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Abstract

Promoter region plays an important role in controlling gene expression of any
living organism. It regulates gene transcription by providing space to the RNA
polymerase and transcription factors to bind and interact with. Binding of
appropriate transcription initiation complex is determined by the specific
promoter sequence carrying gene specific motifs. The promoter recognition
process is a part of the complex process where genes interact with each other
over time and actually regulates the whole working process of a cell. Thus
computational method for identifying promoter is a focal point for researchers.
This paper presents an algorithm for identifying Drosophila melanogaster
promoter using differential positional frequency matrix between promoter and
non-promoter sequences which shows maximum 90.36% tenfold cross validation
accuracy. The proposed method exhibits greater accuracy for detecting
promoters. Also higher sensitivity and specificity results elucidate that the
proposed method is less prone to false negatives and false positives compared to
some other existing methods.

Introduction

To understand the transcriptional process it is necessary to identify and
characterize the promoter as the motifs residing within these promoters actually
work as switches to trigger the transcriptional process.

The promoter is a region on the genomic sequence, which resides upstream
of the transcription start site (TSS). It plays a major role while the DNA is
transcribed into messenger RNA (mRNA) and it also largely controls the
biological activation of the gene (Pedersen et al. 1999). Due to this inherent
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relationship, identification of promoters will provide better understanding on the
implication of promoter over gene annotation.

Due to the lack of straightforward procedure for detecting a promoter from
sequence data using an open reading frame, it is difficult to locate the position,
amount, and the strength of selective functional regulatory elements of the gene.
Transcriptional regulation model is not just a simple activation or suppression by
transcription factors, rather, also includes competitive binding of proteins (Small
et al. 1991), co-operative binding (Burz et al. 1998), chromatin bending and other
molecular interactions that are not always reflected in the nucleotide sequence.

Several computational methods have been proposed in the past few years.
CONPRO (CONsensus PROmoter) can correctly detect promoters for
approximately half of human gene (37 - 71%) of which around 85 - 90% are true
promoters (Rongxiang and David 2002). PromoterExplorer (Xie et al. 2006),
analyzed the different roles of various features on the sequence data. A
combined local distribution of pentamers, positional CpG Island and digitized
DNA sequence were used to construct a higher-dimensional input vector. A
cascade AdaBoost-based learning procedure was then adopted to select the most
‘informative’ or ‘discriminating’ features. Recent research has presented another
general method for characterizing a set of sequences by their recurrent motifs.
They have demonstrated the use of prevalent features extraction and proposed a
framework for identifying promoter (Sharan and Myers 2005).

Most of the available computational methods for core promoter prediction
are based on solid machine learning techniques like probabilistic sequence
models, Hidden Markov Model (HMM) or Support Vector Machines (SVM) and
have shown good performance on fly predictions (Ohler 2006). These methods
show different success rates with different datasets. Mostly they have identified
promoters by analyzing various positional features. To identify unknown
promoters a machine learning system has been trained with the analyzed
features that can distinguish between a promoter and a non-promoter and then
tested on test sequences.

In this paper, a new algorithm “DrosophilaPromoterldentification” is
proposed to identify the Drosophila melanogaster promoter from its gene
sequences. Then the performance of the proposed algorithm for detecting
Drosophila melanogaster promoters using different DNA sequences is evaluated.
Consistent and promising results have been obtained, which proves that the
proposed method can greatly improve the promoter identification performance
and also outperforms some other existing methods.
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Materials and Methods

The Drosophila melanogaster promoter sequences have been obtained from the
Division of Biological Sciences of University of California, San Diego (UCSD). A
comprehensive dataset of 340 different Drosophila melanogaster promoter
sequences each of length 92 bps (positive dataset) is collected. Though this
dataset contains relatively small number of promoters of Drosophila melanogaster,
additional promoter sequences from other datasets have not been collected due
to the integrity and authenticity of the dataset. These data contain TATA box,
CAAT box, BRE and DPE. A recent study on the fruit fly shows that the core
promoters mostly span from [-50, +50] position relative to the TSS of the DNA
sequence (Ohler 2006). So, 340 gene sequences each of length 92 bps (791 to -
700) are taken from Eukaryotic Promoter Database (EPD), which surely reflects
negative dataset (non-promoter). The length of both positive and negative
datasets are intentionally kept the same so that the training of SVM does not
become bias.

Both promoters and non-promoters are composition of four nucleotides (i.e.
A T C G). The proposed method was based on the differential frequency
distribution of each of the nucleotides a particular position between the
promoters and the non-promoters. In order to do so, at first all the compiled 340
Drosophila melanogaster promoter sequences were aligned. Then the frequency of
A, C, G and T located in the first column/position of all 340 sequences were
calculated. This process was continued for each column of the whole sequence.
Same methodology was applied over the 340 aligned non-promoter sequences.

The process can be denoted using Eq. 1 and Eq. 2. Here, PE stands for
promoter elements and NPE stands for non-promoter elements. The notation i
represents the column/position and n represents the total number of column on
the sequence.

Zn: PE,[i] Or i PE_[i]or i PE. [i] or i PE.[I] (Eq.1)

(for promoter)

i NPE,[i] Or i NPE_[i]or i NPE, [i] or i NPE;[i] (Eq.2)

(for non-promoter)

After counting the frequency on each column a frequency matrix of every
sequence character i.e, DFqMatrix [4, n] and NPFqMatrix [4, n] (where
DFqMatrix is Drosophila promoter frequency matrix and NPFqMatrix is non
promoter frequency matrix) was constructed. Then the difference between every
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sequence element of each column from DFqMatrix and NPFqMatrix was
calculated and the result was stored in another matrix called DiffMatrix [4, n].

DiffMatrix [1, n] = ) ,PE,[i] - Y. NPE,[i]  (Eq.3)
i=0 i=0

DiffMatrix [2,n] = »_PE¢[i] ->_ NPE.[i]  (Eq.4)

i=0

i i=0

DiffMatrix [3,n] = »_PE.[i] ->_ NPE.[i]  (Eq.5)
i=0 i=0

DiffMatrix [4,n] = »_PEg[i]->_ NPEg[i]  (Eq.6)
i=0 i=0

For developing the learning model an inductive model was constructed from
the DiffMatrix, which can be used for further implication on new data. For the
learning purpose, SVM was used as it has proven to be a better tool compared to
the other available tools for analyzing biological data (Kasabov and Pang 2004).

Cortes and Vapnik (1995) developed SVM at AT&T Bell laboratories. It was a
statistical learning technique used as a classifier based on pattern recognition. It
can also perform real valued function approximation tasks. Support Vector
Machines can non-linearly map their n-dimensional input space into a high
dimensional feature space (Cortes and Vapnik 1995, Vapnik 1982). For a typical
learning task P (X, y) =P (y | X) P (X), an inductive SVM learner aims to build
a decision function
which is

fL:X - {-L+Ibased on a training set S, ,

fL = L(Strain) (Eq 7)

where: Strain = (X_l! yl)’(X_Z' Yo )seees (Z' Yn).

Two criteria were widely used for evaluating the performance of promoter
prediction program. They were sensitivity (Sn) and specificity (Sp). It can be
defined as following:

P

Sn=_1° Eq. 8

TP+ FN (. 8)
P

Sp= Eq.9

= (Eq-9)

where, TP, FP and FN denote the numbers of true positives, false positives
and False negatives, respectively. In general, the larger value of Sn symbolizes
less false negative and the smaller value of Sp represents more false positive. It
was a trade-off to balance Sn and Sp.

The classification on SVM generated by a two-step procedure: First, the
sample input vectors were mapped into a higher dimensional space. Then, the
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SVM finds a hyperplane in this high-dimensional space with the largest margin
separating classes of data. Here first the proposed algorithm was used to
construct hyperplane in a very high dimensional “mapped” space and then
reviewed for identifying corresponding classifying surface in the original space.
SVM was trained in a supervised manner on a collection of promoter and non-
promoter sequences. The training of this system was made on the compiled
dataset. Fig. 1 describes the whole methodology in a block diagram.

Data set D Training a
for training model M

\ 4

Recall M for
any new data »| Output Y,

X.

\4

New input vector X_I

Fig. 1. A block diagram of an inductive reasoning system. A global model M was created
based on data samples from D and then recalled for a new vector.

The promoter identification method proposed in this paper can be
summarized into the following steps:
(i) Find column frequency for each nucleotide {A, C, T, and G} of the
sequence.

(ii) Calculate i" column frequency for each nucleotide combination and
continue the process until the last column for Drosophila promoter
sequence as well as the chosen non-promoter sequence.

(iii) Subtract the nucleotide combination frequency of nonpromoter from
promoter and store the difference in DiffMatrix (difference matrix).

(iv) Train the SVM according to the DiffMatrix value. (If the first element of
both promoter and nonpromoter sequence is A then the 1st feature of the
SVM input data will be the value of A in the difference Matrix 1st
column and so on)

Using the model created during the training of SVM test on set of known
data: Two kinds of test can be conducted. Cross validation, where the whole set
of data was divided (also known as folded) into n fragments and n-1 fragments
were used for learning and to create the model. Then this model was tested on
the remaining fragment. The other method allows the whole dataset for learning
and then applies this model on data, which are mutually exclusive from the
training dataset.
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Results and Discussion

Three different kinds of folding for the cross validation were applied and the
result shows improvements on every occasion. A threefold, seven-fold and
tenfold cross validation exhibit 87.69, 88.13 and 90.36%, respectively. The cross
validation result presented on Fig. 2 shows significant performance of both
promoter and non-promoter data mapping. The cross validations were applied
to the whole dataset of 340 positive dataset and 340 negative dataset. That means
340 promoter sequences and 340 gene sequences were taken for the cross
validation of the proposed system and it showed good accuracy. In tenfold cross
validation an accuracy of 90.36% has been achieved which is quite high accuracy
considering the classification of other database.

Cross validation accuracy

90.5
90
89.5
89
88.5
88

Accuracy

87.5

Folding

Fig. 2. Cross validation accuracy using 3, 7 and tenfold using SVM.

For the random check of the accuracy of the system a model was developed
taking 325 promoter sequences and 325 non-promoter sequences. The remaining
30 sequences from both promoters and non-promoters were then tested through
the system to analyze the accuracy. From the random input of 15 promoter and
15 non-promoter data features average result showed an accuracy of 90.667%,
which was consistent compared to other promoter identification methods. The
sensitivity (Sn) and specificity (Sp) analysis also showed that during prediction of
promoters and non-promoters the proposed method was less prone to false
negative (FN) and false positive (FP) compared to other methods. The results of
the experiments are presented in Table 1. The high sensitivity and specificity also
shows significantly higher accuracy rate, as it showed in the cross validation.
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Some of the publicly available promoter identification tools were tested
using some random promoter and non-promoter sequences. The test results were
summarized in Table 2. The result conforms the performance of the proposed
method.

Table 1. Results generated by SVM for random dataset.

Prediction of promoter and non-promoter Accuracy  Sensitivity Specificity
15 promoter and 15 non-promoter (average 90.67% 0.9094 0.9067
over 5 sets of randomly selected data)

sequences

The ProScan (Prestridge 1995) mainly performs better for polymerase III
promoters like primates or mammals. Similarly for Promoter 2.0 (Knudsen 1999),
the algorithm was designed to be able to discriminate between vertebrate
promoter and non-promoter sequences. This might be the reason why both the
tools could not provide satisfactory result for Drosophila melanogaster.

Table 2. Comparison of accuracy against some existing methods.

Program NNPP SoftBerry  ProScan Dragon Promoter Proposed
used (%) threshold (TSSP)  Vers.1.7  Pro-moter 2.0 Pred. method
(0.8) Finder Server
Vers. 1.4
Sensitivity 68 88 0 12 0 90.94
Specificity 76 90 100 100 78 90.67

For Dragon Promoter Finder (Bajic et al. 2002) the smaller sensitivity value
indicates that it was more prone to false negative. The proposed method exhibits
better accuracy compared to other two methods NNPP (Reese et al. 1996) and
SoftBerry(TSSP).

The proposed method developed for identifying a Drosophila melanogaster
promoter from a DNA sequence depends on statistical data analysis. TATA box,
TSS, DPE, CpG Island, CAAT box or BRE element was not considered in this
paper. Rather the differential frequency distribution between promoter and non-
promoter sequences were exploited to successfully identify Drosophila melano-
gaster promoters. The experimental result exhibits that consistent and promising
performance can be achieved using this approach. Also higher value of
sensitivity and specificity indicates the proposed method is less prone to false
negative and false positive. Further development of the method can be
investigate by incorporating the TATA box, TSS, DPE, CpG Island, CAAT box or
BRE element as additional feature to improve the result. Also the method can be
tested for identifying promoters of other organisms.
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