Detection, Identification and Titration of Anti- C (RH4) Allo-Antibody in a Multi-Transfused HHA Patient Referred to the Department of Transfusion Medicine of BSMMU

A khatun1, J Biswas2, M M Habibullah3, N Shill4, A Salam5, M M Alam6

Abstract

It is a Report of a case of transfusion induced alloimmunization of anti-c (Rh-4) in multi transfused HHA.Following top-up transfusion DHRTR resulted in this multi transfused HHA .Patients was referred to the transfusion medicine department of BSMMU to detect the cause/s of DHTTR from the Hematology department of Bogra MCH. High titred (1:256) anti-c alloantibody were detected, identified in this patient by the standardized sensitive method of immuno hematological testing at the department of transfusion medicine, BSMMU. When incompatible RCCs are transfused the amount of antibody in recipient's serum may be too low to effect red cell destruction or even to be not detected by sensitive compatibility tests. However Transfusion may provoke as anamnestic immune response so that a few days after transfusion a rapid increased in antibody concentration develops and rapid destruction of transfused red cells occur. Hemoglobinuria is not uncommon in DHTRs. and causes HDN During TOP-UP transfusion to each and every HHAs genotypically matched antigen negative RCC to be practiced to avoid DHTR. Unlike AIHA it is possible to identify and detect alloantibody responsible for the DHTR by meticulous immuno hematological testing and processing.

Introduction

A Haemolytic Transfusion reaction is one in which signs and symptoms of increased Red cell destruction are produced by transfusion. A distinction is made between IHTR in which destruction begins during transfusion and in DHTR destruction begins only after there has been an immune response provoked by transfusion. Almost invariably DHTR are caused by anamnestic immune responses. Although physicians assume as if by reflex that haemolysis in the settings of transfusion must be immune mediated, non immune causes such as thermal, mechanical and osmotic stress, infection and intrinsic red cells defects should remain part of the differential diagnosis(1).

Alloimmunization is a very common clinical problem in transfusion dependent patients but detected very rarely in our country. Alloimmunized patients present in such an
atypical pattern that the actual diagnosis become very difficult. Because these patients are always used to transfuse blood for correction of anemia for long period of time because they were suffering from HHA. The clinical presentation may mimic AIIHA. Some patients of HHA presented with the history of fever, jaundice.

Findings & Results of the case studied

Miss Bilkis begun about 28 years old. She comes from Bogra Medical College Hospital with the complains of anorexia, fever, red color urination following few days of Transfusion and there is no benefit after transfusion as no increment of Hb%. She also gives the history of transfusion from her childhood, from her 5 years of age. She is a diagnosed case of beta thalassaemia (HHA). Previously she needs transfusion after 1 to 3 months interval. She receives blood from different clinic and hospital of Bogra district. She is B positive (Rh D). Her DCT negative but ICT is found positive. Her Rhesus genotype is detected in our lab as \(R_1 R_1 \) type (CDe/CDc). Anti-c (RH4) is identified, detected with 1:256 titre in her serum in our Lab. We do ICT with different types of Donor having \(R_1 R_2, R_1 r, r r, R_2 R_2, R_1 R_1 \) phenotype, it is positive with all of the above Donors except \(R_1 R_1 \) type of ‘O’ cell. Then we do cross match with ‘B’ \(R_1 R_1 \) Blood unit with Bilkis and was found compatible.

We make an elute from Bilkis’s serum, this elute also give positive result with rr type of Blood and negative result with \(R_1 R_1 \) Donor. Thus we confirm that Bilkis developed Anti-c (RH4) by repeated top-up Transfusion.

Our Lab findings are summarized in following Tables (I-VI):

Table I : ABO Grouping protocol

<table>
<thead>
<tr>
<th>Anti A</th>
<th>Anti B</th>
<th>Anti AB</th>
<th>A cell</th>
<th>B cell</th>
<th>O cell</th>
<th>Auto-control</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
</tbody>
</table>

Table II : Rhesus phenotype

<table>
<thead>
<tr>
<th>Anti C</th>
<th>Anti c</th>
<th>Anti D</th>
<th>Anti E</th>
<th>Anti e</th>
<th>phenotype</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>CDe/CDe</td>
<td>(R_1 R_1)</td>
</tr>
</tbody>
</table>

Table III : Coombs Test

<table>
<thead>
<tr>
<th>DCT</th>
<th>ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table IV : ICT with available panel cells

<table>
<thead>
<tr>
<th>O (R_1 R_2)</th>
<th>O (R_1 r)</th>
<th>O (R_1 R_1)</th>
<th>O (rr)</th>
<th>O (R_1 R_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table V : Cross – Matching (by indirect Coomb’s test, enzyme method and by albumin method)

<table>
<thead>
<tr>
<th>B (R_1 R_2)</th>
<th>B (R_1 r)</th>
<th>B (R_1 R_1)</th>
<th>B (rr)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Compatible only with B (R_1 R_1) type of blood</td>
</tr>
</tbody>
</table>

Table VI : Cross – Matching (by saline method)

<table>
<thead>
<tr>
<th>B (R_1 R_2)</th>
<th>B (R_1 r)</th>
<th>B (R_1 R_1)</th>
<th>B (rr)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compatible</td>
</tr>
</tbody>
</table>
Discussion
Antibodies are immunoglobins produced by the lymphocytes of the adaptive immune system in response to an antigen for which they exhibit specific binding. Alloantibodies produced by an individual against foreign antigen present in another individual usually by multiple transfusion or by pregnancy. Commonest alloantibody is anti-D. Because D antigen is considerably more immunogenic than the other Rh antigens which have the following order of immunogenicity: D > E > e > C (2). The vast majority of Rh antibodies are IgG causing delayed haemolytic transfusion reaction and haemolytic disease of the newborn (3).

Alloimmunization is caused by multiple transfusion, pregnancy, transplantation etc. It may occur against red blood cell, platelets leucocytes etc. Immune antibody against red cell antigen commonly formed and causes DIHTR and HDN. If immune antibody formed in a multitransfused patient he or she had been suffered from DIHTR(4). Every transfusion is associated with some hazard. There is no blood or blood product which is 100% genotypically match with recipient. When transfusion given in a patient apparently looking compatible. DIHTR is a delayed type of transfusion reaction when incompatible red cells are transfused, the amount of antibody in the recipient serum may be too low to bring about incompatibility, but after transfusion provoke an anamnestic immune response. After transfusion there is a rapid increase in antibody production and rapid destruction of red cells occur. Virtually all DIHTR are due to secondary responses(5). Most commonly the recipient has been immunized by previous transfusion or pregnancies. Clinical presentation of these patients mimic AIHA and may need unnecessary medical intervention.

After anti-D, anti-c is the most important Rh antibody from the clinical point of view (2). Although anti-E is commoner than anti-c, anti-E is frequently a naturally occurring antibody; on the other hand anti-c is found only as an immune antibody (6). Anti-c is relatively often involved in delayed haemolytic transfusion reaction and haemolytic disease of the newborn (1), Jones et al (1954) produce anti-c in two out of 9 volunteers who were given repeated injection of c-positive blood over a period of 10 months (2).

When incompatible red cells are transfused, the amount of antibody in the recipients serum may be too low to bring about rapid red cells destruction or even to be detected, but the transfusion may provoke an anamnestic immune response so that a few days after transfusion there is a rapid increase in antibody concentration and rapid destruction of the transfused red cells (7). The most constant features are a fall in Hb concentration, fever jaundice and haemoglobinuria. Usually these occurs between 4-7 days of transfusion (8). When a patient abruptly develops signs of increase red cells destruction, such as falling Hb concentration together with schiscytosis, a diagnosis of AIHA rather than DIHTR may be made (9,10). The mistake is serious as it leads to the transfusion of incompatible blood. In a DIHTR it may be possible to identify the antibody responsible for the reaction (11). Red cells lacking the corresponding antibody should be transfused if the patient require more blood (12). In routine screening pure Anti-E is the most common, followed by Anti-c although Anti-c is the most common cause of HDN which can be severe, this is probably because one half of Anti-E is weak and Naturally occurring (13).

Conclusion
When incompatible RCCs are transfused the amount of antibody in recipient’s serum may be too low to effect red cell destruction or even to be not detected by sensitive compatibility tests. But transfusion may provoke as anamnestic immune response so that a few days after transfusion a rapid increased in antibody concentration develops and rapid destruction of transfused red cells occur (14). Hemoglobinuria is not uncommon in DIHTRs. During TOP-UP transfusion to each and every HHAs genotypically matched antigen negative RCC to be practiced to avoid DIHTR and HDN. Unlike AIHA it is possible to identify and detect alloantibody responsible for the DIHTR by meticulous immuno hematological testing and
processing(15). Early diagnosis of Alloimmunization
causing to delayed haemolytic Transfusion
reaction is very difficult but examination of blood
for detection and Identification of irregular
antibodies provide safe transfusion to deadly dying
HHA patient thus minimize their sufferings &
prolongation of their life.

According to WHO about 3% people of
Bangladesh are the carrier of B-thalassemia i.e.
3.6 million are carrying gene of B-thalassaemia
and 4% are carrier of Hb-E i.e. 4.8 million are
carrying gene of Hb-E. In Bangladesh about 6000
child born per year with Hb-E with Beta
thalassaemia. So during clinical Top up transfusion
Physicians must be careful and cautious about
adverse reaction during and after transfusion, the
conclusive cross matching report from Transfusion
Medicine Specialist all the time.

Acknowledgement
Authors would like to pay due homage and
profound gratitude to all MLPs of Transfusion
Medicine Department of BSMMU for their active
participation in the detection and testing of allo
antibody of these patients, and also to the patients,
and their guardian to allow us to publish the facts
for academic purpose.

References
Medicine 11 edn. Oxford: Blackwell scientific
Publication
hemolytic transfusion reaction characterized by
destruction of RBC Vox sang 31: 54
3. Taswell HF, MooreSB Pineda AA (1980) DHTR:
Evidence of needs for an improved transfusion
4. Crosby WH, Dameshek W (1951) The significance
of hemoglobinuria and associated hemosiderinuria,
with particular reference to various types of
hemolytic anemia. J. lab. clinical Medicine 38:3
5. Croucher BEE (1979) Differential diagnosis of
delayed transfusion reaction. In A Seminar on
laboratory Management of hemolysis Las
vegas:Am Assoc blood banks.
6. Croucher BEE, Crookston MC, Crookston JH
(1967) Delayed Transfusion reactions simulating
auto immune hemolytic anemia. Vox sang 12:32
cell associated procoagulant activity induced by
ABO incom patibility. Transfusion 34:943-949.
Dinapol JB, Nichols ME, Marsh WL et al. (1977)
Hemolytic transfusion reaction caused by IgG anti
P1. Commun Amer Assoc Blood Banks, Atlanta,
GA.
8. Ebert RV, Emerson CP (1946) A clinical study of
transfusion reactions. The hemolytic effect of group
o blood and pooled plasma containing incompatible
reactions in the absence of demonstrable
10. Arndt PA, Garraty G, Marfoo RA et al. (1998) An
acute hemolytic transfusion reaction caused by and
anti p1 that reacted at 37 degrees C. Transfusion
38:373-377
Clinical significance of RBC alloantibodies and
auto-antibodies in sickle cell patients who received
Rh immunization following incompatible blood
transfusion and possible long term complication of
anti D immunoglobulin therapy Med Genet 8:317
(2003) Acute and delayed hemolytic transfusion
reactions secondary to HLA alloimmunization.
Transfusion 43:753-757
14. Bove JR (1968) Delayed complications of
transfusion Connecticut Med 32:36
haemolytic transfusion reaction caused by anti-tFyb
in a splenectomized patient (Letter). Transfusion
22:402
Hemolytic transfusion reaction caused by IgG anti
P1. Commun Amer Assoc Blood Banks, Atlanta, GA

All correspondence to:
M M Alam
Assistant Professor
Department of Transfusion Medicine
Rajshahi Medical College, Rajshahi