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Abstract 
With recent advances in high-throughput sequencing (HTS) technologies to improve 
plants, there is a need to release orchid specific genomic resources and platforms that are 
crucial for managing omics elements in systematic manner. Authors provide details 
about the recent developments in biotechnological techniques, genomics, 
transcriptomics, proteomics, metabolomics and their applications for the industrial 
production, propagation, conservation and manipulation of Phalaenopsis orchid. 
 

Introduction 
Phalaenopsis belongs to most diverse, second largest and widespread family Orchidaceae, 
which comprises more than 25,000 species, prominently monopodial epiphytes 
(Averyanov and Averyanov 2006, Sheelavanthmath et al. 2005). Orchid flower is complex 
and typically zygomorphic with attractive odor components for pollinators like bees, 
moths, flies and birds (Cozzolino and Widmer 2005).  
 In recent years, there is a rise in market value of orchid flowers in international 
business (Tsai 2011). Orchids are the second most economically valued in USA (USDA 
2006). To date, Phalaenopsis has been identified as the most popular potted orchids in the 
world (Minh et al. 2017). Several countries such as Thailand, Malaysia, Singapore, South 
Korea, and Sri Lanka cultivate orchids as a cash crop and Taiwan tops in the world 
production (Khoddamzadeh et al.  2011).  
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 Unregulated flower collection and destruction of plant habitat are resulting in 
reduction of orchid’s diversification (Vij and Pathak 2012). Microscopic seed size, lack of 
endosperm with less than 5% germination rates and requirement of species-specific 
mycorrhizal fungi during germination (Shefferson et al. 2005, Bonnardeaux et al. 2007) 
and production of heterozygous plants are major limitations of seed propagation. To 
overcome the limitations seed propagation, in vitro clonal propagation protocols of 
Phalaenopsis hybrids has been developed using various vegetative parts of the plants 
(Teixeira da Silva et al. 2014, Vendrame and Khoddamzadeh 2016, Yeung 2017). 
Remarkable amount of research in micropropagation of Phalaenopsis played an important 
role in ex situ conservation (Khoddamzadeh et al. 2011, Vendrame and Khoddamzadeh 
2016). Besides symbiotic germination approaches on Phalaenopsis, non-symbiotic 
germination technologies are also being used for mass propagation of orchids (Griesbach 
2002). However, browning of culture owing to exudation of phenolics during 
micropropagation, fungi and bacterial contamination of explants and somaclonal 
variation are some of the challenges for successful in vitro culture (Khoddamzadeh et al. 
2010). 
 Phalaenopsis species is a diploid plant with 38 chromosomes (2n = 2x) and the genome 
size of P. equestris is the smallest among other species of Orchidaceae (Leitch et al. 2009). 
Several studies on transcriptome sequencing have provided new insights into the 
structural and functional organization of the Phalaenopsis genome (Hsiao et al. 2006). It 
also aided in understanding and identification of putative genes involved in recent 
biosynthesis pathway. Manipulation of the biosynthesis pathway of fragrance can be 
used to produce high levels of aroma into monoterpene biosynthesis whereas this 
character will increase economic value of Phalaenopsis hybrid flowers. There are only a 
few species of Phalaenopsis which have a distinctive aroma (Yeh et al. 2014). Although 
recent efforts have been focused on genes identification focusing on scent, color, shape of 
flora (Hsu et al. 2015), there are still some missing genes in these pathways. Hsiao et al. 
(2006) elucidate the aroma biosynthetic pathway. A total of 31 volatile compounds were 
identified from Phalaenopsis ‘Nobby’s Pacific Sunset’ orchids (Yeh et al. 2014).  
 Biologically active compounds such as phenolics and flavonoids have been identified 
in Phalaenopsis spp. (Minh et al. 2016). Root extract could play a role as antioxidant 
components. Manako et al. (2001) reported two phenanthropyran derivatives from P. 
equestri. Presence of pyrrolizidine alkaloid from root tips and young flower buds of 
Phalaenopsis orchids was reported by Anke et al. (2008).  
 This review provides details about the recent developments in biotechnological 
techniques, genomics and their applications for the industrial production, propagation, 
conservation and manipulation of Phalaenopsis orchid. 
 Plant tissue culture approaches: The improvement of biotechnological approaches aid in 
improving floricultural species for commercial production of orchid (Hossain et al. 2013). 
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In the recent years, several reports on micropropagation of Phalaenopsis orchids show that 
selection of suitable explants are the critical factors for the success of plant tissue culture 
(Vasil et al. 2008, Vendrame and Khoddamzadeh et al. 2016). Composition of media also 
significantly affect the induction, number and plant regeneration efficiency in 
Phalaenopsis. (Kosiret et al. (2004) has been reported six medium compositions for direct 
shoot regeneration of Phalaenopsis. Plant regeneration in many genera has been achieved 
through flower stalks bud, stem nodes (Balilashaki et al. 2014), leaf tissues (Mayer et al. 
2010, Niknejad et al. 2011, Vendrame and Khoddamzadeh 2016), shoot tips (Pant and 
Thapa et al. 2012). Sinha et al. (2010) studied the vegetative propagation of Phalaenopsis 
using young leaf segments on gelrite-gelled half strength MS supplemented with 2% 
sucrose, 2.0 mg/l BA, 0.5 mg/l NAA, 10% coconut water (CW), 2 g/l peptone and 1 g/l 
activated charcoal, the protocorm like bodies (PLBs) were induced within 12 weeks of 
culture. PLB formation is considered either direct or indirect embryogenesis (Martin and 
Madassery et al. 2006, Hong et al. 2008). The clonal propagation on a large scale of 
Phalaenopsis via the culture of protocorms has been reported by Paek et al. (2011). They 
reported that genotype, seed maturity and media composition influence seed 
germination rate and protocorm formation. The in vitro regeneration of Phalaenopsis 
orchid also dependent on activated charcoal (absorbs ethylene and phenolic inhibitors) 
supplement in culture medium. Cytokinins in combination with auxins also have shown 
to induce the PLB formation from leaf sections (Niknejad et al. 2011).  A successful 
method for mass propagation of PLBs of Phalaenopsis elucidates using bioreactor system 
where leaves emerging from nodes (Young et al. 2000). Kuo et al. (2005) reported factors 
affecting direct somatic embryogenesis in the orchid Phalaenopsis ‘Little Steve’. Direct 
somatic embryogenesis was reported from leaf explants of Phalaenopsis amabilis (Chen 
and Chang et al. 2006). Feng and Chen (2014) developed an efficient protocol for 
regeneration of Phalaenopsis aphrodite subsp. Formosana via inducing direct somatic 
embryogenesis. The important economic targets for in vitro propagation of epiphytic 
orchids includes the creation of variation in leaf types, flower color, fragrance and plant 
shape. Raynalta et al. (2018) studied the clonal fidelity of micropropagated Phalaenopsis 
plantlets by using of SNAP markers, they showed that TDZ and polyvinylpyrrolidone 
(PVP) induced PLB from leaf explants. 11.8% possible variants out of 34 evaluated 
plantlets were seen based on the assessment SNAP markers. Reports showed in vitro 
technologies can improve the ex situ conservation of orchid genetic resources (Aktar et al. 
2008, An et al. 2011, Hossain et al. 2013). 
 Asymbiotic seed germination and the use of microbes has been reported in 
Phalaenopsis Blume orchids (Lesar et al. 2012). The influence of pollination season and 
maturity of capsule have been investigated under asymbiotic seed germination in three 
Phalaenopsis orchid hybrids, namely, ‘Athens’, ‘Moscow’ and ‘Lusaka’ flowers 
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(Balilashaki et al. 2014). Winter season was the suitable seasons of pollination and the 
highest germination percentages observed in 5-month-old winter-pollinated capsules. 
 Genomics: Genomics study is difficult for Phalaenopsis orchid because of its larger 
genome size and long life cycles. The chromosome sizes of Phalaenopsis species ranging 
from 1.5 to 3.5 μm are grouped into low, medium and high nuclear DNA content (Chen 
et al. 2010a). Lin et al. (2001) used flow-cytometry and estimated DNA contents of the 
nuclei in 18 Phalaenopsis Blume and Doritis pulcherrima Lindl. species. They observed a 
6.07-fold variation in genome size within 18 Phalaenopsis species, ranging from 2.74 pg/ 
diploid nuclear DNA content (2C) for P. sanderiana to 16.61 pg/2C for P. parishii which 
suggested that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes 
and also observed highest degree of endoreduplication in P. equestris leaves. Through 
chromosomal doubling new commercial hybrids were produced in Phalaenopsis (Chen     
et al. 2010b) and these hybrids can be used for comparative analyses of DNA content on 
evolution of Phalaenopsis or help to the orchid breeders and molecular geneticists for the 
selection of parental varieties for hybridization. Kao et al. (2001) analyzed karyotypes of 
nine representative Phalaenopsis species and D. pulcherrima and reported genome size and 
the amount of constitutive heterochromatin (CH) among the species. Molecular markers 
such as RFLP, RAPD and DAF used in diversity studies of Phalaenopsis. Goh et al. (2005) 
used RAPD markers for genetic distance and relationship investigation of 149 accessions 
in Phalaenopsis, they were useful for separation of the genus into seven clusters. RAPD 
analysis of 20 species of Phalaenopsis, was useful for producing genetic maps and marker-
assisted selection in crop plants (Niknejad et al. 2009). Sequence-based microsatellite 
markers used for the study of molecular characterization and relationships (Fattmah and 
Sukma 2011) in orchids. Twenty-eight polymorphic microsatellite markers were screened 
for delimiting species within genus Phalaenopsis by Ko et al. (2017). cpDNA markers was 
used to compare P. equestris and P. aphrodite, they showed similar AT content, genome 
size, gene order and codon usage (Chang et al. 2017). 
 Genomic in situ hybridization (GISH) and RFLP analysis were conducted to identify 
the intergeneric hybridization status of putative hybrids. Both GISH and RFLP analyses 
were effective for F1 hybrids detection (Liu et al. 2016a). The modified drop method has 
been improved by Kuo et al. (2016), it could be used for fluorescence in situ hybridization 
(FISH) mapping of DNA fragments in cytogenetic studies in Phalaenopsis orchids. FISH 
technique was used for chalcone synthase (CHS) localization on Phalaenopsis orchid 
chromosomes (Kuo et al. 2018) and also was used for detection of the accuracy of genome 
assembly of Phalaenopsis aphrodite (Chao et al. 2018).  
 The genome sequence of Phalaenopsis equestris (Cai et al. 2015) suggest that, gene 
duplication might have contributed to the CAM photosynthesis process in P. equestris 
and found MADS-box C/D-class, B-class AP3 and AGL6-class genes, play role in 
morphology of orchid flowers. A draft genome for Phalaenopsis pulcherrima ‘B8802’ and 
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Phalaenopsis ‘KHM190’ cultivars have been generated by Huang et al. (2016). The 
differences between two orchids allowed the identification of 691,532 single-nucleotide 
polymorphisms. They also discovered the gibberellins synthesis pathway that regulates 
the expression of flowering time genes during the reproductive phase in orchids.  
 Transcriptomics: Transcriptome approach is used to study of the total mRNA 
molecules, gene fusions, and allele specific expression patterns with a clear, complete 
view from the molecular mechanisms of floral transcription in orchids. There are several 
reports on gene expression of orchid flower. Chalcone synthase (CHS), is the key gene in 
flavonoid biosynthesis pathway was isolated from Phalaenopsis hybrid flowers (Han et al. 
2006), highly expressed Pchs1 in petals and lips concomitant with the accumulation 
pattern of the anthocyanin in its flowers. Floral pigmentation patterning was studied in 
Phalaenopsis spp., and three R2R3-MYB transcription factors PeMYB2, PeMYB11, and 
PeMYB12 were detected concomitant with red color formation in different varieties of 
tissues such as sepals/petals and lip. PeMYB2, PeMYB11 and PeMYB12 were responsive 
to the anthocyanin production in the sepals/petals (Hsu et al. 2015). 
 Real-time RT-PCR analysis on selected ESTs (Expres sed Sequence Tags) showed that 
auxin-regulated protein kinase, cyclophilin, and TCP-like genes are upregulated in 
mutant flower buds (Chen et al. 2005). A total of 5593 ESTs obtained from the flower 
buds of Phalaenopsis equestris (diploid species of Phalaenopsis) whereas a unigene set of 
3688 sequences were identified via cluster analysis (Tsai et al. 2006). 
 Hsiao et al. (2006) successfully compared the transcripts in Phalaenopsis bellina and 
Phalaenopsis equestris flowers. Enzymes in the monoterpenoids biosynthetic pathway 
were recognized through data mining of the P. bellina floral EST database (dbEST). 
Systematic computational approaches were used to characterize the microRNA (miRNA) 
in Phalaenopsis aphrodite. A sum of 23 novel miRNAs expressed in the flower, their targets 
was predicted by miRBase in P. aphrodite (Chao et al. 2014). Huang et al. (2016) reported 
draft sequence and assembly of the genome of Phalaenopsis ‘KHM190’ cultivar generated 
89.5 Gb RNA-seq and 113 million sRNA-seq reads for identifying 188 miRNA families. 
 There are several reports available on the orchid MADS-Box genes encoding 
transcriptional factors which are employed for the important roles on orchid floral 
development and evolutionary studies. Based on the exon/intron and domain structures, 
this ABCDE gene family is divided into two lineages, type I and type II in orchids 
(Smaczniak et al. 2012). Previous analysis of the patterns of expression in the floral 
organs of Phalaenopsis equestris orchid MADS-box genes identified and characterized four 
B-class Phalaenopsis DEF-like MADS-box genes, including PeMADS2, PeMADS3, 
PeMADS4 and PeMADS5 that they may play distinctive morphogenetic roles in the 
flowers (Tsai et al. 2006). Miranda and Palomino (2014) tested eight MADS-box candidate 
SEP-, FUL-, AG-, and STK-like genes in wild-type and peloric Phalaenopsis flowers. Their 
result represented that SEPALLATA-like genes cleaved in two major clades, SEP1, 2, 4-
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like genes by four sub-clade OsMADS1, OsMADS5, und RMADS217-like genes 
(OsMADS34) and SEP3-like gene (divided in three major groups) which expressed in all 
flower organs. 
 Advances in sequencing technologies and a functional genomic study in orchids 
reported by Su et al. (2011), where they employed two strategies, high-throughput 
sequencing platform technologies, Roche 454 and Illumina/Solexato maximize assembly 
output. C- and a D-class gene, PeMADS1 and PeMADS7 in Phalaenopsis equestris are 
involved in evolution, orchid gynostemium and ovule developmental processes (Chen    
et al. 2012). The first transcriptome analysis based on deep sequencing was reported by 
Tsai et al. (2015) for developing EST-SSR loci in P. aphrodite subsp. formosana. They 
obtained a total of 1,439 EST-SSR loci, including di-, tri-, tetra-, penta- and hexanucleotide 
motifs from Phalaenopsis species whereas di- and tri-nucleotide detected as two most 
frequent motifs in this orchid species. Transcriptome and expression profile analysis 
during Phalaenopsis explant browning in vitro culture assayed by Xu et al. (2015), 
functional annotation led to the discovery of different expressed gene (DEGs) mainly 
involved in phenylpropanoid pathway and flavonoid biosynthesis. Previous studies 
reported significant changes in those two pathway (Jones and Saxena 2013). 
Transcriptome sequencing using Illumina platform from floral organ tissues (sepal, petal, 
labellum and gynostemium) of the Phalaenopsis wild-type and peloric mutant has 
revealed the critical regulators of the MADS-box TFs in Phalaenopsis labellum formation, 
and also identified five MADS genes, PhAGL6a (CUFF.17763), PhAGL6b (CUFF.17763.1), 
PhMADS1 (CUFF.36625.1), PhMADS4 (CUFF.25909) and PhMADS5 (CUFF.39479.1) genes 
with differential expression in floral-organ development in Phalaenopsis. An increased 
PhMADS4, PhAGL6a and PhAGL6b transcript levels observed in lip-like petals and lip-
like sepals of peloric mutant flowers whereas PhMADS1 transcript was expressed 
strongly in the gynostemium of both wild types and peloric mutants and the PhMADS5 
transcript level showed a positive regulator of petal and sepal development (Huang et al. 
2015) and identified the four isoforms of PhAGL6b on the C-terminus region with the 
MADS-box genes as potential regulatory components of labellum organ development 
which involved alternative splicing in the big lip mutant (Huang et al. 2016). They 
showed the expression of flowering time genes control by the gibberellin synthesis 
pathway. Genome and transcriptome information help the genetic improvement and 
breeding of the Phalaenopsis orchids. De novo transcript sequence reconstruction from 
RNA-seq using the Trinity platform for 11 diverse P. equestris tissue performed by Niu    
et al. (2016), and obtained transcriptomes from root, stem, seed and floral organs, and 
found 24, 21, 22 and 7 disease resistance (R) genes in the flower bud, root, stem and in the 
7-day-seeds, respectively and did not observe the YABBY gene family (use in 
determining leaf polarity) in roots and seeds. Eight transcripts have been identified 
during the comparative transcriptome analysis between scented and scentless orchids, 
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among them PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchid 
(Chuang et al. 2018). Phalaenopsis flowering locus VE (PaFVE) gene has been 
characterized by Koh et al. (2018) via spatial and temporal expression studies. It 
regulates floral organ maturation and flowering time. 
 Proteomics: Systematic study of the orchid genome has generated a lot of information 
in the past. Genome annotation has discovered a number of new orchid genes not 
previously known in production and evolutionary biology (Cai et al. 2015). Several 
research efforts have been undertaken targeting on enhancement of orchid properties 
using proteomics-based methods including two-dimensional electrophoresis (2-DE) and 
mass spectrometry. Proteomics-based applications have been applied in orchid for mass 
production, mycorrhizal fungi interaction, drought stress and cell cycle regulation (Hsiao 
et al. 2011, Hossain et al. 2013). Liao et al. 2004, made a proteomic effort for CymMV 
capsid protein gene known for its role to silence the P. amabilis and enhances its 
resistance to CymMV. It has been reported that expression of exogenous lipid transfers 
protein-encoding gene responsible for improving the plants frost resistance (Qin et al. 
2011). Lai et al. (2013) identified 27 novel differentially expressed proteins by using two-
dimensional electrophoresis and further examined them by mass spectrometry. 
Functional annotation of these proteins revealed that they play a critical role in wide 
range of biological processes including disease resistance, stress response, transcriptional 
regulation, energy metabolism, and protein modification. Identified proteins may 
provide new insights towards understanding of the interactive responses in protein 
expression of P. amabilis during infection with CymMV and/or ORSV. Chen et al. (2018) 
reported a combined proteomic approach with ultrastructural observation and 
physiological-biochemical analysis during pollination-induced petal senescence 
in Phalaenopsis and yielded 42 differentially regulated proteins. Out of 42 proteins, 17 
were found upregulated, while 25 were down regulated. Identification and functional 
characterization of differentially regulated proteins can be utilized as putative markers of 
senescence in Phalaenopsis. 
 The two-dimensional electrophoresis and LC/MS/MS have been used to show the 
differential expressions of PsbP and PsbO between the green and yellow leaf sectors of a 
variegated mutant of Phalaenopsis aphrodite subsp. Formosana (Tsi et al. 2017). Proteomic 
changes via matrix-assisted laser desorption/ionization time of flight mass spectrometry 
(MALDI-TOF/TOF-MS) has been examined by Chen et al. (2018) to reveal the mechanism 
regulation of petal senescence in Phalaenopsis. 
 In spite of various bioinformatics based algorithms and tools available for functional 
annotation and protein structure modeling, extensive analysis was limited to a few 
selected protein families. For instance, UniProt hosts mere 1,011 protein entries for 
Phalaenopsis, of which only 74 reviewed; leaving a huge scope for both bioinformatics and 
in vitro studies. Currently, there is a demand for solved crystal structure or modeled 3D 



140 Balilashaki et al. 

structures that can accelerate the Computer-Added Drug Design (CADD) to simulate 
drug-receptor interactions. Furthermore, 12 crystal structures for orchids are available in 
protein data bank (PDB) (http://www.rcsb.org/pdb/results/results.do? tabtoshow = 
Current and qrid = 1DCCD321) (Fig. 1), which could bridge that demand in finding 
insights into the above-mentioned mechanisms. 
 

 
 

Fig. 1. 3D view of orchid protein structures available in protein data bank (PDB). 
 

 Metabolomics: 3% of these total orchid plant-derived compounds are known 
(Gutierrez 2010, Qasem and Foy 2001) and there are a very few reports available on 
phytochemical and biochemical aspects of orchids as a potential source of medicinal 
property. Recent advances in elucidating the biological properties of orchid species and 
its potential role in health-care suggest they can be used for treatment of various diseases 
such as anti-rheumatic, anti-carcinogenic, antivirus, antimicrobials, anticonvulsive, 
neuroprotective, and hypoglycemic activities (Gutierrez 2010, Yonzone et al. 2012; 
Marasini and Joshi 2013, Avasthi et al. 2013). Various studies on chemical components of 
orchids and suggest they possess phytoconstituents like phenols, alkaloids, glycosides, 
triterpenoids, flavonoids and stilbenoids (Gutierrez 2010, Kalaiarasan et al. 2011, Teoh 
2016). According to Manako et al. (2001) study, spectroscopic (NMR, MS and so on) 
analysis identified 3-methoxy-2,7-dihydroxy-5H-phenanthro [4,5-bcd] pyran and 2,3,7-
trihydroxy-5H-phenanthro [4,5-bcd] pyran from Phalaenopsis equestris. The accumulation 
of different phenolic compounds examined by Andreotti et al. (2006) reported that 

http://www.rcsb.org/pdb/results/results.do?


Recent Advances in Phalaenopsis Orchid Improvement  141 

amount of the phenols being synthesized in different parts of plant are affected by 
environmental conditions such as stress, UV- light and and so on. Ling and 
Subramaniam (2007) examined anthocyanins, anthocyanidins, chlorophylls, phenolics, 
proteins and sugar contents of 12 different samples of Phalaenopsis violacea and the 
reported cyaniding at a concentration of 11.53 ± µg/ml, delphinidin (12.73 ± 0.08 µg/ml), 
malvidin (7.65 ± 0.05 µg/ml), pelargonidin (8.98 ± 0.06 µg/ml), peonidin (21.24 ± 0.13 
µg/ml) and petunidin (117.12 ± 0.69 µg/ml). The protein and total phenol concentration 
obtained for Phalaenopsis violacea were 1.78 ± 0 and 55.00 ± 4.15 µg, respectively. Frölich   
et al. (2006) suggested that pathways of typical compounds for plant secondary 
metabolism, orchidaceae alkaloids like T-phalaenopsine (necine base 
trachelanthamidine) more than 90% of total alkaloid and its stereoisomer Is-
phalaenopsine (necine base isoretronecanol) as two 1,2-saturated pyrrolizidine 
monoesters identified by GC–MS. Analysis of phalaenopsine biosynthesis with 14C-
labeled putrecine indicated, the aerial roots of rosette plants were the sites of 
phalaenopsine biosynthesis. The tissue distribution of pyrrolizidine alkaloids in 
Phalaenopsis suggests in young and developing tissues (e.g., root tips and young leaves), 
peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and 
flowers), has highest accumulation (Anke et al. 2008). Phalaenopsis orchids produce 
pyrrolizidine alkaloids of the phalaenopsine type as a defense factor that the first enzyme 
of pyrrolizidine alkaloid biosynthesis is homospermidine synthase (HSS) (Nurhayati      
et al. 2009). Anke et al. (2008) suggested no linkage was observed between plant 
development and HSS expression pattern (in the tips of aerial roots as the first site) and 
both of them independently happen during angiosperm evolution as expressed in a 
variety of tissues (Ober and Kaltenegger 2009). 

 Minh et al. (2016) investigated the leaves and roots extracts of six different hybrids of 
Phalaenopsis spp. For phenolic compounds and antiradical properties. They reported that 
the roots containing ferulic acid, p-coumaric acid, and sinapic acid and has extensive 
amount of natural antioxidants compared to leaves. Extracts from Dactylorhiza hatagirea 
(Orchidaceae) plant have been reported for its antibacterial activity (Dutta and Karn 2007). 
The medicinal potential of Dactylorhiza hatagirea was studied by Pant and Rinchen (2012) 
in traditional and modern medicine system. Kuo et al. (2010) detected the compositions 
of flavones and anthocyanin at 375 and 530 nm via high-performance liquid 
chromatography/ultraviolet detector (HPLC/UV) in various Phalaenopsis hybrids with red 
flower color, eventually using the scavenging of the α, α-diphenyl-β-picrylhydrazyl 
(DPPH) free radical assayed the antioxidant properties and also reported the anti-
tyrosinase activities of the pigment constituents. Compounds of (3’,7-di-O-
sinapylglucosyl)-3-glucosyl cyaniding, saponarin and apigenin 6-C-ribosido-7-O- glucoside 
were observed with the IC50 values of 27.3, 307.1 and 41.6 μM, respectively, and strong 
anti-tyrosinase activities was apperceived only by apigenin 6-C-ribosido-7-O-glucoside.  
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Modification of the metabolic rate and the growth Phalaenopsis by genetic engineering has 
been studied by Chen et al. (2010), and selected Phalaenopsis transformed with the 
Vitreoscilla hemoglobin gene via injection of DNA solution into immature capsules and 
analyzed by Western blotting, eventually indicated line B47 has increased the growth in 
the vegetative and reproductive stage. The antimicrobial activity of Dendrobium nobile 
and Phalaenopsis flower extracts compared to five different antibiotics pyogenic skin 
infections isolates which the promising result were observed in case of flower extracts of 
Dendrobium nobile and Phalaenopsis that have been rich in key metabolites (Ashraf              
et al. 2013). Based on data obtained from metabolites of Phalaenopsis species can be used 
in the development of novel pharmaceutical sciences. The sucrose concentration in the 
stem significantly was increased at dawn and dusk of Phalaenopsis aphroide after warm-
night treatment, so sucrose in the stem might be playing an important role in to sustain 
the viability of the dormant spike bud. All leaves at dawn of Phalaenopsis aphroide 
contained the highest citrate concentration under the warm-night treatment. Citrate 
accumulation helps to protect the leaves from warm-night stress (Liu et al. 2013). The 
three light treatments; (1) 40% blue 60% red, (2) 100% red, and (3) 100% white (control) 
were employed (Ouzounis et al. 2014) in greenhouse systems of Phalaenopsis production, 
where they observed that leaf area and total fresh weight were highest in the 40% B/60% 
R and 100% red for Phalaenopsis ‘Vivien’ and Phalaenopsis 'Purple star', respectively. They 
also studied quantitation of secondary metabolites by HPLC and their results indicated 
the additional blue light increased amount of flavonoids and carotenoids in Phalaenopsis. 
LC-MS technique based metabolomics has been performed on the effects of light qualities 
on Phalaenopsis, obtained results were showed the different light environments affected 
on the compounds of Phalaenopsis, so the environment conditions plays an important role 
in chemical instability of Phalaenopsis orchid, and also observed the significant differences 
between the molecular weights that involved biosynthesis of alkaloids derived from 
shikimate pathway. This study would be helpful to produce commercial Phalaenopsis 
orchid (Liu et al. 2016 b) exploring the existing possibilities as highlighted above.  
 Bioinformatics data bases for orchid: Recent advances in high-throughput sequencing 
(HTS) technologies, coincident with dramatic declines in cost, have enabled the scientific 
community to screen the whole genome and generate hypothesis leading to improving 
plants. Further, recently released orchid specific genomic resources and platforms are 
crucial for managing omics elements in systematic manners and extraction of desired 
genomic information. Details of important orchid databases have been shown in Table 1.  
 In this review, authors have summarized recent developments in genetics, genomics 
and their applications for the industrial production of Phalaenopsis orchid. The new 
hybrids produced through somaclonal variants are used for the production of important 
metabolites. These could be better explored through the genome databases and 
important networks can be constructed which will further improve this value of the 
orchids.  
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