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Abstract 
The linear stability of radial flow of a viscous fluid in the presence of a 
radial magnetic field is investigated. Basic velocity field  q0 = (c/r,0,W) 
and magnetic field  B0= (A/r,0,0) are  considered in an annulus between 
two concentric cylinders. To analyze hydro-magnetic stability, inner 
product method is employed.  The stability condition  derived is found 
to remain valid even when the local velocity is not entirely radial, and 
that the magnetic field exerts a stabilizing effect on the flow. 

 
 
1. Introduction 
 
The linear stability of a steady nondissipative flow of an incompressible fluid 
between two concentric cylinders with circular streamlines was studied by 
Rayleigh [1] for axisymmetric disturbances. Howard and Gupta [2] examined 
MHD stability with  axisymmetric disturbances for a steady  nondissipative 
helical flow of a conducting fluid with velocity components  (0, Vθ(r), W(r))  and 
mgnetic field either axial or  azimuthal .Using a technique developed by Barston 
[3], Bhattacharyya et al. [4] investigated the hydro-magnetic stability for a non-
dissipative flow of an incompressible conducting fluid with non-axisymmetric 
disturbances. 
 
Vorobev et al. [5] observed the case for low magnetic Reynolds number 
employing 
direct numerical simulations and large eddy simulation of a forced flow in a 
periodic box. A  series of simulations is performed with different magnetic field 
strengths and  varying  Reynolds number. Dawes [6] has shown that in  the 
presence of a vertical magnetic field, convection may instead occur in vigorous 
cells seperated by regions of strong magnetic field strength. Zhang and Busse [7] 
investigated the instability of an electrically conducting fluid of magnetic 
diffusivity and viscosity in a rapidly rotating sphere when toroidal magnetic field 
is present. Thess and Zikanov [8] examined  the robustness of two-dimensional 
inviscid MHD flows at low magnetic Reynolds numbers with three dimensional 
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perturbations. Rajaee and Shokri [9] considered the case when a transition layer 
exists between two fluids, and both density and magnetic field change across this 
layer. The numerical calculations show that  increase of the Mach number and 
compressibility has a destabilizing influence,  the increases in magnetic field 
strength and density provide a stabilizing effect. Deka and Gupta [10] have 
analyzed linear stability of wide-gap MHD dissipative Couette flow of an 
incompressible electrically conducting fluid between two rotating concentric 
circular cylinders when a uniform axial magnetic field is present. 
 
In this  presentation,  we have take the basic velocity field  q =(c/r,0,W) and  
magnetic field B =(A/r,0,0)  in an annulus outside of which a permeable shell is 
placed. Following Bhattacharyya et al. [4], we have also used inner product 
method to deduce the  stability condition. They  showed that radial flow with 
radial magnetic field remains stable for all disturbances provided, in the 
undisturbed state, local Alfven's speed  exceeds the local velocity everywhere in 
this flow. We have demonstrated that the stability  condition derived remains 
valid even when the local velocity is not purely radial. 
 
 
2. Mathematical Formulation  
 

 

 
   

  
  
  
  
  
  

             Fig1: Two porous concentric cylinders  r= a  and r = b (a > b).  

 
Consider an inviscid incompressible flow of a perfectly conducting fluid between 
two porous concentric cylinders  r= a  and r = b (a > b), the flow being caused by 
a line source of strength 2πc per unit length, where c is a constant. In a 
cylindrical coordinate system (r,θ,z), the basic velocity field q0 =(c/r,0,W), where 
W is a constant, satisfies the equation of continuity. We assume radial magnetic 
field  B0 =(A/r,0,0) where A is a constant  also satisfies ∇⋅B0 = 0. According to 
discussion by Globe [11], the physical realization of such a radial magnetic field 
exists in an annulus outside of which a permeable shell is placed. 
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 The governing equations  are 
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where  q is the velocity vector,  t, P, ρ,  µ, and B  represent time,  pressure, 
density, magnetic permeability, and magnetic field, respectively. The perturbed 
velocity is  q =(c/r+ur, uθ, W+uz). The perturbed magnetic field and the total 
presure  (hydrodynamic and hydromagnetic) p are respectively taken as B =(A/r+ 
br, bθ, bz) and P/ρ = p0/ρ + p , where p0 is the unperturbed total pressure. We 
assume that the perturbation quantities have (t,θ, z) dependence of the form 
ei(σt+mθ+kz), where σ = complex number, m = an integer, and  k = real number. We 
linearize the equtions in the usual way and seek solutions in which all 
perturbation quantities φ may be written as 
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The linearized momentum equations are 
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The linearized magnetic induction  equations are 
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where  L = i(σ + k W) and  
dr
dD = . 

 
The Lagrangian displacement vector ξ is defined by 
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From equation (5),  we get 
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From equations  (4) and  (6), we get 
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Substituting for ur, uθ and uz from equations (6) and for br, bθ and bz  from 
equations  (7) in  equations (3), we obtain 
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Equations  (8)  can be written in the matrics form as 
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Here E, iG, and H  are independent of λ. On the other hand ∇. q = 0, ∇. B = 0, 
and  ∇. ξ = 0 . Moreover 
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According to Barston [3], the inner product can be defined as 
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with the boundary conditions ξr  = ξθ = ξθ= 0  at  r = a, b. Taking inner product 
with ξ 
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Hence, 
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Hence, <ξ,Eξ> is real. 
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Hence, <ξ,iGξ>  is real. 
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Hence,  <ξ,Hξ>   is real. Therefore, equation 
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is a quadratic equation in λ with real co-efficients. From equation (15), 
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Conclusions 
 
Case 1: 
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The roots λ will be real. If S ≥ 0 then  the motion accordingly will be oscillatory. 
 
Case 2: 
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(a) The motion will be stable if λi > 0   and  
(b) the motion will be unstable if λi  < 0 . 
 
(ii) If  ( ) >><<>>< ξξξξξξ HEiG ,,4, 2 , then  S > 0  and accordingly the 
motion will be oscillatory. 
 
Therefore, we conclude that  stability condition deduced above remains valid 
even if the local velocity is not purely radial, and that the magnetic field has a 
stabilizing effect on the flow. 
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