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Abstract 
 

In the present study, an effort has been made to construct D-efficient covariate designs in BIB 

design (v, b, r, k and λ) set-up when either one of k and r is odd or both k and r are odd numbers 

and Hadamard matrix of order k i.e., Hk does not exist. For all the developed D-efficient designs, 

the covariates are mutually orthogonal to each other. The methods of construction of D-efficient 

covariate designs are developed with the help of a new matrix viz., Special Array (Das et. al., 

2020). In this article, the series of developed D-efficient covariate designs are not available in the 

existing literature. 
 

Keywords and Phrases: Hadamard Matrix, Optimal Covariate Designs (OCDs), D-efficiency 

and Kronecker product. 
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1. Introduction 
 

Optimal designs for covariate models are of relatively recent research interest but the concept was 

firstly introduced by Lopes Troya (1982a, 1982b). After a long gap, Das et. al. (2003) 

reinvestigated the topic and constructed Optimum Covariate Designs (OCDs) using Mutually 

Orthogonal Latin Squares (MOLS) and Hadamard matrices in the design set-up of RCBD and 

some series of BIBD. Rao et al. (2003) also revisited the problem in CRD and RCBD set-ups. 

They identified that the solutions of construction of OCDs by using Mixed Orthogonal Arrays 

(MOAs) and thereby giving further insights and some new solutions. Dutta (2004, 2009) and Dutta 

et al. (2007, 2009a, 2009b, 2010a) developed OCDs to different design set-ups. Dey and Mukerjee 

(2006) and Dutta et al. (2010b, 2014) developed some D-optimal covariate designs for estimation 

of regression coefficients in incomplete block design set-up, when global optimal designs do not 

exist. Das et. al. (2015) published an excellent book on ‘Optimal Covariate Designs’ covering 

developments in the topic of optimum covariates for different design set-ups. Furthermore, Das et 

al. (2020) has reported some new series of universal/global optimal covariate designs in CRD and 
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RCBD set-ups without the existence of Hadamard matrix of order v or b. Some new series of D-

optimal covariate designs in CRD and RCBD set-ups were also reported by Das et. al. (2021). The 

main focus of the above works was aimed at development of optimal/most efficient estimation of 

covariates parameters of the ANCOVA model accommodating maximum number of covariates in 

optimal manners in different design settings. Optimality refers to attaining the least possible value 

of individual variances simultaneously for all the estimators of the covariate parameters. In the 

present study, efforts are given to make solutions to the limitations of the research works so far 

done in the topic. 
 

2. Special Array (SA); Definition, Properties and Application (Das et al., 2020) 
 

2.1 Definition: A square matrix with elements 1, -1 and 0 of order h with r ( ≥ 1) number of rows 

(and columns) with all elements 0, whose all the distinct row or column vectors except r rows (or 

columns) are mutually orthogonal is referred to as Special Array (SA) of order h. In SA, each row 

or column sum is zero except the first row or column. The simplest examples, one for order 3 and 

two for order 5 are given below:  

 

1 0  1

0 0  0

1 0 -1

     r = 1

 
 
 
 
 

,

1  0  0  0  1

0  0  0  0  0

0  0  0  0  0

0  0  0  0  0

1  0  0  0 -1

      r = 3

 
 
 
 
 
 
 
 

 and 

1  1  0  1  1

1 -1  0 -1  1

0  0  0  0  0

1  1  0 -1 -1

1 -1  0  1 -1

      r = 1

 
 
 
 
 
 
 
 

 

2.2 Properties:  

Let the Special Array (SA) of order h be denoted as 
*

hH , then 

1) det(Hh*)=0; when r ≥ 1and when r = 0, it becomes a Hadamard Matrix. 

2) * *T *T *

h h h hH H H H=  

3) Let 
*

1H  and 
*

2H  be two SA of order h1 and h2, respectively. Then the Kronecker product of

*

1H  and 
*

2H is also a SA of order h1h2. For example, 
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1  1  0  1  1  0  0  0  0  0  1  1  0  1  1

1 -1  0 -1  1  0  0  0  0  0  1 -1  0 -1  1

0  0  0 

1  1  0  1  1

1 0  1 1 -1  0 -1  1

0 0  0   0  0  0  0  0

1 0 -1 1  1  0 -1 -1

1 -1  0  1 -1

 
 

   
    =    
   

 
 

 0  0  0  0  0  0  0  0  0  0  0  0

1  1  0 -1 -1  0  0  0  0  0  1  1  0 -1 -1

1 -1  0  1 -1  0  0  0  0  0  1 -1  0  1 -1

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

1  1  0  1  1  0  0  0  0  0 -1 -1  0 -1 -1

1 -1  0 -1  1  0  0  0  0  0 -1  1  0  1 -1

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

1  1  0 -1 -1  0  0  0  0  0 -1 -1  0  1  1

1 -1  0  1 -1  0  0  0  0  0 -1  1  0 -1  1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

2.3 Application: Special Array is constructed from Hadamard matrix with r rows (and columns) 

with all elements zero in the middle is used to find out the optimum (Global or D) as well as D-

efficient number of covariates in CRD, RBD and BIBD set-up. 
 

3. D-optimal as well as D-efficient covariates in BIB design set-up 
 

Consider a BIBD (v, b, r, k, λ) set-up which can be written as 
 

(Y, µ1+X1τ+X2β+Zγ, σ2I)                                                                                                            (3.1) 
 

where, τ, β represent the vectors of treatment and block effects respectively and X1
nxv, X2

nxb are 

the corresponding design matrices for treatment and block. Now, the problem is the estimation of 

the covariate parameters in γ optimally. By appropriate selection of the values of the covariates zij 

(the [i, j]th element of Z), one can optimize the estimation of the parameters in γ while maintaining 

the properties of the design with regard to the treatment and block. Here, optimality refers to 

attaining the least possible value σ2/n of individual variances for all the estimators of the 

parameters in γ simultaneously. Such a design is termed as globally optimal. 
 

Based on the model (3.1), it is evident that for the estimation of the covariate effects orthogonal to 

the treatment and block effect contrasts, we must have 
 

Z΄X1=0, Z΄X2=0                                           (3.2) 
 

and for most efficient estimation of the regression parameters, we must have 
 

Z΄Z=nIc                                                         (3.3) 
 

Dutta et. al. (2010) considered D-optimal design when n=2 (mod 4) in BIBD subject to the 

condition 3.2. Here, we have taken the situations or conditions (i) n = 0 (mod 4) with Z΄X1= 0 and 
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Z΄X2 ≠ 0 and (ii) n = 0 (mod 4) with Z΄X1≠ 0 and Z΄X2 ≠ 0. In both the cases, simultaneous 

estimation of ANOVA parameters and γ-parameters are not possible to estimate orthogonally 

and/or most efficiently. Here, the D-optimality criterion may be considered to give an efficient 

allocation of treatments and covariates in BIBD set-up. Based on the model (3.1), a block design 

for given b (such that Hb exist) and v, the reduced normal equation for estimation of γ is given by 

following Das et. al. (2015):  

 

(Z΄QZ)γ= Z΄Qy 

 ̂ = (Z΄QZ)-1Z΄Qy 
 

Where, Q = (I – X(X΄X)-X΄), X = (X1, X2) 
 

Hence, the information matrix for γ is given by 
 

I(γ) = Z΄QZ 

or, I(γ) = Z΄(I – X(X΄X)-X΄)Z 

or, I(γ) = Z΄Z – ZʹX(X΄X)-X΄Z 

or, det(I(γ)) = det(Z΄Z – ZʹX(X΄X)-X΄Z) 

Since Q is non-negative definite, it follows that 
 

Z΄QZ ≤ Z΄Z (in Lowener order sense; Pukelsheim 1993) and equality comes when Z΄X1 = 0 and 

Z΄X2 = 0. 
 

But in the present situations (i) and (ii), it follows that  
 

Z΄QZ< Z΄Z. 
 

Now, the problem is that of selecting Z-matrix with 
( )t

ijz ≤ 1 satisfying the conditions either (i) or 

(ii), such that the covariate design will be either D-efficient or D-optimal, i.e., det(I(γ)) or det(Z΄Z 

– ZʹX(X΄X)-X΄Z) should be maximum when ZZ, Z = {Z: 
( ) [ 1,  1]  ,  t

ijz i j −  }. So, the 

contribution from Z΄Z should be maximum and contribution from the part of Z΄X(X΄X)-X΄Z 

should be minimum. 
 

3.1 Conditions for D-efficiency 
 

We have already observed that when n=0 (mod 4) with either Z΄X1= 0 and Z΄X2 ≠ 0 or Z΄X1≠ 0 

and Z΄X2 ≠ 0, it is impossible to estimate γ-components most efficiently in the sense of attaining 

the lower bound σ2/n to the variance of the estimated covariate parameters. Thus, in both the cases, 

the first problem is that of choosing a matrix Znxc = (
( )t

ijz ) with 
( ) [ 1,  1]  ,  t

ijz i j −  such that the 

contribution of Z΄Z is maximum and secondly, the contribution from the part of Z΄X(X΄X)-X΄Z 

should be minimum subject to the condition either (i) or (ii). A necessary condition for 

maximization of det(Z΄Z) where ZZ, is that 
( ) 1  ,  ,  t

ijz i j t=   ( Lemma 4.4.1 of Das et. al., 

2015). Based on the necessary condition, we can restrict to the class Z* = {Z: 
( ) 1  ,  ,  t

ijz i j t=   } for finding D-efficient design. 

 

Conjecture 3.1.1: A design with covariate matrix Z*  Z* is D-efficient in the sense of 

maximizing det(Z΄Z) and det(I(γ)) with the contribution of Z΄Z is maximum and the contribution 

from the part of Z΄X(X΄X)-X΄Z should be minimum subject to the conditions either (i) or (ii), if it 
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satisfies Z*΄Z* = nIc and alm = ±1 and alg = ±1, where alm and alg are the elements of Z΄X1 and 

Z΄X2 respectively, l = 1,2,...,c; m = 1,2,...,v and g = 1,2,...,b.   
 

Proof: Based on the necessary condition, we can restrict to the class Z* for maximization of 

det(Z΄Z). For any ZZ*, we can write 

det(Z΄Z) = det

12 1

12 2

1 2

n   s  . . . s

s  n   . . . s

.      .     .    .

.      .     .    .

.      .     .    .

s   s  . . . n

c

c

c c

 
 
 
 
 
 
 
 
 
 

 

 

where, sttʹ = 
( ) ( )t t

ij ij

i j

z z


 , t ≠ tʹ = 1, 2, . . . , c. The det(Z΄Z) will be maximum whenever it is 

possible to construct Z΄Z = nIc i.e., the covariates are mutually orthogonal to each other. So, all 

off-diagonal elements of Z΄Z can be zero. As the elements of Z΄X1 and Z΄X2 will be either +1 or -

1 depending on the conditions (i) and (ii), the contribution from the part of Z΄X(X΄X)-X΄Z will be 

minimum. Hence, the statement in the above conjecture is proved.  
 

Now, we can represent any column of Z* in the form of a matrix U of order vxb corresponding to 

the incidence matrix of the block design. 
 

Based on the conditions (i) and (ii) and Z*΄Z* = nIc, thus, in terms of U matrix, the conditions 

reduce to: 
 

C1*: Each U-matrix has all row-sums equal to either zero or ±1 depending on the conditions (i) 

and (ii) respectively; 
 

C2*: Each U-matrix has all column-sums equal to either +1 or -1; 
 

C3*: The grand total of all the entries in the Hadamard product of any two distinct U-matrices 

reduces to zero. 
 

3.2 The method of construction for D-efficient U-matrix when Hk-1 exists 
 

For construction of D-efficient U matrices of order vxb from a BIBD (v, b, r, k, λ) where r (even or 

odd number) and k (always odd number) and Hk do not exist, we follow the steps given below. 
 

Step 1. Construct the BIB design D (v, b, r, k, λ). 
 

Step 2. Construct the incidence matrix (N) of order vxb from the design D. 
 

Step 3. Let us consider a Hadamard matrix of order b, Hb. 
 

Hb= (1, h1, h2,…, hb-1) 
 

Step 4. Let us construct a Special Array Hk* of order k from Hk-1 with one row and column with 

all zero elements in middle, i.e., (1*, h1*, h2*,…,h(k-1)/2-1*,0, h(k-1)/2*,…, hk-2*). 
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*

1...  1 0  1...1

........  0 ........

........  0 ........

......... 0 ........

1... -1 0 -1...1

H 0...  0 0  0...0

1...  1 0 -1...-1

........  0 ........

........  0 ........

........  0 ........

1... -1 0  

k =

1...-1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Step 5. Using Hk*and Hb, by Kronecker product of these two matrices, we get (k-2) sets of (b-1) 

U* matrices of order kxb (without consider the first column and one column with all zeros). In 

each of the U* matrix there are one row with all elements zero in the middle and all the U* 

matrices are mutually orthogonal to each other. 
 

* *

i jU h h'  ,  denotes the Kronecker product=    

where i=1,2,…,(k-2) and j=1,2,…,(b-1). 
 

Step 6. In each of (k-2) sets, let us replace the row with all zero elements of U* matrix by (j+1)th 

row of Hb. In that way, we get (k-2) sets of (b-1) mutually orthogonal U** matrices of order kxb. 

All the U** matrix has all row-sums equal to zero and all column-sums equal to either +1 or -1.  
 

Step 7. The non-zero elements of the incidence matrix (N) are replaced by the elements (+1 or -1) 

of each of the U** matrix from ith set column wise. Thus, we get (b-1) U*** matrix of order vxb. 

It has been observed that the column sum of the U*** matrix is always equal to either +1 or -1. 

But, the row totals of the U*** matrices are must be either zero or ±1 (it may not be true for all 

U*** matrices) depending on r (even or odd). If the row totals are either zero or ±1 is true for all 

U*** matrices depending on r (even or odd), we may get directly atmost (b-1) U matrices of order 

vxb satisfying the conditions C1*-C3* simultaneously for D-efficiency from U*** matrices. On the 

other hand, when it is not true for all U*** matrices i.e., some or all row totals has been violated in 

some or all U*** matrices, to construct D-efficient U-matrix of order vxb, the elements of non-

zero row sums or the elements of row sums neither +1 nor -1 depending on r (even or odd) of 

U*** matrices has been rearranged column wise by trial and error method such that the resulting U 

matrices satisfying the conditions C1*-C3* simultaneously for D-efficiency. So, we may get atmost 

(b-1) U matrix of order vxb depending on U*** matrices. 
 

For easy understanding of the above steps, the following example will be useful. 
 

Example 3.2.1: Let us consider a BIBD with parameters; v = 4, b = 8, r = 6, k = 3 and λ = 4. The 

construction of D-optimum U-matrix of order 4x8 is the following: 
 



 

 

 

 

 

 

 

Majumder, Das, Dutta and Nishad: New Series of D-efficient Covariate…                      21 

 

 

Step 1. Lay out of the BIBD (v = 4, b = 8, r = 6, k = 3 and λ = 4). 

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6  Blk 7 Blk 8 

1 2 1 1 1 2 1 1 

2 3 3 2 2 3 3 2 

3 4 4 4 3 4 4 4 
 

Step 2. Construction of the incidence matrix (N) of order 4x8 from the above design is 

 

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1
N = 

1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1

 
 
 
 
 
 

 

 

Step 3. Let us consider a Hadamard matrix of order 8, H8.  

 

8 1 2 3 4 5 6 7

1  1  1  1  1  1  1  1

1 -1  1 -1  1 -1  1 -1

1  1 -1 -1  1  1 -1 -1

1 -1 -1  1  1 -1 -1  1
H  = (1, h , h , h , h , h , h , h ) = 

1  1  1  1 -1 -1 -1 -1

1 -1  1 -1 -1  1 -1  1

1  1 -1 -1 -1 -1  1  1

1 -1 -1  1 -1  1  1 -1

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Step 4. Let us construct a Special Array H3* from H2 with one row and column with all zero 

elements in middle. 
 

*

3

1 0 1

0 0 0

1 0

H  = 

1

 



 −






 

 

Step 5. Using H3* and H8, by Kronecker product of these two matrices, we get 7U* matrices of 

order 3x8 (without consider the first column and one column with all zeros). In each of the U* 

matrix there are one row with all elements zero in the middle and all the U* matrices are mutually 

orthogonal to each other. The U1* matrix is presented here.  
 

( )* *

1 1 1

 1

U h h'  0 1 -1 1 -1 1 -1 1 -1

-1 

 
 

=  = 
 
 
 
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 1 -1  1 -1  1 -1  1 -1

 0  0  0  0  0  0  0  0

-1  1 -1  1 -1  1 -1  1

 
 

=
 
 
 

 

 

 

Similarly, we can easily construct the others. 
 

Step 6. Let the zero elements of U* matrix be replaced by (j+1)th row of H8, where j = 1, 2,...,7. In 

that way, 7 mutually orthogonal U** matrices of order 3x8 be constructed. All the U** matrix has 

all row-sums equal to zero and all column-sums equal to either +1 or -1. Here, the U1** matrix is 

given below: 

**

1

 1 -1  1 -1  1 -1  1 -1

U  1 -1  1 -1  1 -1  1 -1

-1  1 -1  1 -1  1 -1  1

 
 

=
 
 
 

 

Similarly, the others be easily constructed. 
 

Step 7. The non-zero elements of the incidence matrix (N) are replaced by the elements (+1 or -1) 

of each of the U** matrix column wise. Thus, we get 7U*** matrix of order 4x8. It has been 

observed that the column sum of the U*** matrix is always equal to either +1 or -1. But, in this 

case, the row totals of the U*** matrices are must be zero as r = 6. In this case, we get directly 4U 

matrices of order 4x8 from U*** matrices satisfying the conditions C1*-C3* simultaneously for D-

optimality or D- efficiency covariate designs. The desired 4U matrices are given below: 

***

1 1

 1  0  1  1 -1  0 -1 -1

 1  1  0  1 -1 -1  0 -1
U  =  = U

-1  1  1  0  1 -1 -1  0

 0 -1 -1 -1  0  1  1  1

 
 
 
 
 
   

***

2 2

 1  0  1 -1 -1  0 -1  1

 1 -1  0 -1 -1  1  0  1
U  =  = U

-1 -1  1  0  1  1 -1  0

 0  1 -1  1  0 -1  1 -1

 
 
 
 
 
   

***

3 3

 1  0 -1 -1 -1  0  1  1

 1  1  0 -1 -1 -1  0  1
U  =  = U

-1  1 -1  0  1 -1  1  0

 0 -1  1  1  0  1 -1 -1

 
 
 
 
 
   
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***

4 4

 1  0 -1  1 -1  0  1 -1

 1 -1  0  1 -1  1  0 -1
U  =  = U

-1 -1 -1  0  1  1  1  0

 0  1  1 -1  0 -1 -1  1

 
 
 
 
 
 

 

In this example, it has been verified that Z΄X1=0 and Z΄X2 ≠ 0 as r even and k odd number, ZʹZ = 

nIc, Z΄QZ < Z΄Z; where Q = (I – X(X΄X)-X΄), X = (X1, X2), which gives the set of four covariates 

which are orthogonal to each other. The determinant value of I(γ) of the above design has been 

compared with the Determinant value of global optimal value of the above design assuming that 

Z΄QZ = Z΄Z for evaluating the efficiency value of the design. In this case, X1, X2 and Z are the 

following: 
 

1 2

1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1
X = , X =

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1































 1  1  1  1

 1  1  1  1

-1 -1 -1 -1

 1 -1  1 -1

 1 -1  1 -1

-1  1 -1  1

 1  1 -1 -1

 1  1 -1 -1

-1 -1  1  1

 1 -1 -1  1

 1 -1 -1  1

-1  1  1 -1
,  Z=

-1 -1 -1 -1

-1 -1 -1 -1

 1  1  1  1

-1  1 -1  1

-1  1 -1  1

 1 -1  1 -1

-1 -1





























 
 
 
 
 
 
 
 
 
 



 1  1

-1 -1  1  1

 1  1 -1 -1

-1  1  1 -1

-1  1  1 -1

 1 -1 -1  1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Now, we can easily find out Z΄X1, Z΄X2 and ZʹZ. These are given below: 

1 2

0 0 0 0 1  1  1  1 -1 -1 -1 -1

0 0 0 0 1 -1  1 -1 -1  1 -1  1
Z X ,  Z X

0 0 0 0 1  1 -1 -1 -1 -1  1  1

0 0 0 0 1 -1 -1  1 -1  1  1 -1

   
   
    = =
   
   
     
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24 0 0 0

0 24 0 0
Z Z=

0 0 24 0

0 0 0 24

 
 
 
 
 
 

 

 

So, the information matrix for γ is I(γ) = Z΄QZ= Z΄Z – ZʹX(X΄X)-X΄Z = 
 

21.3333336                0               -5.55112E-17             0

        0                    21.3333336               0                         0

1.66533E-16        1.11022E-16      21.3333336 -1.11022E-16

        0                            0                           0               21.3333336

 
 
 
 
 
   
 

21.33     0     0      0

   0  21.33     0      0

   0     0 21.33      0

   0     0     0 21.33

 
 
 
 
 
 

 

 

The determinant value of the information matrix for γ i.e., det(I(γ)) = (21.33)4 = 206996.70, which 

is compared with det(I(γ)) = (24)4, assuming that I(γ) = Z΄QZ= Z΄Z = 331776 for the set of four 

covariates in a BIBD (v = 4, b = 8, r = 6, k = 3 and λ = 4). Thus, the efficiency value of the above 

covariate design with respect to global optimal design will be 62.47%. 
 

3.3 The method of construction for D-efficient U-matrix when Hk-t exists (t ≥ 2): 
 

For construction of D-efficient U matrices of order vxb from a BIBD (v, b, r, k, λ) where r (even or 

odd number) and k (always odd number) and Hk do not exist, we follow the steps given below. 

Step 1. Construct the BIB design D (v, b, r, k, λ). 

Step 2. Construct the incidence matrix (N) of order vxb from the design D. 

Step 3. Let us consider a Hadamard matrix of order b, Hb. 

Hb= (1, h1, h2,…, hb-1) 

Step 4. Let us construct a Special Array Hk* of order k from Hk-t with t (>1, odd number and Ht-1 

exist) rows and columns with all zero elements in middle, i.e., (1*, h1*, h2*,…,h(k-t)/2-1*,0,…,0,h(k-

t)/2*,…,hk-t-1*). 
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*

1  1  0. . . . . . .0  1  1

1 -1 0. . . . . . .0 -1  1

0  0 0. . . . . . .0  0  0

. . . . . . . . . . . . . . . .
H

. . . . . . . . . . . . . . . .

0  0 0. . . . . . .0  0  0

1  1 0. . . . . . .0 -1 -1

1 -

k =

1 0. . . . . . .0  1 -1

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 5. Using Hk* and Hb, by Kronecker product of these two matrices, we get (k-t-1) set of (b-1) 

Uij* matrices of order kxb (without consider the first column and the t columns with all zeros), 

where i=1,2,…,(k-t-1) and j=1,2,…,(b-1). In each of the Uij* matrix there are t rows with all 

elements zero in the middle.   

* *

ij iU h h  ,  denotes the Kronecker productj
=    

Step 6. As Hb and Ht-1 both are exists, following the Step 6 of the Method 3.2, we can construct (t-

2) sets of (b-1) mutually orthogonal U** matrices of order txb. All the U** matrix has all row-

sums equal to zero and all column-sums equal to either +1 or -1.  

Step 7. Consider any set i (i=1,2,…,k-t-1), in each U* matrix of ith set, insert the U** matrix of 

order txb from iʹth set (iʹ=1,2,...,t-2) in the t rows with all elements zero in the middle of U* 

matrix, such that all the t rows with all elements zero has been replaced by +1 or -1 till U** and 

U* matrices has been utilized totally. Let the resulting matrix be U***. For example, insert Uiʹ1** 

matrix in Ui1*, then insert Uiʹ2** matrix in Ui2* and so on repeat the procedure with other U** 

matrices in the remaining U* matrices till U** and U* matrices has been used totally for the ith 

set. So, we get (b-1) U*** matrices of order kxb, which are orthogonal to each other and all the 

U*** matrix has all row-sums equal to zero and all column-sums equal to either +1 or -1 for ith 

set. 
 

Step 8. The non-zero elements of the incidence matrix (N) are replaced by the elements (+1 or -1) 

of each of the U*** matrix from ith set column wise. Thus, we get (b-1) U**** matrix of order 

vxb. It has been observed that the column sum of the U**** matrix is always equal to either +1 or 

-1. But, the row totals of the U**** matrices are must be either zero or ±1 (it may not true for all 

U**** matrices) depending on r (even or odd). If the row totals are either zero or ±1 is true for all 

U**** matrices depending on r (even or odd), we may get directly atmost (b-1) U matrices of 

order vxb satisfying the conditions C1*-C3* simultaneously for D-efficiency from U**** matrices. 

On the other hand, when it is not true for all U**** matrices i.e., some or all row totals has been 

violated in some or all U**** matrices, to construct D-efficient U-matrix of order vxb, the 

elements of non-zero row sums or the elements of row sums neither +1 nor -1 depending on r 

(even or odd) of U**** matrices has been rearranged column wise by trial and error method such 

that the resulting U matrices satisfying the conditions C1*-C3* simultaneously for D-efficiency. 

So, we may get atmost (b-1) U matrix of order vxb depending on U**** matrices. 

For easy understanding of the above steps, the following example will be useful. 
 

t 

t 
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Example 3.3.1: Let us consider a BIBD with parameters; v = 8, b = 8, r = 7, k = 7 and λ = 6. The 

construction of D-efficientU-matrix of order 8x8 is the following: 
 

Step 1. Lay out of the BIBD (v = b = 8, r = k = 7 and λ = 6). 
 

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6 Blk 7 Blk 8 

1 2 1 1 1 1 1 1 

2 3 3 2 2 2 2 2 

3 4 4 4 3 3 3 3 

4 5 5 5 5 4 4 4 

5 6 6 6 6 6 5 5 

6 7 7 7 7 7 7 6 

7 8 8 8 8 8 8 8 

 

Step 2. Construction of the incidence matrix (N) of order 8x8 from the above design is 
 

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

0 1 1 1

N = 

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Step 3. Let us consider a Hadamard matrix of order 8, H8.  
 

8 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1
H  = (1, h , h , h , h , h , h ,

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

 h ) = 

1 1

− − − −

− − − −

− − −

 
 
 
 
 
 
 
 
 
 
 


−

− − − −

− − − −

− − − −

− − − − 

 

 

Step 4. Let us construct a Special Array H7* of order 7 from H4 with t (=3, odd number and Ht-1 

exist) rows and columns with all zero elements in middle, i.e., (1*, h1*, 0, 0, 0, h2*, h3*). 
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*

7

1 1 0 0 0 1 1

1 1 0 0 0 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 0 1 1

1 1 0 0 0

H

1 1

 
 
 
 
 

=  
 


− −

− −

− −


 
 
 

 

 

Step 5. Using H7* and H8, by Kronecker product of these two matrices, we get 3 set of 7Uij* 

matrices of order 7x8 (without consider the first column and the 3 columns with all zeros), where 

i=1,2,3 and j=1,2,…,7. In each of the Uij* matrix there are 3 rows with all elements zero in the 

middle. Here, U11* matrix is shown below:  
 

( )* *

11 1 1

1

1

0

1 1 1 1 1 1 1 10

0

1

1

U h h'   

 
 
 
 
 

=  =  


−

− −


 
 
 

−



−

−  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1

 

1 1

 
 
 
 
 

=  
 
 


− − − −

− − − −

− − − −

− − −
 −




 

 

Similarly, we can easily construct the others. 
 

Step 6. As H8 and H2 both are exists, following the Step 6 of the Method 3.2, we can construct one 

set of 8 mutually orthogonal U** matrices of order 3x8. All the U** matrix has all row-sums equal 

to zero and all column-sums equal to either +1 or -1. The U1** matrix is presented here 
 

**

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

U

1

 

− − − −

− − − −

− − −

 
 

=
 


− 


 

 

Similarly, we can easily construct the others. 
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Step 7. Here, we consider 1st set, in each U* matrix of 1st set, insert the U** matrix of order 3x8 in 

the 3 rows with all elements zero in the middle of U* matrix, such that all the 3 rows with all 

elements zero has been replaced by +1 or -1 till U** and U* matrices has been utilized properly. 

Let the resulting matrix be U***. So, in this example, insert U1** matrix in Ui1*, then insert U2** 

matrix in Ui2* and so on repeat the procedure with other U** matrices in the remaining U* 

matrices till 7U** and 7U* matrices has been used totally. Now, we get 7U*** matrices of order 

7x8, which are orthogonal to each other and all the U*** matrix has all row-sums equal to zero 

and all column-sums equal to either +1 or -1. Here, U1** matrix has been inserted in the first 

matrix of first set i.e., U11* and we get the following U1*** matrix of order 7x8. 

 

***

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

U

1

 

1

− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

− − −

 
 
 
 
 

=  
 
 
 


− 


 

Similarly, we can easily construct the others. 
 

Step 8. The non-zero elements of the incidence matrix (N) are replaced by the elements (+1 or -1) 

of each of the U*** matrix column wise. Thus, we get 7 U**** matrix of order 8x8. It has been 

observed that the column sum of the U**** matrix is always equal to either +1 or -1 and the row 

totals of the U****matrices are must be ±1 as r=7 (it is not true for all the U**** matrices). Now, 

we get directly 2U matrices of order 8x8 satisfying the conditions C1*-C3* simultaneously for D-

efficiency from 7U**** matrices. For the remaining U**** matrices where the row totals (some 

or all) are not ±1, to construct more D-efficient U-matrix of order 8x8, the elements of those rows 

of U**** matrices has been rearranged column wise by trial and error method such that the 

resulting U matrices satisfying the conditions C1*-C3* simultaneously for D-efficiency. So, here 

we get in total 3 U matrices of order 8x8. These are the followings. 

 

***

1

1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0
1

U  

1 1 1 1 1

= ,

1 1
0 1 1 1 1 1 1 1

 N = 

 
   
  
  
  
  
  
  


− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

− − −

 
  
  −  

 












 

U1

** 



 

 

 

 

 

 

 

Majumder, Das, Dutta and Nishad: New Series of D-efficient Covariate…                      29 

 

 

****

1 1

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1

  = U  = U

 
 
 
 
 
 
 


− − −

− − − −

− −


 
 
 
 

−

− − − −

− − − −

− − −

− − −

− −

−

−

 

 

Similarly, we get, 
 

****

2 2

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

U  =  = U

0 1 1 1 1 1 1 1

− − − −

− − −

− − −

− − − −

− − −

− − − −

− − − −

− − −

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

From U3****, we get U3 by trial and error method with respect to the conditions C1*-C3* for D-

efficiency. 
 

3

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1
U

1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1

 = 

− − −

− − − −

− − −

− − − −

− − − −

 
 
 
 
 
 
 


− − −

− − − −

− −


 
 
 
 
 −   

 

From the other two sets of U* matrices, we will may also get at most 7U matrices satisfying the 

conditions C1*-C3* simultaneously for D-efficiency by the similar way. 
 

Remark 3.1: Let a BIB design D* (v, b, r, k, λ) exist with atleast c* (≥ 2) D-efficient U-matrices. 

Then for the BIB design D** (v**=v, b**=mb, r**=mr, k**=k, λ**=mλ) obtained by repeating 

each block m (≥ 2) times, atleast c**= mc* D-efficient U-matrices can be constructed whenever 

Hm exists.  
 

For example, a BIB design D* (v = b = 4, r = k = 3 and λ = 2), atleast c* = 2 D-efficient U-

matrices be available. So, based on the Remark 3.1, we can construct atleast c**= 4 D-efficient U-

matrices for the BIB design D** (v** = 4, b** = 8, r** = 6, k** = 3 and λ** = 4), where m=2 and 

H2 exists.   
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4. Conclusion 
 

Two new series of D-efficient covariate designs in BIB design set-up are developed when either k or r 

is odd or both k and r are odd numbers and Hadamard matrix of order k i.e., Hk does not exist. All the 

developed designs are constructed with the help of a new matrix viz., Special Array (as defined in 

section 2). We also propose a conjecture (3.1.1) and according to the conjecture, det(I(γ)) = det(Z΄Z – 

ZʹX(X΄X)-X΄Z) may or may not be the unique maximum value. If the value is unique maximum, then 

the design will be D- optimal, otherwise it will be D- efficient design. The proof of the claim is not yet 

established or found in available literatures. 
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