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Abstract 

This study evaluated 24 rice genotypes, including 22 pipeline varieties from the 
National Rice Research Program (NRRP) in Dhanusa and two checks, 
Bahaguni-2 and Sabitri. The Multi-Trait Genotype-Ideotype Distance Index 
(MGIDI) was used as selection tool to rank genotypes based on their proximity 
to an ideal genotype. Broad-sense heritability (h²) estimates ranged from 0.03 
for panicle length to 0.96 for days to 80% maturity, suggesting high potential for 
selection gains in days to 80% maturity (h² = 0.96) and plant height (h² = 0.91), 
while tiller number and grain yield showed low heritability (h² > 0.5). Variance 
analysis indicated substantial genetic control for plant height and days to 80% 
maturity, while panicle length and grain yield were more influenced by 
environmental factors. Principal component analysis revealed four factors 
explaining 76.5% of the trait variation, with FA1 (days to 50% flowering, days 
to 80% maturity) accounting for the most variation. Selection gains were 
assessed using MGIDI and FAI-BLUP indexes, with MGIDI achieving a 
15.13% gain for targeted traits and FAI-BLUP yielding 1.25%. Selected 
genotypes from MGIDI included SVIN 127, SVIN 098, SVIN 643, SVIN 084, 
and IR 18F1085, with SVIN 127 and SVIN 098 also appearing in the FAI-
BLUP index, highlighting their potential value for breeding. This research 
demonstrates the effectiveness of both selection indexes in identifying superior 
genotypes for enhanced breeding efficiency. 
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Introduction 
Rice (Oryza sativa L.) ranks as the second most crucial cereal crop after wheat and is 
a staple food for more than half of the world's population. As the global population is 
expected to reach 8 billion by 2025, there is an increasing need to boost rice 
production (Mohidem et al., 2022). 
Selection gain is a fundamental objective in plant breeding, guiding the development 
and progress of breeding programs to improve crop performance. Traditionally, 
breeding efforts have focused on a limited number of traits, but this approach has 
been recognized as insufficient for achieving comprehensive crop improvement 
(Sinha et al., 2021). Selecting a few traits in isolation can neglect potential 
enhancements in other vital characteristics, limiting the overall genetic advancement. 
Consequently, modern breeding programs seek to combine desirable traits into a 
single genotype, aiming to create an ideotype-a plant model with optimized traits for 
superior performance (Donald, 1968). 
The concept of ideotype breeding has long been central to crop improvement programs, 
where the goal is to develop a genotype that integrates a range of traits for optimal 
agronomic and economic outcomes (Carbajal-Friedrich and Burgess, 2024). However, 
the complexity of breeding for multiple traits simultaneously poses significant 
challenges. This is particularly true when accounting for natural correlations between 
traits, which traditional methods often overlook. In this context, the Multi-Trait 
Genotype-Ideotype Distance Index (MGIDI) offers a novel approach that addresses 
these limitations by incorporating data from multiple traits into the selection process 
(Olivoto and Nardino, 2021). Unlike conventional selection indices, MGIDI leverages 
multivariate techniques to account for trait correlations and efficiently selects 
genotypes based on their proximity to an ideal genotype (Alam et al., 2024). MGIDI 
represents a significant advancement in multivariate selection methodologies, 
providing a more holistic and effective tool for crop improvement. By computing a 
weighted Euclidean distance between genotypes and the ideal genotype, MGIDI ranks 
genotypes according to their overall performance across multiple traits (Olivoto et al., 
2022). It applies Principal Component Analysis (PCA) to reduce dimensionality, 
transforming correlated traits into independent components, thus minimizing 
redundancy and multicollinearity (Shafizadeh-Moghadam, 2021). This approach 
enables plant breeders to evaluate genotypes more effectively, considering the strengths 
and weaknesses of each genotype (Olivoto and Nardino, 2021). 
MGIDI offers breeders a powerful approach to achieving genetic gain and improving 
rice traits holistically by leveraging multivariate data and offering a comprehensive 
assessment of rice genotype performance. The objective of this study was to evaluate 
the genetic parameters of key agronomic traits in rice genotypes to enhance the 
efficiency of breeding programs. This study also explored the application of MGIDI 
in evaluating rice genotypes, aiming to provide insights into its utility as a selection 
tool and identify the high potential genotypes. 
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Materials and Methodology 
Experimental Site 
The experiment was performed at National Maize Research Program (NMRP) rice 
research field, Chitwan between June and October 2022. Geographically, the site is 
positioned at 27°39.27' North latitude and 84°21.28' East longitude, at 228 meters 
above sea level. The region has a humid, subtropical climate characterized by cool 
winters, hot summers, over 1500 mm of annual rainfall, a pronounced monsoon 
season, and sandy loam soils with slight to acidic solid characteristics. 
Planting Materials 
The experiment involved 24 genotypes (Table 1), comprising 22 pipeline varieties 
obtained from the National Rice Research Program (NRRP), Dhanusa and two check 
varieties, Bahaguni-2 and Sabitri. 

Table 1. List of twenty-four genotypes of rice used in research. 

S.N. Genotype Sources 

1 HARDINATH-4 NRRP, Dhanusa 

2 IR 15L1801 NRRP, Dhanusa 

3 IR 16 F 1148 NRRP, Dhanusa 

4 IR 16 L 1855 NRRP, Dhanusa 

5 IR 16A 5125 NRRP, Dhanusa 

6 IR 16F1065 NRRP, Dhanusa 

7 IR 16L 1795 NRRP, Dhanusa 

8 IR 17L1415 NRRP, Dhanusa 

9 IR17A12038 NRRP, Dhanusa 

10 IR17A2252 NRRP, Dhanusa 

11 NR 2233-3-1-1-3-3 NRRP, Dhanusa 

12 P# 14-16-SP #52 NRRP, Dhanusa 

13 P# 14-30-SP #27 NRRP, Dhanusa 

14 SVIN 028 NRRP, Dhanusa 

15 SVIN 060 NRRP, Dhanusa 

16 SVIN 064 NRRP, Dhanusa 

17 SVIN 095 NRRP, Dhanusa 

18 SVIN 098 NRRP, Dhanusa 



242 Roka et al. 

 

S.N. Genotype Sources 

19 SVIN 127 NRRP, Dhanusa 

20 SVIN 131 NRRP, Dhanusa 

21 SVIN 191 NRRP, Dhanusa 

22 SVIN 195 NRRP, Dhanusa 

23 SVIN 312 NRRP, Dhanusa 

24 SVIN 643 NRRP, Dhanusa 

Design of Experiment and Cultural Practices 
The experiment followed an alpha-lattice design with three replications and two 
blocks containing 12 genotypes. Rice seedlings were grown in a wet seedbed for 25 
days before being transplanted into well-prepared soil in plots measuring 10 m² (5 m 
* 2 m), with a spacing of 20 cm * 20 cm. Fertilization was done using 100:40:30 kg 
NPK per hectare, with half the nitrogen and all phosphorus and potassium applied 
during field preparation. Additional nitrogen was top-dressed at 20-25 days and 40 
days after transplantation.  
Data Collection 
The data were recorded on individual plants and plotted for nine quantitative traits at 
the appropriate growth stage of the crop as per Bioversity International et al. (2007). 
Five plants were randomly selected from each plot. Data was collected on plant 
height (PH), tiller number (TN), leaf number (LN), panicle per square meter 
(PASQM), panicle length (PLL), days to 50% flowering (DTF), days to 80% 
maturity (DTM), chlorophyll content (CC), and grain yield (YD). The final grain 
yield was adjusted at 12% moisture content, and calculated using the following 
formula on Equation (1). 

	Grain	yield	 +!"#
$%
, = &'()	+,-'.	(01)×4555(6!)×(455789)

(4557:.;<=)-.	89)×>'()?@-?	,A	BC.6
                                            (1)         

Where, MC= Moisture content of grain (%) just before weighing the bulk  
Y= Net plot yield (kg)  
A= Net plot area (m2) 
(100-MC)/(100-Adjusted MC ) = Conversion factor for grain yield at adjusted 
moisture content.  
1000/A= Conversion factor for the actual harvested area into hectare basis. 
This formula was also adopted by Paudel et al. (1995) to adjust the grain yield (ton 
ha-1) at 12% moisture content. 
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Statistical Analysis 
The data were processed using the software MS-excel and analyzed through R- 
Studio. The MGIDI index theory is based on four key steps: (i) standardizing all traits 
to a range of 0 to 100, (ii) applying factor analysis to capture the correlation structure 
and reduce the data's dimensionality, (iii) designing an ideal genotype using known 
or desired trait values, and (iv) calculating the distance between each genotype and 
the designed ideotype (Olivoto and Nardino, 2021). 
Rescaling the Trait 
Consider a two-way table with i rows representing genotypes and j columns 
representing traits. The rescaled value (⁠⁠�X,;) for the ith row and jth column was 
expressed as Equation (2). 

X,; =	
A"#7E"#
A$#7E$#

	× 	(θ,; − η(;) 	+	ηA;    (2) 

In this context, ηnj and φnj represent the new maximum and minimum values for trait j 
after rescaling. At the same time, ηoj and φoj are the original maximum and minimum 
values of trait j. The symbol θij refers to the original value of the jth trait for the ith 
genotype or treatment. The values for ηnj and φnj are selected based on the desired 
direction of gains: if negative gains are preferred, ηnj=o and φnj =100 are applied; if 
positive gains are preferred, ηnj =100 and φnj = 0 are used instead. After rescaling, the 
values in the two-way table (⁠⁠�X,;) fall within a 0 – 100 range, considering the 
preferred direction of selection (whether to increase or decrease). This process also 
preserves the correlation structure of the original set of variables. 
Factor analysis 
The next step involved performing an exploratory factor analysis with (ꭇX,;) to group 
the correlated traits into factors. Afterward, the factorial scores for each row, 
genotype, or treatment are calculated as Equation (3). 

X	 = 	μ	 + Lf	 + ϵ                                                       (3) 
In this context, X represents a p×1 vector of rescaled observations, while μ represents 
a p ×1 vector of standardized means. L is p ×f of factor loadings, with f being a p ×1 
vector of common factors. ϵ represents the p×1 vector of residuals, where p is the 
number of traits and f corresponds to the number of retained common factors. Eigen 
values and Eigen vectors are derived from the correlation matrix. The initial factor 
loadings are selected based on Eigen values more significant than one, and the final 
loadings are calculated using varimax rotation (Kaiser, 1958). Factor scores are then 
computed accordingly as per Equation (4). 

F	 = 	Z	(AF𝑅74)F                                                     (4) 
In this case, F is a g× f matrix containing the factor scores, and Z is a g×p matrix of 
(rescaled) standardized means. A refers to a p×f matrix of canonical loadings, while 
R represents the p×p correlation matrix between traits. Here, g, p, and f denote the 



244 Roka et al. 

 

number of rows (genotypes or treatments), retained factors, and traits analyzed, 
respectively. 
Ideotype Planning 
According to the definition in Equation (2), the ideotype was characterized by having 
the highest rescaled value (100) across all traits analyzed. Therefore, the ideotype can 
be represented by 1×p vector I such that I = [100, 100, …, 100]. The scores for the 
ideotype were also calculated as per Equation (4). 
The MGIDI Index 
The final step involved calculating the multi-trait genotype–ideotype distance index 
(MGIDI) as per Equation (5). 

MGIDI, = [> (𝛾,; − 𝛾;)G
H

;I4
]5.J                                                    (5) 

In this context, MGIDIi represented the multi-trait genotype–ideotype distance index 
for the ith row/genotype/treatment, while γij denotes the score of the ith 
row/genotype/treatment for the jth factor (i=1, 2,…,g; j=1,2,…, f), where g and f  are 
the total number of rows/genotypes/treatments and factors, respectively. γj represents 
the score of the ideotype for the jth factor. The row/genotype/treatment with the 
smallest MGIDI value is closest to the ideotype and thus exhibits the most desirable 
values across all p traits. The proportion of the MGIDI index for the ith 
row/genotype/treatment explained by the jth factor (ωij) is calculated to highlight the 
strengths and weaknesses of each genotype/treatment as per Equation (6). 

𝜔,; =
KL%#

!

M KL%#
!

&

#'(

                (6) 

Here, Dij represented the distance between the ith genotype/treatment and the ideotype 
for the jth factor. A lower contribution from a factor suggests that the traits associated 
with that factor are closer to the ideotype. 
FAI-BLUP 
The FAI-BLUP index (Rocha et al., 2018) was used to evaluate genotypes based on 
their proximity to a desired ideotype (DI). The DI was defined by assigning "min" 
values for traits where lower values are preferred and "max" values for traits where 
higher values are desired. The distance to the DI was calculated using the Euclidean 
distance formula for each genotype. These distances were then transformed into 
spatial probabilities by taking the inverse of the distance, with probabilities 
normalized to sum to 1. Genotypes were ranked based on their normalized spatial 
probabilities, with higher values indicating more excellent proximity to the ideal as 
demonstrated in Equation 7. 
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𝑃,; =
(
)%#

∑ (
)%#

%'";#'+
%'(;#'!

                                                                                                (7) 

In this context, 𝑃,; represents the likelihood of the ith genotype (where i=1, 
2,………..,n) being similar to the jth ideotype (where j=1,2,…………….,m). The 
term dij refers to the distance between the i thgenotype and the jth ideotype, calculated 
using the standardized mean Euclidean distance. 
Genotype Selection in Breeding Programs 
The index was illustrated using a real dataset obtained from a trial involving 24 
genotypes. Nine agronomic traits were evaluated. The selection of genotypes focused 
on identifying those with lower values (negative gains) for DTF, PH, and DTM, 
while aiming for higher values (positive gains) for YD, PLL, PASQM, CC, TN, and 
LN. 
Each trait was analyzed using the gamem () function from the R package metan, 
which utilizes the mixed-effects model represented by Equation 8. 

y = Xb + Zu + e                                                                    (8) 

where y  is  an 𝑛 = [F (𝑔𝑟)]@
;I4 × 1 vector of response variable, i.e. the response of 

the ith   genotype in the jth block  ( i=1,2,…..,g; j=1,2,…..,r;  y = [𝑦44, 𝑦4G, … , 𝑦1@]′); 
b is an 1 × 𝑟	vector of unknown and unobservable fixed effects of block b =
[𝛾4, 𝛾G, … , 𝛾@]′; u is an 𝑚[= 1 × 𝑔] vector of unknown and unobservable random 
effects of genotype u = [𝛼4, 𝛼G, … , 𝛼1]′; X is an n × r design matrix of 0s and 1s 
relating y to b; Z is an n × m design matrix of 0s and 1s relating y to u; and e is an n 
×1  vector of random errors e = P𝑦44, 𝑦4G, … , 𝑦1@Q

O;The variance components 
obtained from the analysis were utilized to calculate the broad-sense heritability (h2) 
based on the mean of the genotypes, as shown below in Equation 9. 

ℎG = 𝜎UPG/(𝜎UPG + 𝜎UQG/𝑟)                                                                       (9) 
The predicted selection gain obtained with the index, SG (%), was computed for each 
trait considering a 𝛼	% selection intensity was expressed in Equation 10.  

𝑆𝐺(%) = (RS,7RS$)×T!

RS$
× 100                                                          (10) 

Where 𝑋\=	 is the mean of the selected genotypes is, 𝑋\( is the mean of original 
population and h2 is the heritability.  

Results 
Deviance Analysis, Variance Components, and Genetic Parameters 
The deviance analysis using the MGIDI and BLUP methods, with random effects of 
genotype and fixed effects of replication, revealed significant genotype effects across 
several agronomic traits (Table 2). Highly significant genotype effects (p < 0.05) 
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were observed for PH, DTF, and DTM, indicating robust genetic control over these 
traits. Moderately significant genotype effects (p < 0.05) were noted for LN, 
PASQM, and CC suggesting an intermediate genetic influence. In contrast, TN and 
YD did not show significant genotypic effects.  
Broad-sense heritability (h²) estimates varied across the traits, ranging from 0.03 for 
PLL to 0.96 for DTM. DTM exhibited high heritability (h² = 0.96) with an accuracy 
of 0.98, indicating strong genetic control and potential for selection gains. Similarly, 
PH also showed high heritability (h² = 0.91) with an accuracy of 0.96 after DTM. In 
contrast, TN and YD exhibited low broad-sense heritability values (h² < 0.5), 
suggesting a greater environmental influence on these traits.  
The analysis of variance components further elucidated the contributions of genetic 
and environmental factors to trait variation, as presented in Table 3. PH and DTM 
showed substantial genotypic variances relative to residual variances, indicating 
predominant genetic control. In contrast, PLL and YD exhibited higher residual 
variances, underscoring their sensitivity to environmental factors.  

Table 2. Deviance analysis and genetic parameters for agronomic traits evaluated in 
24 rice genotypes. 

Traits h2 Accuracy CVg CVr p-value 
PH 0.91 0.96 10.2 4.59 6.92E-15 
TN 0.2 0.45 6.5 18.5 3.77E-01 
LN 0.55 0.74 11.8 15.2 3.09E-03 
PASQM 0.44 0.71 5.47 7.88 1.05E-02 
DTF 0.55 0.74 7.93 10.3 3.49E-03 
DTM 0.96 0.98 5.7 1.81 5.85E-21 
PLL 0.03 0.15 0.79 7.36 9.27E-01 
CC 0.66 0.82 7.09 7.24 9.45E-05 
YD 0.23 0.48 5.76 15.3 3.19E-01 

Table 3. Estimated variance components. 

Traits Genotypic 
Variance 

Residual 
Variance 

Genotypic 
Variance (%) 

Residual 
Variance (%) 

PH 140 28.3 83.2 16.8 
TN 0.43 3.42 11 89 
LN 31.3 52.1 37.5 62.5 
PASQM 185 385 32.5 67.5 
DTF 42.6 72.3 37.1 62.9 
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Traits Genotypic 
Variance 

Residual 
Variance 

Genotypic 
Variance (%) 

Residual 
Variance (%) 

DTM 40.4 4.07 90.8 9.16 
CC 5.04 5.27 48.9 51.1 
PLL 0.04 3.03 1.11 98.9 
YD 0.06 0.36 12.5 87.5 

Eigenvalues and Varimax Factor Loadings 
The eigenvalue analysis and varimax factor loadings identified four principal 
components with eigenvalues greater than 1, collectively explaining 76.5% of the 
total trait variation (Table 4). Post-varimax rotation enhanced interpretability, with an 
average communality (h) of 0.76 across traits. Communalities ranged from 0.58 for 
PH to 0.85 for PLL, indicating that the factors captured a substantial portion of each 
trait's Variance. The nine traits analyzed were grouped into four factors (FA): FA1 
(DTF, DTM), FA2 (YD, PASQM), FA3 (TN, LN), and FA4 (PLL, CC). FA1, 
encompassing DTF and DTM, accounted for the highest variation in the dataset, 
highlighting its significance in identifying genotypes suitable for further breeding. 

Table 4.  Eigenvalues, explained Variance, factorial loading after varimax rotation, 
and communalities 

Traits FA1 FA2 FA3 FA4 
PH -0.23 0.04 0.59 0.58 
DTF -0.92 -0.07 -0.13 0.18 
DTM -0.91 -0.05 -0.14 0.03 
TN 0.14 -0.14 0.77 -0.23 
LN 0.42 0.23 0.7 -0.09 
PLL -0.07 0.06 0.08 -0.85 
PASQM 0.1 -0.89 -0.04 0.01 
CC 0.36 0.05 0.29 -0.69 
YD 0.25 0.81 -0.03 -0.07 
Eigenvalues 2.93 1.46 1.41 1.09 
Variances 32.5 16.2 15.6 12.2 
Accumulated 32.5 48.7 64.3 76.5 

Predicted Selection Gain 
The selection gains (SG) comparison between the MGIDI and FAI-BLUP indexes 
indicated that both indexes effectively achieved desired gains across all evaluated 
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traits (Table 5). Specifically, the MGIDI index demonstrated an overall selection gain 
of 15.13% for traits targeted for improvement and -0.42% for traits requiring 
reduction. Among the traits, LN showed the highest selection gain with 6.41%, 
followed by chlorophyll content with 4.32% for MGIDI. For FAI-BLUP, the overall 
selection gain was 1.25% for traits targeted for improvement and -11.09% for traits 
requiring reduction. The highest selection gain for FAI-BLUP was observed for CC 
with 1.07%, followed by YD with 0.17%. These results underscore the efficacy of 
both indexes in enhancing breeding objectives and achieving balanced genetic 
improvements across multiple traits. 

Table 5. Selection Gain Percentage of MGIDI and FBI-BLUP  

Traits Factor Goal 
Selection Gain (%) 

MGIDI FBI-BLUP 
DTF FA1 Decrease 1.43 -2.52 
DTM FA1 Decrease 2.1 -3.82 
PASQM FA2 Increase -0.21 -1.74 
YD FA2 Increase 0.1 0.17 
PH FA3 Decrease -0.21 -1.42 
TN FA3 Increase 0.76 -0.31 
LN FA3 Increase 6.41 -1.28 
PLL FA4 Increase 0.01 0.01 
CC FA4 Increase 4.32 1.07 

Total (Increase) 15.13 1.25 
Total (Decrease) -0.42 -11.09 

Selected Genotypes by MGIDI Index and BLUP 
The genotypes selected by the MGIDI Index include SVIN 127, SVIN 098, SVIN 
643, SVIN 084, and IR 18F1085 (Fig. 1). Notably, three of these genotypes: SVIN 
127, SVIN 098, and SVIN 643—are also selected by the FAI-BLUP index, indicating 
consistency in their selection criteria (Fig. 2). SVIN 127 and SVIN 098 were found 
near the cutoff point in the MGIDI index, whereas Hardinath-4 was found near the 
cutoff point in the FBI-BLUP index, suggesting they possess potentially valuable 
traits that warrant further investigation. MGIDI and FAI-BLUP indexes demonstrate 
effectiveness in identifying superior genotypes, contributing to balanced trait 
selection and enhancing breeding efficiency. 
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Fig. 1. Genotype ranking in ascending order for the MGIDI index. The selected 

genotypes are shown in red in the electronic version of the article. The circle 
represents the cut-point according to the selection pressure. 

 
Fig. 2. Genotype ranking in ascending order for the FAI-BLUP. The selected 

genotypes are shown in red in the electronic version of the article. The circle 
represents the cut point according to the selection pressure. 

MGIDI and FAI-BLUP Comparison 
The comparison revealed that the MGIDI and FAI-BLUP achieved the desired gains 
across all evaluated traits. Specifically, the MGIDI index demonstrated a higher 
overall selection gain, with an improvement of 15.13% for traits targeted for 
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enhancement and a reduction of -0.42% for traits requiring minimization. In contrast, 
the FAI-BLUP index improved by 1.25% for traits seeking enhancement and a 
reduction of -11.09% for traits needing minimization. This suggests that both indexes 
effectively meet breeding objectives, with MGIDI showing a more pronounced 
impact on enhancing desirable traits, while FAI-BLUP offers substantial reductions 
in traits requiring minimization. 
Strength and Weakness view 
The radar plot visualizes the strengths and weaknesses of various rice genotypes 
based on four factors (FA1, FA2, FA3, and FA4) contributing to the MGIDI index 
(Fig. 3). FA1 includes DTF, DTM, and YD. FA2 encompasses PASQM and PH. FA3 
covers TN and LN. FA4 includes PLL and CC. 
Genotype SVIN 191 exhibited strong overall performance across all traits, 
particularly excelling in FA1 traits such as DTF, DTM, and YD. In contrast, SVIN 
064 showed weaknesses in most traits, demonstrating lower FA1, FA3, and FA4 
performance. Genotype SVIN 312 performed well in FA2 traits like PASQM and 
PH, while IR 18L 1855 showed strengths in FA3 traits such as TN and LN. 
Additionally, IR 16A 5125 performed consistently well in FA1 and FA2 traits, 
indicating a balanced genetic potential. Conversely, SVIN 028 and IR 15L 1801 
exhibited weak performance across all factors, with slight strengths in specific FA2 
and FA4 traits. These insights underscore the utility of the MGIDI index in 
identifying genotypes with superior trait performances and facilitating targeted 
breeding strategies. 

 
Fig. 3. The strengths and weaknesses of the selected genotypes are shown in the 

proportion of each factor on the computed multi-trait genotype–ideotype 
distance index (MGIDI). The most minor the proportion explained by a 
factor (closer to the external edge), 
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Discussion 
Deviance Analysis, Variance Components, and Genetic Parameters 
The findings from Azevedo et al. (2023) aligned with existing research which also 
showed lower narrow sense heritability for GY and high narrow sense heritability for 
PH. Additionally, GY is a quantitative trait that is significantly influenced by 
environmental factors (dos Reis et al., 2015; Li et al., 2018; Zhang et al., 2022) . 
Higher residual variance was observed in PLL and YD, consistent with Akhouri 
(2022), which identified higher residual variance in these traits within environments 
1 and 2. 
The high heritability in PH and DTM indicated their potential for use in breeding 
programs focused on enhancing adaptation and productivity. Despite the DTM and 
DTF are usually strongly correlated, their heritability differences can arise due to 
factors like environmental interactions and specific genetic loci. DTF is often more 
environmentally sensitive than DTM because flowering initiation is affected by 
temperature, photoperiod, and other growth conditions (González et al., 2016; Shi et 
al., 2022). This aligned with the views of De Oliveira Neto et al. (2021), who 
emphasized the importance of genetic variability in selecting superior genotypes for 
better agricultural performance. On the other hand, the low heritability and non-
significant genotypic effects observed in TN and GY suggest that environmental 
factors play a more dominant role, supporting studies that highlight the 
environmental sensitivity of traits such as TN and GY. 
Research by Pallavi et al. (2024) and Al-Ashkar et al. (2023) highlighted the 
importance of genetic factors in trait variation, especially within the MGIDI 
framework, which focuses on capturing genetic diversity. Their studies stressed the 
essential role of genotype effects in fostering genetic diversity, supporting the 
broader goal of improving crop resilience and adaptability through genetic 
enhancement strategies. 
Eigenvalues and Varimax Factor Loadings: 
Eigenvalues indicated the amount of variance each factor explains, with FA1 
explaining 32.5% of the total Variance, followed by FA2 (16.2%), FA3 (15.6%), and 
FA4 (12.2%). The cumulative Variance showed that the first two factors explained 
48.7% of the variance, and all four factors together explained 76.5%. This 
highlighted that the factors represent different combinations of traits contributing to 
the variability in the dataset, with higher eigenvalues indicating more influential 
factors (Eze et al., 2021). Al Mamun et al. (2024) and Palaniyappan et al. (2024) also 
reported the factors with Eigen value greater than 1 representing the most variability.  
FA1, indicating this factor favored early flowering and maturing genotypes. TN was 
positively associated with FA3, implying this factor was related to higher tiller 
numbers. LN showed positive associations with FA1, FA2, and especially FA3, 
indicating a relationship with increased leaf production. PLL was negatively 
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associated with FA4, suggesting this factor favors shorter panicle lengths. PASQM 
was strongly negatively associated with FA2, implying this factor favored genotypes 
with lower PASQM. The CC was positively associated with FA1 and FA3 but 
negatively with FA4, indicating factors FA1 and FA3 may favor higher chlorophyll 
content. YD was strongly positively associated with FA2, closely linking this factor 
to higher yields. 
In the rice breeding program context, these factors guide genotype selection by 
highlighting key traits contributing to performance variability. Factors aligning with 
breeding objectives, such as increasing yield, can be prioritized in the selection 
process. Retaining principal components with eigenvalues exceeding 1, as suggested 
by Kaiser (1958) and supported by studies from Prasad et al. (2020), Pallavi et al. 
(2024), Bermudez and Pinheiro (2020) and Olivoto and Nardino (2021) demonstrates 
the robustness of factor analysis in distilling numerous traits into significant factors 
for breeding selection. 
Predicted Selection Gain 
The observed selection gains validated the robustness of the MGIDI and FAI-BLUP 
indexes in breeding programs, with significant improvements across evaluated traits. 
The MGIDI index demonstrated superior performance, particularly in traits like LN 
and TN, achieving higher overall gains. MGIDI showed a total gain of 15.13% for 
traits targeted for increase, compared to 1.25% for FAI-BLUP. MGIDI achieved -
0.42% for traits targeted for decrease, whereas FAI-BLUP achieved -11.09%. This 
indicated that MGIDI is slightly more effective, especially for traits needing 
significant improvement, aligning with the objectives of enhancing genetic diversity 
and crop adaptability for sustainable agriculture. Similar findings by Olivoto and 
Nardino (2021) and Al-Ashkar et al. (2023) also reported success of MGIDI in 
selecting traits with genetic gain.  
MGIDI and FAI-BLUP Comparison 
The evaluation of MGIDI versus FAI-BLUP revealed that both indices are effective 
but with notable differences. MGIDI excelled with a 15.13% increase in traits 
targeted for enhancement and a minimal -0.42% reduction in traits that needed to be 
minimized, reflecting its robust performance in boosting desirable traits while 
maintaining others. Conversely, FAI-BLUP showed a smaller 1.25% gain in 
enhancement traits and a significant -11.09% reduction in traits requiring 
minimization. The MGIDI index's balanced approach to improving primary traits like 
grain yield without compromising secondary traits underscores its suitability for 
modern breeding programs, especially in light of the importance of stress-resilient 
traits discussed by Nelimor et al. (2020). 
Strength and Weakness View 
This analysis provided valuable insights for breeders by highlighting the strengths 
and weaknesses of various rice genotypes using the MGIDI. Genotype SVIN 191's 
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robust performance across key traits, especially within FA1 (DTF, DTM, and YD), 
positioned it as a top candidate for breeding programs. Conversely, SVIN 064's 
underperformance across multiple factors, including FA1, FA3, and FA4, indicated 
areas that need improvement. 
The favorable results of genotypes like IR 18L 1855, which exceled in FA3 traits (TN 
and LN), and IR 16A 5125, which showed balanced performance in FA1 and FA2 
traits, underscored their potential to enhance rice production. While exhibiting weak 
overall performance, Genotypes SVIN 028 and IR 15L 1801 showed some strengths in 
specific FA2 and FA4 traits, suggesting targeted improvements might be beneficial. 
In contrast, the weak performance of SVIN 051 and IR 17L 14 pointed to a need for 
significant enhancement or reconsideration for breeding use. The detailed evaluation 
of these strengths and weaknesses highlighted the potential of MGIDI as an effective 
tool for identifying and selecting genotypes with desirable traits, such as early 
seedling vigor and high grain yield. These insights were crucial for developing 
improved rice varieties and making strategic decisions in breeding programs, as 
emphasized by Pallavi et al. (2024).  

Conclusion 
This study evaluated genetic variability and heritability of key agronomic traits in 
rice genotypes using the MGIDI and FAI-BLUP methods. Significant genotype 
effects were identified for PH, DTF, and DTM, indicating their suitability for 
breeding programs focused on enhancing adaptability and productivity. High 
heritability estimates for these traits suggested robust genetic control, while lower 
heritability for YD and TN highlighted environmental influences. The analysis also 
demonstrated the MGIDI index superior performance in predicting selection gains, 
particularly for LN and TN, with selected genotypes like SVIN 191 showing strong 
potential. These findings underscored the importance of genetic diversity and 
strategic selection in rice breeding. Overall, the study supported the use of MGIDI as 
an effective tool for improving crop resilience and quality. Future research should 
focus on genotype- environment interactions and the application of multivariate 
techniques to further refine selection strategies. 
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