EDITORIAL

Application of Artificial Intelligence in Cardiovascular Medicine

University Heart Journal 2025; 21(1): 1 DOI: https://doi.org/10.3329/uhj.v21i1.83463

Artificial intelligence (AI) is a set of technologies that enable computers to perform a variety of advanced functions, including the ability to see, understand and translate spoken and written language, analyze data, make recommendations, and more. John McCarthy is widely considered the "Father of Artificial Intelligence". He coined the term "artificial intelligence" in 1955 and is credited with foundational work in the field, including developing the programming language. Artificial Intelligence (AI) is increasingly transforming cardiovascular medicine, enhancing diagnostic accuracy, treatment planning, and patient outcomes. Here are some of the key uses of AI in this field:

1.Detection and Diagnosis

ECG Interpretation: AI algorithms can detect arrhythmias and other abnormalities in electrocardiograms more quickly and accurately than traditional methods.

Imaging Analysis: AI improves the interpretation of echocardiograms, CT scans, and MRIs by identifying structural abnormalities, plaque burden, and perfusion issues.

Risk Prediction Models: Machine learning models can analyze patient data to predict the risk of events like heart attacks, strokes, or sudden cardiac death.

2. Personalized Treatment and Risk Stratification

Tailored Therapies: AI systems can recommend personalized treatment plans based on genetic data, lifestyle, and clinical history.

Medication Management: Algorithms help identify the most effective medications and dosages, minimizing side effects.

3. Remote Monitoring and Management

Wearable Devices: AI-powered wearables track heart rate, rhythm, and other metrics in real-time, alerting clinicians to potential issues.

Virtual Assistants: Chatbots and AI assistants support patient education and adherence to treatment regimens.

4. Clinical Decision Support

Diagnostic Assistance: AI tools assist clinicians by offering differential diagnoses and evidence-based suggestions.

Surgical Planning: AI helps in preoperative planning, especially in complex procedures like valve replacements or congenital defect repairs.

5. Research and Drug Development

Data Mining: AI analyzes large datasets from clinical trials or real-world evidence to discover new disease patterns and treatment responses.

Predictive Modeling: Helps identify potential therapeutic targets and optimize trial designs.

6. Workflow Optimization

Automation: AI automates administrative tasks such as data entry, report generation, and patient scheduling.

Triage: Prioritizes urgent cases for rapid intervention, especially in emergency settings.

Several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. Despite enormous academic interest and industry financing, AI-based tools, algorithms, and systems of care have yet to improve patient outcomes at scale. The objective of a statement by American Heart Association is to identify best practices, gaps, and challenges that may improve the applicability of AI tools in each domain. ¹

Manzoor Mahmood

Professor, Department of Cardiology Bangladesh Medical University, Dhaka. E-mail: gudu65@gmail.com

Mohammad Safiuddin

Professor and Chairman, Department of Cardiology Bangladesh Medical University, Dhaka. E-mail: safiuddin1960@yahoo.com

Reference:

 $1.\ Circulation\ Volume\ 149,\ Issue\ 14,\ 2\ April\ 2024;\ Pages\ e\ 1028-e\ 1050\ https://doi.org/10.1161/CIR.0000000000001201$