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Abstract

An improved computational approach which implements a protein-protein
interaction prediction system based on the sequence information of a protein has
been presented. A Support Vector Machine (SVM) is trained with this sequence
information to predict the interactions. This interaction prediction technique
exhibits 79.81% accuracy over a wide range of data, which is a significant
improvement over other conventional computational protein-protein interaction
prediction methods.

Introduction

Protein-Protein Interaction (PPI) is the fundamental mechanism that plays a vital
role in biological function, DNA replication, immunologic recognition and
progression through the cell cycle (Alberts et al. 1989). Predicting this interaction
is thus becoming a focal point for researchers. Further understanding the
function and the physiological role of proteins is fundamental to the discovery of
novel medicinal and protein based products with medical and industrial
application. Despite the high importance of recognizing the PPI, very little has
been achieved so far, as the experimental approaches for PPI identification are
both expensive and laborious. However, an improved computational approach
can compliment experimental procedures with increased cost savings and
greater confidence in the experimental results. A number of computational
methods for predicting PPI, based on sequence or structure information, have
already been developed that shows good accuracy. However, they still cannot
achieve desired accuracy over a wide range of data. Further, for identifying
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residues in protein—protein interfaces researchers have attained high levels of
accuracy. Although these methods attempt to identify all interface residues, one
limitation is that they capture only a small fraction of them.

A large number of experimental techniques have been developed for the
systematic analysis of PPI, such as yeast two-hybrid-based methods (Fields and
Son 1989), protein chips (Zhu et al. 2001), photo-reactive amino acid analogs,
Tandem affinity purification and many more (Tong et al. 2002). However, these
experimental techniques are time consuming and very expensive, which is one of
the main reasons that computational approaches have also been explored. A
computational analysis of phylogenetic profiling has shown some success in
predicting the PPI, but the limitations of this method is that this method includes
the fact that it can only be used when a complete genome is available (Snitkin
et al. 2006). Genes with closely related functions, encoding potentially interacting
proteins are often transcribed as a single unit, an operon, in bacteria and are co-
regulated in eukaryotes. Gene neighbour and gene clustering methods are being
developed to discover details of these closely related interactions (Bowers et al.
2004). In silico method, which identifies the interaction, by arranging the two
proteins based on the accumulation of signals in the proximity of interacting
surfaces has also been reported (Pazos et al. 1997). The limitation here is the need
for complete alignment, with a good coverage of species common to the two
proteins under study.

Different classification methods have been successfully applied to identify
protein interactions. Classifiers are trained with certain protein features and then
ran with the test data. This classification approach has resulted in good accuracy
being achieved (Qi et al. 2005, Chen and Liu 2005, Bader et al. 2004). Yan et al.
(2002) developed an approach for computational prediction of protein-protein
interaction sites using a SVM classifier where interface residues and non-
interface residues with relatively high specificity (71%) and sensitivity (67%)
were identified.

Data mining procedures are emerging for the automatic extraction of
information about protein interactions from a large amount of already
established protein interaction data. These procedures are applied to extract
protein sequence signatures from existing protein-protein interaction data or to
discover the stable and significant binding motif pairs from PDB complexes. The
extracted data through these procedures is then applied to predict other protein
interactions.

Information about the three dimensional (3D) structure of a protein reveals
information about interface residues, but most of the time such high resolution
information is not available (Recio et al. 2005). So Protein-protein docking, which
is the method of determination of the molecular structure of complexes formed
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by two or more proteins without the need for experimental measurement is used
to predict the interactions.

This paper proposes a prediction technique, based on sequence information
of amino acid triplets and employing a support vector machine (SVM), covering
a large range of organisms. The prediction accuracy achieved through utilizing
this binary classifier SVM approach shows a significant improvement.

Materials and Methods

The protein interaction data was collected from http://dip.doe-mbi.ucla.edu a
publicly accessible online database of interacting proteins (DIP). In order to test
the proposed methodology, a classifier was trained to distinguish between the
positive examples of truly interacting protein pairs and the negative examples of
non-interacting protein pairs. As this classifier is a binary classifier it considers
the interacting protein sequences to be the positive dataset and non interacting
protein sequences to be the negative dataset.

The protein interaction refers to the association of protein molecules from the
perspective of biochemistry, signal transduction and networks. Interacting
sequences are considered as the positive dataset during classifier training. To
develop the training dataset, a total number of 7,935 interacting protein sequence
pairs, (two interacting proteins), of D. melanogaster were collected. Later the
model was trained with the dataset of E. coli, H. sapiens and C. elegans to test the
accuracy of the identification of protein interaction on those corresponding
species. In these cases, the test data sets were also collected from the same
source.

There is no “gold standard” dataset of non-interacting protein sequences,
and there is also no database for non-interacting proteins. Therefore, researchers
tend to adopt their own techniques in deriving the non-interacting protein
sequences. These non-interacting protein sequences are considered as the
negative dataset for classifier training. In our work, we picked non-interacting
protein pairs from the interacting protein database, for which explicit interaction
information is not found. For instance, if AB, BC and CE are three interacting
protein pairs, then AC, BE, AE etc. may be considered as the candidates for non-
interacting protein pairs (Ben-Hur and Noble 2005, Juwen et al. 2007). The
desired number (same as the total number of interacting protein pairs in training
set) of non-interacting pairs are selected uniformly at random from the set of all
such candidate protein pairs. From the rest of the candidate non-interacting
pairs, a random set of pairs are taken as test data. Following the above
mentioned process, we picked interacting and non-interacting pairs for both
training and test data set for D. melanogaster, E. coli, H. sapiens and C. elegans.
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Support vector machine (SVM), a supervised machine-learning technique,
has been used in this research to discriminate between interacting and non-
interacting protein sequences. SVM classifiers solve multi-class classification
problems using the structural minimization principle. In our experiment, we use
LIBSVM (Chang and Lin 2001) with RBF kernel. Training is performed in a
supervised manner on a collection of interacting and non-interacting protein
training sequences. The model developed from the training set is then used to
predict the interacting protein sequences from a pair of test sequences.

The main computational challenge in predicting PPI using protein sequences
is to describe the important information residing within the sequences of amino
acids. To address this problem, we use triad/triplet where any three continuous
amino acids are considered as a unit. Thus, differentiation between classes is
made according to the triplet, i.e. gamma interferon activation site/gamma
interferon activation factor (GAS/GAF) is distinct and belong to different groups.
Taking these three amino acids at a time and dividing the amino acids into seven
classes a total of 7*7*7 = 343 different combinations are possible.

The properties of PPI can be described using a vector space R as (fi, f2, f5, ...,
f343), where fi is defined in Eq. 1.

fi= freq(r) ©)
where, ri denotes any specific type of triad/triplet and the function freq(ri)
calculates the frequency of that specific i (number of times it occurs) in a protein

sequence.

We represent a protein sequence x as a vector in this vector space using Eq. 2.
Re=(Fos Fus Fvs fy) @)

To denote a pair of protein sequences (Pas), whether they interact or not, we
simply concatenate the vectors representing them, which results in a 686
dimensional vector according to Eq. 3.

Pa/h: Ra ® Rb (3)

where, ® represents the concatenation of two vectors.
However, to distinguish interacting and non-interacting pair of protein

sequences, we use P, if protein a interacts with protein b, and P, , if they do not

interact. Such 686 dimensional vectors are used as the positive dataset
(interacting protein sequences) and the negative dataset (non-interacting protein
sequences) in the SVM.

It is obvious that the frequency of the triads dependent on the length of the
protein sequences. In general, a long protein sequence is likely to cause larger
frequencies of the triads than a short protein sequence. The variation in lengths
creates complications in the prediction accuracy. Hence, normalization is done
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according to Eq. 4 to neutralize the differences in the lengths of protein sequence.
These normalized values are used in the vector representations.

{c\_ _ fi—min(f,, f,,... f3,;) (4)

max (fl’ fzv“': f343 )

Results and Discussion

The properties of 20 different amino acids play a vital role in protein-protein
interaction. This paper manipulates these properties by dividing them into
different relevant groups. To extract the key features three consecutive amino
acids were taken from the test sequence to make a triplet/triad. Each of those
amino acids falls into its own category, depending on its physiochemical
properties. First they were grouped into two major classes: hydrophobic,
hydrophilic. Thus, any triplet falls into one of the 8 categories (as the amino acids
are divided into two categories, total number of groups for a triplet will be
2¥2*2=8) as demonstrated in Table 1. In this table, A1 A2 and As fall are the first,
second and third amino acid respectively in a triplet. Gi and Gz are used to
indicate groups.

Table 1. Categorization of amino acid triplets when each amino acid is grouped into one of the two
groups.

Triplet Category  Description
AAAs GGG All the three amino acids within the triplet fall into group 1.

Gi1G1G2 The first two amino acids from the triplet fall into group 1 and the last one
falls into group 2.

G1G2G1 The first amino acid falls in group 1, the second one falls in group 2 and
the third one again falls in group 1.

G1G2G2 The first amino acid falls in group 1 and rest of the two fall into group 2.
G2Gi1G1 The second amino acid falls in group 2 and the rest fall into group 1.
GGiG2 The first amino acid falls in group 2, the second one in group.

G2G2Gr The first two amino acids fall in group 2 and the last one in group 1

G2G2G2 All the three amino acids fall in group 2.

Prediction accuracy based on hydrophobic and hydrophilic grouping is
59.88%. The hydrophilic group was further sub-divided into two sub-classes;
charged and uncharged, in order to incorporate electrostatic property. In this
experiment, the 20 amino acids fall into any one of the three categories. At this
point, the accuracy level jumped to 72.08%. Next the charged groups were
further divided into positively charged amino acid and negatively charged
amino acids since 75% (Voet et al. 2005) of charged residues show strong
interaction between oppositely charged members of an ion pair. With these
groups 75.59% accuracy was achieved. Finally, the 20 amino acids were divided
into seven classes based on seven different properties. These classes are
hydrophobic, aromatic, hydrophilic, small hydrophilic, sulphahydral, positively
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charged and negatively charged. Amino acids within the same class are likely to
involve synonymous mutations due to shared characteristics (Yan et al. 2002).
The properties of different groups are summarized in Table 2. Based on this
classification, the accuracy reached to 79.81% over a wide range of data.

Table 2. Properties of different amino acid groups.

Group characteristics Group properties
Hydrophobic Non charged side chain
Aromatic Side chain contains aromatic ring system

Hydrophobic with long side chains Side chain contains long uncharged group

Hydrophilic Side chain contains small charged group

Sulfahydryl Side chain contains sulfahydryl

Hydrophilic with Negative Charge Side chain contains negatively charged and polar group
Hydrophilic with positive charge Side chain contains positively charged and polar group

Table 3. Group based on hydrophobic and hydrophilic.

Group characteristics Amino acid Accuracy
Hydrophobic G A V,LLLMEFEW,P

59.88%
Hydrophilic SST,CY,NQDEKRH

Table 4. Group based on hydrophobic, hydrophilic and charged hydrophilic.

Group characteristics Amino acid Accuracy
Hydrophobic G A V,LILMEW,P

Hydrophilic SST,CY,N,Q 72.08%
Hydrophilic with charge D,E, K, R, H

To evaluate the prediction accuracy of the proposed methodology a
sevenfold cross validation is used instead of Jackknife and bootstrapping (Good
2005) as it is computationally inexpensive and more efficient. Both bootstrapping
and jackknife methods estimate the variability of a statistic from the variability of
that statistic between sub-samples; as a result it incorporates the effect of self-
influence. Whereas the cross validation is free from this self-influence as it splits
the data into k subsets; each is held out in turn as the validation test. In sevenfold
cross validation, the dataset divided into seven random parts. Each time it
trained with six parts and tested with the single part. 8,000 protein sequences of
Drosophila melanogaster were collected from Database of Interaction Protein (DIP)
as the positive dataset and another 8,000 as the negative dataset were created
using the method mentioned previously. The result is summarized in Tables 3-6.
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Table 5. Group based on hydrophobic, hydrophilic and positively charged hydrophilic and
negatively charged hydrophilic.

Group characteristics Amino acid Accuracy
Hydrophobic G A V,LLILMFW,P

Hydrophilic ST, CY,N,Q

Hydrophilic with negative charge =~ D, E 75.59%

Hydrophilic with positive charge K, R, H

Many different efforts have been made to predict PPIs in recent years.
Jingchun et al. 2007 demonstrated In PrePPI to predict PPI in prokaryotic genome.
These authors developed three methods, which they applied to different
datasets. In their method, the highest accuracy achieved was 78%. Juwen et al.
2007 proposed PPI prediction technique using sequence information. In their
technique they achieve 83.9 + 1.29% accuracy but they achieved this by using a
specific dataset. Sensitivity of 50% and specificity of 98% was achieved by Wan et
al. 2002 for large scale statistical prediction of protein-protein interaction by
using potentially interacting domain (PID) pairs. In comparison with these
methods, the novel method demonstrated in this paper achieves both higher
accuracy and coverage across data for diverse organisms.

Table 6. Group based on hydrophobic, aromatic, small hydrophilic, hydrophilic, sulthydryl,
positively charged hydrophilic and negatively charged hydrophilic.

Group characteristics Amino acid Accuracy
Hydrophobic G AP

Aromatic E,W, Y

Small hydrophilic V,L, M

Hydrophilic S,T,N,Q 79.81%
Sulfhydryl C

Hydrophilic with negative charge D, E

Hydrophilic with positive charge KR H

So far we have demonstrated step by step performance improvement while
we increase amino acid grouping. This in turn gives us an indication that such
grouping is very important for PPI identification. Being inspired with this result,
we have tested our idea for PPI detection over three different species across the
kingdom, namely E. coli, H. sapiens and C. elegans. We have achieved similar
performances in all these cases (data not shown). The results confirm our
intuitive interpretation. Even though, in some cases, our proposed method
shows little inferior accuracies compared to some existing works on specific data,
it exhibits well generalized and consistent results over different datasets.
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Successful and efficient prediction of protein-protein interaction can advance
bio-medical research. This paper describes a methodology to predict PPI with
high accuracy and good coverage of data types. This method is based on amino
acid properties, which are taken as the motif to train the SVM. The main idea is
to find all possible patterns grouped into several clusters depending on the
physiochemical properties of amino acids, which predominantly appear in the
pairs of interacting proteins. A classifier is then trained with these features to
predict the association of protein sequences. Further efficiency could be achieved
if gold standard negative data is obtained.
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