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In this study, the performance of Oryza sativa vacuolar Na*/H* antiporter
(OsNHX1) was shown to be similar under the two constitutive promoters
Actin1D and CaMV35S. Over-expression of the gene under both promoters was
confirmed by semi-quantitative RT-PCR. Results of the phenotypic assessment
for the level of salt tolerance at seedling and reproductive stages were not
significantly different between the two transgenic rice genotypes. Expression of
the antiporter gene with the two different promoters resulted in lower K*/Na*
ratios in both the transgenic lines compared to controls. The K*/Na* ratios were
compatible with the degree of tolerance shown by the seedlings.

Crop production is severely affected by excessive soil salinity. The United
Nations Environment Program estimates that approximately 20% of agricultural
land and 50% of cropland in the world is salt stressed (Flowers and Yeo 1995).
High salinity causes ion imbalance and hyper osmotic stress in plants which
leads to perturbation of crucial metabolic reactions inside the cells. To cope with
salt stress, plants have developed a variety of adaptation mechanisms. One of
them is the compartmentation of Na* into vacuoles, which can be achieved by the
action of Na*/H* antiporters (NHX1) on the vacuolar membranes (Wyn Jones and
Pollard 1983, Blumwald et al. 2000).

Rice is one of the most important crops in the world whose production is
greatly affected by salinity (Akbar and Ponnamperuma 1980). Therefore, it is of
agricultural importance to improve salt tolerance in rice. In an effort to improve
salt tolerance in rice, a Bangladeshi rice variety Binnatoa was transformed with
the Na*/H* antiporter gene, OsNHX1, isolated from Nipponbare rice cDNA
under the constitutive promoter CaMV35S (Rasul 2005). Recently, the same gene
has been reported to be transformed and expressed under the rice promoter
ActinlD in Binnatoa (Islam et al. 2009). The rice ActinlD promoter is a strong
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constitutive promoter and shows very efficient expression in monocots
particularly in rice (McElroy et al. 1990). In this report, expression of the OsNHX1
gene under the ActinlD and CaMV35S promoters was compared and the degree
of salt tolerance provided was evaluated.

In previous studies, transformation and enhanced expression of the 1.9 kb
OsNHX1 gene under the two different promoters was done and later the
transgenic lines were advanced from To to T4 generation by using hygromycin
selection at 20 mg/l (Rasul 2005, Islam et al. 2009). In this study, two different
transgenic rice cv. Binnatoa lines, CaMV355-OsNHX1-70 and Actin1D- OsNHX1-
143, were used.

Total RNA was extracted from the shoot of ten-day-old seedlings of
transgenic and nontransgenic Binnatoa according to the TRIzol® Reagent
(Invitrogen™) manufacturer’s instructions. Then, cDONAs were synthesized from
1 pg total RNA (pre-treated by DNase I) of transgenic and nontransgenic root
and shoot as explained above. The PCR reaction was performed for 25 cycles by
using specific primers: 5-GCT GGA TTG CTC AGT GCA TA-3' (Forward) and
5-AAG GCT CAG AGG TGA CAG GA-3' (Reverse).

To compare the performance of the two transgenic lines salinity tolerance
assessment was done at seedling and reproductive stages. At first T4 seeds from
Ts plants CaMV355-OsNHX1-70 and Actin1D- OsNHX1-143 were germinated in
hygromycin (20 mg/l) and then ten-day-old seedlings were transferred to
hydroponics containing Yoshida solution (Yoshida et al. 1976). After four days 80
NaCl mM stress was provided to the hydroponics and the stress was gradually
increased to 160 NaCl mM within the next eight days. A parallel control was
maintained where there was no stress. After several days, when the non-
transgenic Binnatoa was nearly dead, values of growth related parameters were
estimated from both stress and control plants.

After the completion of tolerance assessment at seedling stage, extra
transgenic and non-transgenic plants from control system were transferred to pot
containing soil for tolerance assessment at reproductive stage. The pot was kept
in large bowl completely submerged with 60 mM NaCl water. This lower stress
level ensured the proper comparison in yield parameters between the wild-type
and transgenic lines. When the plants completed their reproductive cycle, yield
data was collected. A control system without salt stress was always maintained.
Na* and K* content of the dry leaves were measured using Flame Photometer 410
(Sherwood, UK) and K*/Na* ratio was analyzed according to the procedure
described in Islam et al. 2009.

Following semi-quantitative RT-PCR, both of the transgenic plants exhibited
OsNHX1 specific precise bands of 679 bp (Fig. 1). Wild-type plants produced a
faint band confirming the amplification of the endogenous expression. After the
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completion of salinity tolerance assessment at 160 mM NaCl, transgenic
seedlings of both types showed better physiological status compared to the wild-
type. There was no significant difference in growth parameters between the
transgenic and wild-type plants in stress free control (Table 1). However,
transgenic varieties showed significantly better performance in two parameters
(fresh and dry weight) compared to the wild-type. But there was no significant
difference between the two transgenic lines containing the two different
promoters, except for the dry weight where CaMV355-70 showed significantly
higher value compared to Actin-143, which demonstrates the similar
performance of the two promoters CaMV35S and ActinlD to drive the same gene
OsNHX1 for imparting salt tolerance in rice.

Salinity tolerance assessment at reproductive stage provided data of yield
performance of transgenic varieties over the wild-type. At stress free control, no
significant difference in yield parameters was found between the transgenic
varieties and the wild-type (Table 2). But in stress, both the transgenic lines
provided significantly higher value in the different yield parameters compared
to the wild-type. Interestingly, no significant difference in major yield

parameters (spikelet fertility rate, yield per plant and 100-grain weight) between
1 2 3 4 5 6
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Fig. 1. Semi-quantitative RT-PCR (25 cycles) provides clear bands (679 bp) for transgenic
lines (T4 generation) compared to the wild-type. No distinguishable difference in band
intensity is found between the transgenic lines with the promoter CaMV35S (lane 2) and
ActinlD (lane 3). Faint band for the wild-type (lane 5) is attributed to the endogenous
expression. Lane 1, 4 and 6 refer to the 1 kb bp ladder, positive control and water
control, respectively.

the two different transgenic plants was found. This is a clear indication of the
similar performance of ActinlD promoter like that of CaMV35S in driving
OsNHX1 to provide salt tolerance in rice. After the analysis of K*-Na* content,
both of the transgenic lines showed significantly higher values of K*/Na* ratio
compared to the wild-type in stress free control (Fig. 2). But in stress, this ratio
was significantly reduced in transgenic lines compared to the non-transgenic
control. This is a strong indication of induced ion homeostasis in the transgenic
plants (Gao Ji-Ping et al. 2007). There was no significant difference in K*/Na*
ratios between the two transgenic lines in both control and stress.
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Fig. 2. K*/Na* ratio at seedling stage shows no significant difference between the two
transgenic lines. Each bar represents the mean + SE (n = 3). *indicates the significant
difference between transgenic lines and wild-type at the probability of p < 0.05.

CaMV35S is a universally popular constitutive promoter which is used in
many cases for gene expression (Jones et al. 2008). In previous studies it was
reported that Oryza sativa vacuolar Na*/H* antiporter can play an important role
in salt tolerance of rice under CaMV35S (Fukuda et al. 2004) and ActinlD (Islam
et al. 2009) promoters. However, in those studies no comparable analysis
between the two promoters was done. This study shows that the performance of
Actin1D and CaMV35S promoter are similar in rice.
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