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Abstract 
This Quantitative trait locus (QTL) analysis is a widely used statistical approach for the 
detection of important genes in the chromosomes. Maximum likelihood (ML) based 

interval mapping (IM) is one of the most popular approaches for QTL analysis. However, 
it is relatively complex and computationally slower than regression based IM. Haley-
Knott (HK) and extended Haley-Knott (eHK) regression based IM save computation time 
and produce similar results as ML-IM.  However, these approaches are not robust against 
phenotypic outliers. In this research, we have developed a robust regression based IM 
approach by maximizing beta-likelihood function for intercross (F2) population. The 
proposed method reduces to the HK-IM method when beta → 0. The tuning parameter 
beta controls the performance of the proposed method. The simulation results show that 

the proposed method improves performance over the existing IM approaches in the case 
of data contaminations; otherwise, it shows almost the same results as the classical IM 
approaches. 

Keywords—QTL analysis; F2 population; robust regression; maximum beta-likelihood estimation; 
beta-LRT criterion; robustness. 

INTRODUCTION 

The rapid increase in availability of fine-scale genetic markers due to the rapid 

advancement in molecular biology has led to the intensive use of QTL mapping in the 

genetic study of quantitative traits in bioinformatics. Reference [1] first proposed the idea 

of using two markers to bracket a region for testing QTLs. Reference [2] proposed a 

similar, but much improved, method which is known as interval mapping (IM) approach. 

This method uses two adjacent markers to test the existence of a QTL within the interval 

by performing a likelihood ratio test (LRT) at every position in the interval. Maximum 
likelihood (ML) based IM [2] and regression based IM [3] are two most popular and 

widely used interval mapping approaches. 

In practice, QTL effects are treated as either fixed or random [4]. In fixed effects QTL 

model, allelic substitution effects are usually estimated and tested, and QTL variance is 

calculated from estimated allelic effects. In random effects QTL model, the QTL effects 

and QTL variance are directly estimated and tested. Since the conditional expectations of 

the QTL genotype given the flanking marker genotype are unknown in MLE based IM 

model [2], this QTL effect model can be treated as a random effects model (REM). On 
the other hands, in the HK regression based IM model the conditional expectation of the 

QTL genotype given the flanking marker genotype is considered as fixed [5] and this 

model can be treated as a fixed effect model (FEM). 
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The existing interval mapping based on REM [2] and FEM [3] are two most popular and 

widely used methods for QTL analysis. But these methods are not robust against 

phenotypic contaminations. In this work, we propose a robust method with FEM to 

perform QTL analysis for F2 population. We also show a simulation study to investigate 

the performance of the proposed method with the existing random effect QTL model and 

fixed effect QTL model for F2 population. 

A QTL MAPPING FOR F2 POPULATION USING REGRESSION APPROACH 

Let us consider that there is no epistatis between two QTLs, no interference in crossing 

over, and there is only one QTL in the testing interval. The fixed effect model for F2 

population, for testing a QTL within a marker interval, is defined as        

           yj ax*
j|i  dz*

j|i   uj, i = 1, 2, 3 and j = 1, 2, …, n                                 (1) 

where yj  is the phenotypic value of the j-th individual, x
*
j|i pj|1  pj|3, z

*
j|i  pj|2, μ is the 

general mean effect, a is the QTL  additive effect, d is the  QTL dominance effect and  

uj~NID(0,) is a random error. Here, x*
j|i and z*

j|i are the probabilities for QTL 
genotypes conditional the flanking marker genotypes. Since conditional expectation is 

equivalent to conditional probabilities of QTL genotypes [5], x*
j|i and z*

j|i are fixed. Since 

x*
j|i and z*

j|i are fixed, so this model is called fixed effect model. 

The conditional probabilities for QTL genotypes QQ, Qq and qq given the flanking 
marker genotypes are denoted by pj|1, pj|2 and pj|3 respectively. The conditional 

probabilities pj|1, pj|2 and pj|3 are shown in TABLE I for F2 population. In TABLE I, p is 

defined as p  rMQ /rMN where rMQ is the recombination fraction between the left marker M 
and the putative QTL and rMN is the recombination fraction between two flanking markers 

M and N. Also c is defined as cr2
MN [ r

2
MN  (1  r2

MN)]. The possibility of a double 
recombination event in the interval is ignored. 

To investigate the existence of a QTL at a given position within a marker interval, we 

want to test the hypothesis H0: a  0 and d   0 (i.e., there is no QTL) versus H1:  H0 is not 
true.  

Under the normality assumption of error, the probability density function of the trait value 

(y) within each QTL genotype class is N(ax*
j|i  dz*

j|i, 
). Then the likelihood 

function for the parameters ,a,d, can be written as follows   
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To test H0 against H1, the likelihood ratio test (LRT) statistic is defined as 

LODYLYLLRT *608295.4)|(suplog)|(suplog2
0









 



                                 (3) 

where, Θ0 and Θ are the restricted and unrestricted parameter spaces. 

The threshold value to reject the null hypothesis can't be simply chosen from a chi-square 
distribution because of the violation of regularity conditions of asymptotic theory under 
H0. The number and size of intervals should be considered in determining the threshold 
value. Since multiple tests are performed in mapping, the hypotheses are usually tested at 
every position of an interval and for all intervals of the genome to produce a continuous 



Regression Based Robust QTL Analysis for F2 Population 

 
97 

LRT statistic profile. At every position, the position parameter p is predetermined and 

only μ, a, d and  are involved in estimation and testing. If the tests are significant in a 
chromosomal region, the position with the largest LRT statistic is inferred as the estimate 
of the QTL position and the maximum likelihood estimates (MLEs) at this position are 

the estimates of μ, a, d and  obtained by iterative way. 

The MLEs of the parameters   [  a  d ]T and 2 are obtained as follows 

 )()(ˆ 1 YXXX TT   and  )ˆ()ˆ(
1

ˆ 2  XYXY
n

T                                            (4) 

Obviously these estimates are very much sensitive to outliers. Therefore, regression 
analysis by MLE produces misleading results in presence of outliers. 

TABLE I.  CONDITIONAL PROBABILITIES OF A PUTATIVE QTL GENOTYPE GIVEN THE FLANKING MARKER 

GENOTYPES FOR AN F2 POPULATION 

Marker Genotypes Expected Frequency 
QTL Genotypes 

QQ(pj|1) Qq(pj|2) qq(pj|3) 

MN/MN (1  r)
2
/4 1 0 0 

MN/Mn  r(1  r)/2 (1  p) p 0 

Mn/Mn  r2
/4 (1  p)

2
 2p(1  p) p2

 

MN/mN  r(1  r)/2 p (1  p) 0 

MN/mn  [(1  r)
2
  r2

]/2 cp(1  p) 1  2cp(1  p) cp(1  p) 

Mn/mn  r(1  r)/2 0 (1  p) p 

mN/mN  r2
/4 p2

 2p(1  p) (1  p)
2
 

mN/mn  r(1  r)/2 0 p (1  p) 

mn/mn  (1  r)
2
/4 0 0 1 

 
ROBUST QTL MAPPING FOR F2 POPULATION USING REGRESSION APPROACH 

The β-likelihood function (for details about β-likelihood, see [6]) for  is given by                                                                                                               
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The β-likelihood equation is obtained as 
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where x0j  1 for all j  1, 2, …, n and wj = exp[ (β/22)( yj  ax*
j|i  dz*

j|i)
2] for i 

1, 2. The function wj  w(yj|, xij) is the weight function which produces almost zero 
weight for the outlying observations. 

Solving (6), we get the proposed estimates of the parameters   as 

)()(ˆ 1 YXXX T

WW

T   and  )ˆ()ˆ(
1

ˆ 2  XYXY
n

T                                          (7) 

where XW  = Xn×3 (Wn×1 11×3)
-1 )( YX T

W . The notation   denotes the Hademerds product. 
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To test H0: a = 0 and d  = 0 against H1:  H0 is not true, the proposed test criterion is 
defined as 

  2n[L )|ˆ( 1 Y   L )|ˆ( 0 Y ], where )ˆ,ˆ(ˆ 2

0   and )ˆ,ˆ,ˆ,ˆ(ˆ 2

1  da            (8)   

By permutation test, we compute the p-value for testing H0 vs H1 using the following 
formula 

   p
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/NIp
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ˆˆ                                                                                                     (9) 

where Np is the number of permutation under H0 and ̂  is the estimate of  for the 

original dataset and ̂ (k) is the estimate of  for the k-th permutation of the values of 

the response variable. Note that, for β → 0, ̂  reduces to the approximate  

distribution. 

SIMULATION RESULTS 
To illustrate the performance of the proposed method in comparison of random effect and 
fixed effect model for QTL mapping with F2 population, we have considered two 
unlinked QTLs with total 7 chromosomes and 13 equally spaced markers in each of 
chromosomes, where any two successive marker interval size is 5cM. The true QTL 
position is located in chromosome 1 and 3 with marker 7. The true values for the 

parameters in the fixed effect model are assumed as , a   0.8, d  0.4 and   

0.5. We have generated 250 trait values with heritability h2  0.20 which means that 20% 
of the trait variation is controlled by QTL and the remaining 80% is subject to the 
environmental effects (random error). To investigate the robustness of the proposed 
method in a comparison of the REM and FEM methods, we contaminated 12% trait 
values in this dataset by outliers. To perform the simulation study we have used R/qtl 
software [8].   

Fig. 1(a) and Fig. 1(b) are representing the scatter plots of 250 trait values in presence and 
absence of outliers, respectively. Then we computed LOD scores by REM, FEM and the 
proposed methods for both types of data sets. Fig. 1(c) and Fig. 1(d) are showing the LOD 
scores profile plots for the uncontaminated and contaminated datasets, respectively. 

In the LOD scores profile plots the dotted, two dash and solid lines represent the LOD 
scores at every 1cM  position in the chromosomes for REM, FEM and the proposed 
method with  β = 0.2, respectively. It is seen that the highest LOD score peak occurs in 
the true QTL position of the true chromosome 1 and 3 with marker 7 by all three methods 
for the uncontaminated dataset. However, in presence of outliers, the highest LOD score 
peak occurs in the true QTL position by the proposed method only [see Fig. 1(d)]. 

CONCLUSION 
In this paper, a new robust regression based interval mapping approach has been 
discussed for QTL analysis by maximum β-likelihood estimation with F2 population. The 
value of the tuning parameter β plays a key role on the performance of the proposed 
method. An appropriate value for the tuning parameter β can be selected by cross 
validation. The proposed method with tuning parameter β = 0 reduces to the traditional 
interval mapping approach. Simulation results show that the proposed method 
significantly improves the performance over the classical interval mapping approaches in 
presence of phenotypic outliers. 
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Fig. 1. Simulated phenotypic observations in (a) absence and (b) presence of 12% outliers, and LOD 

score profile in (c) absence and (d) in presence of 12% outliers. 
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