsphxy)] +
2Pnxs (phxy - phxsphsy)(phsy - phxsphxy)] (16)

4. The Suggested estimator

The objective of this study is to introduce the concept of inverse exponentiation in formulating
calibration constraints. Therefore, motivated by Koyuncu and Kadillar (2014), a new calibration
estimator of population mean in stratified double sampling is suggested as:

Yr:ew = Zgzl Yrlogyn 17)
where ¢,, are calibration weights, using the chi-square loss functions

—yH  (on-wn)?
L(op, wp) = Xh=1 Whan (18)

and subject to the following calibration constraints
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Yi=19nlogTy, = Xi-y wy log%y, (19)
Yh=10n logsh, = L=y wn logsy, (20)
Yho10n = Xh=1 W (21)

The Lagrange function is given by

-wp)? * = =
A= 25:1% — 21 ( Zh=1 @plogEp, — Xiiey wylog Xpy)

22 (221:1 @nlog iy — Thz1 W logsf,lzx ) — 2233 (THz1 @ — Zh=1 Wh) (22)
Minimizing the chi-square loss functions (18) subject to the calibration constraints [(19), (20),
(21)] gives the calibration weights for stratified double sampling as follows:

On = Wy +Wpqn (A1 %ne + A3z Siy + A33) (23)
Substituting (23) into [(19), (20), (21)] respectively gives the following system of equations:

W1 Wi Wia] |11 M11
W5 Wip W3] |45, = Mzz (24)
W14 W13 Wi1]|A%4 M33

Solving the system of equations in (24) for Aj;s gives
M1 (011012 — @F3) + Mpp (W14015 — W11016)

*

11 —

2 2 2
(011012016 — W1 W], — W11 W5 — Wi3W16 + 2W13W14W15)
2
. Mz (w1016 — @T4) — M1 (W11 W15 — W13W14)
22 = 2 2 2
(011012016 — W1 W], — W11 W5 — Wi3W16 + 2W13W14W15)
M; 1 (w13015 — W1,W14) + My (W14W15 — W13W16)

*
33 —

(011012016 — W1 07, — W11WF5 — Wi3W16 + 20 3W14W15)
Where wy; = Y wuqp W1z = Yoy Wnqn (logshy,)? W13 = Nhey Wnaplogse, wi4=
Yhe1 Waqnlog®y, wis = Y- wpqn(logxy)(logs)
w16 = Lh=1 Wnqn (0g%p)?* wis = Xh—1 Wnn (lngh)zr
My, = Zg=1 wy(logxy, —logx,) My, = Zg=1wh(1095hzx - lOQSI%x)! Mz; =0
Substituting the Aj;s in (23) and the resulting equation in (17) while setting g, = 1, gives the

proposed logarithmic calibration regression estimator for population mean in stratified double
sampling as follows:

View = =1 wr(l0g¥s) + Bj 11 Zh=1 wp(logxy, — log#y) +
By 22 Xhi=1Wh(logsi, — logsiy) (25)
where By, 1, and By, ,, are the coefficients of regression and are given by:
Aga(a10q; — afs3) — Ass(@11Q15 — @y3014) + Age (13045 — a12044)
(@11012016 — @y20f, — ay1afs — f"213a16 + 2a13a14Q15)
B:,, = Aug(@y3004 — A1 @15) — Ass(a11a16 — afy) + Age (@145 — Ay3016)
' (@11 @12016 — @207, — @11 Qfs — Af3aty6 + 2013014045)
Where a,; = YWy, @1z = =y Wy (logsiy)? ays = Xh—q whlogsiy
Qg = Y=y Wplogxy, ais = Xhoy wy(log®,)(logsh) ae = Xhoy wy (log%,)?
Ay = Xfoy wi(log®p) (L0gyn)- Ass = Ti—y wa(logsi) (LogFn), Ags = =1 WalogFn

Bhll
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4.1 Theoretical Variance Estimation

This section derives the estimator of variance for the proposed logarithmic calibration estimator
using the large sample approximation (LASAP) method.

Yoew = ZZI=1 wylogyy + 32,11 ZZI=1 wy (logxy, — logx,) + B;:,zz erz=1 Wh(l(’gsf?x - lOgszlx)

— _ " = N 'Zx
Yoew = Xhe1 Wplogyy + Bj 11 Xho1 Wi (10.9 %) + Bh s Zh=1Wh (109 %)

- = . 1+ey,
Ynew = Zﬁlﬂ WhIOQYh (1 + ehy) + Bh,ll Zﬁ:l Wthg ( h )

1+epyx
* H 1+8}’15
+ Bp 2z Xh=1Wn < )

1+6h5
Y‘r:ew = ZZI=1 WhIOQYh + Zg=1 wylog (1 + ehy) + Br*l,n erz=1 WhIOQ(l + el;x)(l + ehx)_1
+Bh,22 Th=1 Whl‘)g(l + e;ls) (1 +epy)
View = Zh_ i whlog¥, + XH_  wylog (1 + ehy) + By 1y Xh_ywilog(1 + ey)
_B;{,n Zg=1 wplog(1 +ep,) + Bi*l,zz Zg=1 WhIOQ(l + e’;.S) - B;:,zz erz=1 wplog(1 + eys)

2 3 2 '3
— — e e e e
7 12 H hy hy * H ! hy hy
(new = 1) [Zh=1wh (ehy BT ) * Bt Znm W ("hx BT )

* H eizlx ei%x * H ! ef?s ei?s
—Bny1 Xh=1Wn (enx =5+ 55— ) ¥ Bhoa Xh=a Wn(eps — 55+ 57 — -

2! 3!

* ’ 25 e3s
=By 2 25:1 Whp (ehx _QZL!"'%_ )] (26)

Squaring both sides of (26) and retaining terms to the first degree of approximation gives:
y* v * 4 2 * ' 2
[Vrew — Y]* = ZZI=1 Wr% [ef%y + Bh?ll(ehx - ehx) + Bh?zz(ehs - ehs)
+28;,1lehy(ef;x - ehx) + ZBZ,zzehy(e;ls - ehs)

+2By, 11Br22B1 11Bi 11 (€nx — €nx) (€ns — €ns)] (27)
Taking expectation of both sides of (27) gives

f/\'[Y‘r:ew] = Zgzl Wi% [yhcffy + (yh - yi’l)[B;fnCI%x + BZ?zz)les
_ZBZ,llphyxChyChx - ZB;;,ZzphysChyChs + ZB;,llBZ,Zzphstthhs]] (28)

4.2 Optimality conditions

This section deduced the optimality conditions that would guarantee optimum performance of the
proposed logarithmic calibration estimator on satisfaction.

Setting Wlhiew] _ ) ang M = 0 in (28) respectively gives:
9Bp 11 th,ZZ
Cy, — B, C
B;L_n — phyx hy Chh,zzphxs hs (29)
x
Cy, — B, C
B;L_zz — phyx hy Chh,llphxs hx (30)
s

Substituting (29) in (30) or vice verse, gives the optimum values of By, 1, (opt)
and By, ,,(opt) respectively as:
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Chy (pxy - .stpsy)
Chx(l - pizlxs)
Ch (psy - pxspxy)

B; ,,(opt) = —% 32
h,22 Chs(l _ p}%xs) ( )
Substituting the value of By ;,(opt) in (31) and By, ,,(opt) in (32) for By ,; and By, 5, in (25),
gives the proposed logarithmic calibration asymptotically optimum estimator (CAOE) for

population mean in stratified double sampling as:
Chy(ny‘szPsy)

ChX(l_pizlxs)
Chy(Psy—PxsPxy) ,
Ll s wi(logsi — logsi) (33)
Similarly, substituting the value of By, 1 (opt) in (31) and B;, »,(opt) in (32) for By ,, and By ;4
in (28), gives the variance of the proposed logarithmic calibration asymptotically optimum
estimator (CAOE) Yyew ope [OF Minimum variance of Y., ] as:

B 11 (0pt) = (€29)

7r;few,opt = Zﬁ:l Whlo.gyh + ZZI=1 Wh(lo.gf;z - lngh)

~ Sy _ « 2
Vopt [Ynew] = ﬁ:l W}% C}%y(l - P;%s) z {yh(l - p§S)2 + Yn [(phxy - phxsphsy)
2
+(phsy - phxsphxy) - (1 - P;%s) [zphxy(phxy - phxsphsy)
+2phsy(phsy - phxsphxy)]+2phxs(phxy - phxsphsy)(phsy - phxsphxy)} (34)

5. Empirical study

The relative performances of the proposed logarithmic calibration estimator over members of its
class in stratified double sampling was determined using the data set in Table 1 adapted from
Clement (2018). Two measuring criteria; variance and percent relative efficiency (PRE) were used
to compare the performance of each estimator.

The percent relative efficiency (PRE) of an estimator ¢ with respect to the conventional
regression estimator in stratified double sampling Y. is defined by:
_ V)
V()

The variance of the conventional regression estimator of population mean for double sampling for
stratification defined by Cochran (1977) is given by:

H o2 2 2 ¢2 2
V() = Z {Shy(l Piay) | PhiyShy _ Sﬂ} = 4137.2834

— ny ny Nh
Vopt (Yer) = 3530.17655
Vopt (Vew) = 2642.2146
The percent relative efficiency of the conventional regression estimator in stratified double
sampling ¥;:, Koyuncu and Kadilar (2014) calibration regression estimator in stratified double
sampling (Y;,) and the proposed logarithmic calibration regression estimator in stratified double
sampling (¥,5.,,) with respect to (¥;;:) were calculated and presented in Table 2.

X 100

PRE[¢, Y]
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Table 1: Data Statistics [Clement (2018)]

99

Parameter Stratum 1 Stratum 2 Stratum 3

N, 52 76 82

n, 15 20 28

ny 4 5 7

X 6.813 10.12 7.967

Y 417.33 503.375 340.00
5’2”( 15.9712 132.66 38.438
S,fy 74775.467 259113.70 65885.6
52 1007.6547 5709.1629 1404.71

h’,‘y 0.0474 0.0368 0.0235
Yh 0.2308 0.1868 0.1307
Vh 0.703 0.738 0.805
Phyx 0.802 0.761 0.826
Phys 0.86 0.764 0.726
Pnyp 0.714 0.812 0.742
Phxs 0.82 0.803 0.782
Phxp 0.836 0.846 0.812
Phsp
Table 2: Performance of estimators from empirical study
Estimator Variance PRE (¢, Y;))
Y 4137.2834 100
Vi 3530.1765 117.1976
AR 2642.2146 158.4763

6. Simulation Study

This section compares the performance of the Koyuncu and Kadilar (2014) calibration estimator
(Yy) and the proposed logarithmic calibration estimator (¥, ) with a global estimator [The
Generalized Regression (GREG) estimator (Yoggq)]

For a given estimator (say) Y;*, let Z*(m) be the estimate of ¥;* in the m-th simulation run; m =1,
2... M (=4,500). Four performance criteria namely; Relative Root Mean Square Error (RRMSE),
Percent Relative Efficiency (PRE), Average Length of Confidence Interval (AL) and Coverage
Probability (CP) were used to compare the performance of the Koyuncu and Kadilar (2014)
calibration estimator (Y;,) and the proposed logarithmic calibration estimator (Y, ) with the
GREG-estimator (Y;zg;). Each measuring criterion is calculated using the following mathematical
expressions:

5+m)_37\ 2
(i) RRMSE(?L-*) - \/i M (Yi %Y’)
where ¥ = %Z%:l 7™ and 7™ is the estimated total based on sample m and
M is the total number of samples drawn for the simulation.
(i) The percent relative efficiency (PRE) of an estimator 171-* with respect to the
Generalized Regression (GREG) estimator (Yggg) is defined by:

i RRMSE (YérEg)
PRE [V}, Y¢rec] = WE%T)G X100
L
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(i) CP(?[‘) _ %Z%:l(?;(m) < ?i*(m) < ?;(m))
where YL*("‘)is the lower confidence limit and Y;(’") is the upper confidence limit.

For each estimator of ¥;*, a 95% Confidence Interval (?L*(m),?;(m)) is constructed,
where,

?L*(m) = }%i*(m) 196 ’V(}ei*(m)) , ?;(m) _ 1?i*(m) 1196 ’V(?i*(m))

2y 2y =\2
and V(Yl (m)) — ﬁ %:1 Yl (m) _ YL* )

(iv) ALCI(Y;) = %zmzl(}/g("‘) - YL*('”)).

Table 3: Performance of estimators from simulation study

Estimators| RRMSE | PRE [V, Virec] | ALCI cpP
Viree 182.7423 100.0000 1668.72 0.7324
a8 168.6332 108.3667 1464.68 0.6446
A 123.4642 148.0124 1034.42 0.5278

7. Results and Discussion

Numerical results for the percent relative efficiency (PRES) in Table 2 reveals that the proposed
logarithmic calibration estimator (¥,5,,,) has 58 percent gains in efficiency while the Koyuncu and
Kadilar (2014) calibration estimator (¥;;,) has 17 percent gains in efficiency; this shows that the
proposed logarithmic calibration estimator (¥;;,,,) is 41 percent more efficient than the Koyuncu
and Kadilar (2014) calibration estimator(¥;). This means that in using the proposed logarithmic
calibration estimator (¥,5,,,) one will have 41 percent efficiency gain over the Koyuncu and
Kadilar (2014) calibration estimator (V).

Similarly, the simulation study for the comparison of performance of estimators reveals that the
proposed logarithmic calibration estimator (¥;,,,) has 48 percent gains in efficiency while the
Koyuncu and Kadilar (2014) calibration estimator (¥;;) has 8 percent gains in efficiency; this
shows that the proposed logarithmic calibration estimator (Y,,,) is 40 percent more efficient than
the Koyuncu and Kadilar (2014) calibration estimator (Yy;) with respect to the Generalized
Regression (GREG) estimator (Y zz¢) as shown in the percent relative efficiency (PRES) in Table
3 This means that in using the proposed logarithmic calibration estimator (¥,,,), one will have 40
percent efficiency gains over the Koyuncu and Kadilar (2014) calibration estimator (¥;). The
simulation study also showed that the Average Length of Confidence Interval (ALCI) and
Coverage Probability (CP) for the proposed logarithmic calibration estimator are significantly
smaller than that of Koyuncu and Kadilar (2014) calibration estimator and GREG-estimator. These
results prove the robustness of the proposed logarithmic calibration estimator and by extension
inverse exponentiation.

8. Conclusion

This study introduces the concept of inverse exponentiation to formulate new calibration weights
in stratified double sampling and proposes a more improved calibration estimator based on
Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed calibration
estimator has been derived under large sample approximation. Calibration asymptotic optimum
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estimator (CAOE) and its approximate variance estimator are derived for the proposed calibration
estimator and existing calibration estimators in stratified double sampling. Results of empirical
and simulation studies conducted showed that the proposed logarithmic calibration
estimator (¥,.,,) is more efficient than both the Koyuncu and Kadilar (2014) calibration
estimator (Y;;) and the Generalized Regression (GREG) estimator (Y zgs)-

It is observed that the proposed logarithmic calibration estimator (Y., ) is very attractive and
should be preferred in practice as it provides consistent and more precise parameter estimates than
existing calibration estimators in stratified double sampling.
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