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Abstract

With the availability of recent next generation sequencing technologies and their
low cost, genomes of different organisms are being sequenced frequently.
Therefore, quick assembly of genome, transcriptome, and target contigs from the
raw data generated through the sequencing technologies has become necessary
for better understanding of different biological systems. This article proposes an
algorithm, namely SeqDev (Sequence Developer) for constructing contigs from
raw reads using reference sequences. For this, we considered a weighted
frequency-based consensus mechanism named BlastAssemb for primary
construction of a sequence with gaps. Then, we adopted suffix array and
proposed a gap filling search (GFS) algorithm for searching the missing
sequences in the primary construct. For evaluating our algorithm, we have
chosen Pokkali (rice) raw genome and Japonica (rice) as our reference data.
Experimental results demonstrated that our proposed algorithm accurately
constructs promoter sequences of Pokkali from its raw genome data. These
constructed promoter sequences were 93 - 100% identical with the reference and
also aligned with 96 - 100% of corresponding reference sequences with eValue
ranging from 0.0 - 2e4. All these results indicated that our proposed method
could be a potential algorithm to construct target contigs from raw sequences
with the help of reference sequences. Further wet lab validation with specific
Pokkali promoter sequence will boost this method as a robust algorithm for
target contig assembly.

*Author for correspondence: <hasnain@cse.univdhaka.edu>. 'Department of Computer Science and
Engineering, University of Dhaka, Dhaka-1000, Bangladesh. 2Department of Genetic Engineering and
Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh.
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Introduction

Availability of sequences of entire genomes and software for their analysis has
opened a new era in the field of molecular, comparative and evolutionary
biology. With ongoing advancements, next generation sequencing (NGS)
technologies are producing raw genome sequences at a revolutionary speed and
with more accuracy than ever before. Such sequencing technologies are creating
enormous data through whole-genome shotgun sequencing (WGS) method. In
WGS approach, a whole genome is broken down into a large number of very
small random fragments. Then, all of these fragments are sequenced, where the
sequence of an individual fragment is called a "read". Raw genome sequence is a
collection of all of these reads, from which the whole genome sequence is
constructed. Therefore, it has become a fundamental goal to assemble genome or
transcriptome from such a large number of reads. A computational approach
called “genome assembly” is used for such a construction of genome from all the
reads. An assembly is defined by a hierarchical data structure that maps the raw
sequence to a putative construction of the genome (Miller et al. 2010). Simply, an
assembler puts all the reads together for constructing the whole genome that
would be practical for interpreting the functions of the organism.

Generally genome assembly uses three types of approaches and they are: (i)
de novo assembly, (ii) comparative assembly and (iii) a combination of de novo
and comparative assembly (Quigley 2014). De novo approach focuses on
constructing genome sequences from a set of sequence reads without a
previously sequenced reference genome of an organism. This approach uses
overlap-layout-consensus (OLC), de Bruijn graph (DBG) and greedy algorithm
for constructing genome sequence. De novo genome assembly can be difficult,
which falls within a class of problems, NP-hard, for which no efficient
computational solution is known (Myers 1995, Medvedev et al. 2007). This is
because NGS sequencing technology is now producing very short reads, as short
as 35 bp (Pop and Salzberg 2008). As a result, de novo assemblies of short read
data are highly fragmented (Simpson et al. 2009, Farrer et al. 2009). A number of
tools have been developed on the basis of de novo approach for genome assembly
such as: SHARCGS (Dohm et al. 2007), VCAKE (Jeck et al. 2007), VELVET
(Zerbino and Birney 2008) SOAPdenovo (Xie et al. 2014), MaSuRCA (Zimin et al.
2013), CABOG (Miller et al. 2008), EULERSR (Chaisson and Pavzner 2008),
ABySS (Simpson et al. 2009) and ALLPATHS (Butler et al. 2008).

Unlike the de novo approach, there is a prior view of genome sequence in
comparative genome assembly. Comparative genome assembly constructs a
genome sequence by mapping it into a sequence of a closely related organism as
a guide during the assembly process and the mapped information is used for
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inferring the new genome sequence. Several works have been done on the basis
of comparative assembly approach and strategies belonging to this category
include, AMOS (Pop et al. 2004), PGA (Zhao et al. 2008), MAQ (Li et al. 2008),
Gene boosted assembly (GBA) (Salzberg et al. 2008), etc. In general, speed and
accuracy are the common limitations of these methods. Specially, short reads
may create problems in this regard (Homer et al. 2009).

Some assembly algorithms have been developed (Vezzi et al. 2011,
Schneeberger et al. 2011, Wang et al. 2014, Nishito et al. 2010), which lie between
these two models. It adopts a de novo approach relying on the assistance of the
reference genome and loosely adopts the alignment-overlap-layout-consensus
scheme.

Here, we have proposed an algorithm, named SeqDev (Sequence Developer)
for constructing genetic elements such as promoter, enhancer etc., from a raw
genome sequence with the help of a set of closely related reference sequences.
This algorithm combines the capability of BLAST (Basic local alignment search
tool) (Altschul et al. 1990, Zhao and Chu 2014, Oehmen and Baxter 2013), which
is a well known tool in the bioinformatics community, as well as a gap filling
search (GFS) algorithm (Rahman et al. 2014). To validate this proposed method,
we have constructed a set of promoter using the raw genome sequence of
Pokkali rice variety with the help of promoter sequences of Japonica rice variety
as reference sequences. The resulting promoter sequences were then validated by
different promoter identifier programs.

Proposed Methodology

The proposed method has two major parts: (1) BlastAssemb and (2) Gap Filling
Search (GFS). Part 1 roughly constructs the desired sequence with the help of
reference sequence. Genetic elements constructed from part 1 may have some
missing characters in them. Thus, we extended it to part 2 for the construction of
the complete sequence without any 'N' by adopting suffix array and proposing a
GFS algorithm.

BlastAssemb

BlastAssemb follows three steps to produce the genetic elements: (1) Run BLAST
and find the matches between a reference sequence and the raw genome, where
we extract the matched part (subsequence) from the raw genome sequences, (2)
make extracted matched subsequences and the reference sequence length the
same by padding ‘N’ as required where ‘N’ represents any of A, C, G, or T, and
(3) construct consensus using weighted frequency of the matched sequences. We
start with retrieving sequences from FASTA-formatted raw genome, and the
matched positions between each raw and reference sequence. This information is
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retrieved by using ‘local BLAST’. From now on the term ‘local BLAST” will be
used to mean the use of BLAST where only reference sequence and raw genome
sequences are used. The whole process of the proposed mechanism is described
in Algorithm 1.

Algorithm 1 Constructing Sequence from Raw Genome

Input: refGenome, RawGenome

Output: consGenSequence

Begin

PaddedSeqList := @

eValueList .=

BlasedGenomeList «BLAST(refGenome, RawGenome)
for each id € BlasedGenomeList do

rawGenomeSeq <« rawGenomeid

rawStart « rawStartid

rawEnd <« rawEndid

o % N gk

refStart « refStartid

refEnd <« refEndia

_ =
= O

E-value < E-valueid

=
»

subsequence <« FindMatchedSubsequence

(rawGenomeSeq, rawStart, rawEnd)
13: paddedSubseq < MakePaddedSeq (subsequence, ref-Start, refEnd)
14: PaddedSeqList « PaddedSeqList « paddedSubseq
15:  E-value List < E-value List < E-value
16: end for
17:  consGenSequence « ConsensusSeq(PaddedSeqList, eValueList)
18: End

BLAST

BLAST algorithm is used to align between query sequences with subject
sequence (Altschul et al. 1990). It is a heuristic based searching algorithm, whose
aim is to find the fragment of query sequence that is matched in the subject
database. The output of BLAST provides a file containing information about
sequence ID, positions of reference sequences and raw sequence fragments
where they matched.
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Finding matched subsequence

From the local BLAST output file, procedure 1 takes raw genome IDs, reference
sequence IDs, rawStart and rawEnd positions and expect value (E-value). The
matched subsequence fragment is then extracted from the raw sequence.

Procedure 1 Find Matched Subsequence

Input: raw Genome Seq, raw Start, raw End

Output: subsequence
Begin
subsequence :=J
for i =raw Start : raw End do

1:
2:
3
4: subsequence += raw Genome Seq[i]
5 end for

6

End

Making padded sequences

All the extracted matched parts are padded with character ‘N’. Then the padded
sequences are used to calculate consensus sequence. Procedure 2 takes the
matched subsequences and their positions in reference sequence (refStart and
refEnd) as input. The remaining parts of the sequence are padded up with ‘N’,
where ‘N is the placeholder for any nucleotides.

Procedure 2 Make Padded Sequence

Input: subsequence, refStart, refEnd

Output: paddedSeq
Begin
for i=0:n do

paddedSeq +="N’

1:

2:

3

4: end for
5 for i=refStart:refEnd do

6 paddedSeq[i] = subsequencel[i-refStart]
7 end for

8

End
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Constructing consensus sequence

Once all the padded sequences are constructed, the final step of BlastAssemb is to
construct the consensus sequence. ConsensusSeq, as described in Algorithm 1,
takes a list of padded sequence and the corresponding E-value. The consensus is
calculated by weighted sum of nucleotides. The weight is given based on the
expectation value where each nucleotide of a particular position is summed over
the negative logarithm of expected values, ¥7., —log (eValue), where r is the
number of a specific nucleotide for calculating the consensus, to generate the
weighted consensus. Thus nucleotide having the maximum E-value is taken as
consensus. Furthermore, there might be a case where the weighted frequencies
of two nucleotides are same. In that case we will consider both the nucleotides as
consensus. The consensus sequences, generated by ‘BlastAssemb’, may have
series of 'N’s in the consensus sequences. For performing the most realistic
biological analysis, it is preferred that, the sequences should be as complete as
possible which is addressed in the second part of our proposal.

Gap filling search

The resulting consensus sequences from BlastAssemb algorithm are not fully
constructed. There are a series of 'N'in the constructed consensus sequences.
Our next algorithm uses the proposed “Gap filling search” which is a suffix array
(Manber and Myers 1993) and a binary search-based distributed algorithm. This
algorithm replaces the series of ‘N’s from the previously constructed consensus
sequences from “BlastAssemb”. The algorithm initiates with retrieving the FASTA
formatted raw genome sequence file. These raw reads are sorted using suffix
array (Shrestha et al. 2014). This suffix array uses counting sort to sort
intermediate substrings. This way it achieves faster performance. Later, binary
search is used to find candidate raw reads from these sorted raw reads
sequences. Using a recursive backtracking technique, we are able to find
appropriate raw genome sequences to fill up “N”s in the consensus sequences
generated in “BlastAssemb”.

Suffix array construction
Recently, suffix array and its variants of text-indexing data structures have
become essential in the field of bioinformatics (Shrestha et al. 2014). Suffix array
has been used for prefix and suffix matches in genome assembly (Ilie 2011).
Algorithm 2 takes all the raw reads sequences form the file and sorts them
alphabetically using suffix array. First all the genomes are concatenated to
produce one large string. Suffix array is applied to this string to sort the indices
alphabetically, as each index represents the suffix that starts there. Only the
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indices of the starting of a raw reads are saved. Also the suffix size is limited to
cover only the size of each of the raw reads.

Algorithm 2 GFS (Gap filling search)

Input: Raw Genome Sequence RG
Consensus Sequence CS
Output: Consensus without “N” FCCS

1: Begin
2: RGList « SuffixArray (RG)
3: FCCS « Replace Missing Characters (RGList, CS)

Searching for missing nucleotide characters

Since suffix array provides the alphabetical orders of all the raw reads, a typical
binary search is used to search appropriate candidates for replacing the 'N's. The
procedure is given below:

i. We have taken the consensus sequences generated by “BlasAssemb” and
eliminated those sequences which have 'N'in the starting or ending of the
sequences.

ii. For each of the remaining sequences, we identified the sections which
contain ‘N’s.

iii. We took Starting and Ending position of each of those sections.

iv. L (Length of consensus sequence upstream or downstream of 'N's)
characters before the Start position of 'N' as Prefix and L character after the
'N's End position as Suffix were taken as sub sequence for input in the
searching algorithm. Value of L was between 5 and 10.

Algorithm 3 performs a binary search with the prefix as input on the sorted
raw reads. If there are raw reads whose prefix matches with the input prefix, the
whole raw reads followed by the match is taken. The procedure is iterated until
the given Start, End range is totally filled up. For each iteration, Start position
and input prefixes are changed. The changes are made in such a way that the
end position of last raw reads becomes the new Start position and the last L
characters from the resulting string is taken as new prefix unless the Start, End
range is filled up. Once the range is filled up, the input suffixes are used to check
the matching rate with the resulting sequence. This process is performed for each
of the matches in each file.
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Algorithm 3 Replacement of Missing Characters

Input: Suffix Array, Prefix, START, END
Output: Sequence

Begin

Sequence «— O

if START< END then

StringList «— Binary Search (Suffix Array, Prefix)

1
2
3
4
5: for each each String S € String list do do
6 Concat S with Sequence

7 newPrefix = Prefix.length long Suffix of S

8 new Start = START + S.legnth - prefix. length

9 new S = Replace Missing Characters (Suffix Array, new Prefix, new Start, END)

10:  Concat new S with Sequence

11:  end for
12:  endif
13:  End

Reconstructing consensus sequences

Once the binary search provides all possible characters regarding the Start, End
position of each sequence, the final step is to reconstruct consensus sequence
from them. The 'N's of each previously constructed consensus sequences are
replaced with the searched nucleotide characters. Then, the consensus sequences
are calculated by counting the frequencies of each nucleotide in each position to
obtain the newly constructed consensus sequence without any 'N's.

Experimental Setup

In this section we first describe the data explanation, secondly validation process
of the constructed genetic elements and finally the results with discussion will be
presented in this section.

Data Description

Cotsaftis et al. had done an analysis of root gene expression of salt-tolerant
genotypes FL478, Pokkali and IR63, and salt-sensitive genotype IR29 under
control and salinity-stressed conditions during vegetative growth. They
provided a data set, from which they wanted to identify those genes associated
with salt tolerance. We took the Probset ids from the data sets and converted the
ID's into gene names from the affymetrix website (http://www.affymetrix.
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com/estore/). Later, the gene names were used for downloading the
corresponding promoter sequences from Rice Annotation Project Database
(http://rapdb.dna.affrc.go.jp), which archives sequences of O. sativa Japonica
variety. Each sequence was 1000 bp upstream from the transcription initiation
site. These sequences were taken as reference promoter sequences. We also
collected the raw data of Pokkali, which is a salt tolerant variety, from GigaDb,
3000 Rice Genome Project (http://gigadb.org/dataset/200001). The raw genome
sequence contained about 40 million reads and each of the read was of 83 base
pairs in length.

Validation Protocols

The newly assembled sequence using our method is confirmed for its rice origin
by performing BLAST. Here, the term ‘BLAST’ suggested any alignment between
a sequence and all tested sequences deposited to NCBI (http://www.
ncbi.nlm.nih.gov/) unless otherwise specified. From the BLAST result, the mostly
matched sequence was considered. The corresponding sequence ID, description,
match score, coverage and eValue were recorded for each considered match.
Multiple sequences were considered in cases where both Oryza sativa Indica as
well as O. sativa Japonica scored closely or if there was a considerable match with
any rice genes. If the newly assembled sequences showed more than 65%
coverage, they were considered as a constructed genetic element (a promoter in
this case) of rice.

To test whether a sequence is promoter or not there exist several softwares
(Ma et al. 2013). Here, we considered two well known programs developed to
identify eukaryotic promoters: 1) neural network promoter prediction or NNPP
(http://www fruitfly.org/seq\ _tools/promoter.html) and 2) Promoter 2.0
(http://www.cbs.dtu.dk/services/Promoter/). NNPP uses neural network which is
trained to identify promoter. The cut-off value for a predicted promoter was
considered as 0.8 in this case. Promoter 2.0 combines neural network and genetic
algorithm for identifying the promoter elements with 0.5 as a cut-off value. A
sequence was considered to be promoter only if both of these programs
successfully identified putative promoter regions. If only one program was
successful to find such elements, then we went for a third level test.

The third level test uses PlantPan (plantpan.mbc.nctu.edu.tw/) which
determines the existence of transcription factor binding site. The sequence was
considered as a promoter if there were more than 8 transcription factor binding
sites. All the constructed promoters were validated using aforementioned
methods.
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Results and Discussion

We have divided our test into two parts. In the first part, using the 15 reference
promoter sequences of Japonica, we successfully assembled 15 new promoter
sequences from the Pokkali raw genome sequences using our Algorithm 1.

Next, these 15 newly assembled sequences were then used as a query
sequence to perform BLAST to find out their best matches. Remarkably, all the 15
new assembly aligned the best with O. sativa Japonica variety. At least one of
them matched with a known Pokkali sequence and 5 of them matched best with
Indica variety (Table 1). The alignment covered 53% - 100% of the assembled
sequences with eValue ranging from 0.0 - 7e%2. These findings indicated that the
newly assembled sequences were comparable with reference rice O. sativa
Japonica genome sequences and homologous to this known genome. Thereby, it
can be concluded that we have moderately assembled 15 different kilomers as a
part of Pokkali genome from the partial raw sequences.

We then verified these sequences using different promoter prediction
software as described in section 3B. We compared the results of these two
programs and found that 8 assembled sequences were identified as promoters by
both program. Rests of the 7 sequences were identified as a promoter by either
one of the programs (Table 2). These data suggested that all the assembled
sequences are possibly promoter sequences.

The results of transcription factor binding sites (TFBS) are summarized in
Table 3. The assembled sequences showed roughly 9 -17 TFBS, except for one
promoter. In cases where one promoter identifier program fails to identify a
promoter region (for sequences P1, P3, P4, P6, P8, P10 and P14), we found at least
9 TEBS. This suggested that the assembled sequences were in fact promoters like
their corresponding reference sequences.

For reconstructing the consensus sequences without 'N', various prefix
lengths can be used for searching missing characters. Here we used L=10 to 5 for
searching missing characters, where L' indicates the length of consensus
sequence in base pairs upstream or downstream of 'N'. We took the previously
assembled 15 promoter sequences containing 'N's in them. We prepared the
sequences and identified 11 promoters for searching the missing characters. We
successfully reconstructed 8 promoter sequences without any 'N' by this method.

We identified the reconstructed promoter ID's and did an analysis to match
the ID to most of the prefix lengths. This helped to identify whether the
reconstructed complete sequences are promoter sequences more accurately. The
analysis showed that 8 promoter sequences were reconstructed from most of the
lengths. The results are given in Table 4.
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Table 2. List of identified promoters and their positions in the assembled sequences.

Promoter NNPP (predicted promoter position (score)) Promoter 2.0 (predicted
promoter position (score),

likelihood)

P1 181-231 (0.93); 252-302 (0.97); 894-944 (1.0)  Not Detected

P2 8-58 (0.97); 383-433 (0.98); 443-493 (0.99) 600 (1.081), highly likely
P3 332-382 (0.88) Not Detected

P4 79-129 (0.99); 751-801 (0.83) Not Detected

P5 463-513 (0.84); 797-847 (0.98); 847-897 (0.99) 600 (1.128), highly likely
P6 242-292 (0.97); 403-453 (0.82); 747-797 (0.95) Not Detected

pP7 27-77 (0.90); 35-85 (0.95); 183-233 (0.97) 800 (1.209), highly likely
P8 312-362 (0.85); 337-387 (0.80); 919-969 (0.89)  Not Detected

P9 886-936 (0.99); 950-1000 (0.84) 500 (0.640), Marginal
P10 359-409 (0.96) Not Detected

P11 757-807 (0.93) 300 (0.620), Marginal
P12 370-420 (0.82); 477-527 (0.85); 683-733 (0.94) 800 (0.676), Marginal
P13 370-420 (0.82); 477-527 (0.85); 683-733 (0.94) 800 (0.676), Marginal
P14 Not Detected 800 (0.619), Marginal
P15 423-473 (0.93) 700 (0.639), Marginal

Table 3. Number of identified transcription factor binding sites in the assembled
sequences.

Promoter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Number 16 11 9 12 16 16 17 10 14 12 12 14 14 9 5

Next, all of the 8 reconstructed sequences for each length were then used as a
query sequence to perform BLAST to find out their best matches. All the
reconstructed sequences aligned the best with O. sativa Japonica variety. The
alignment covered 94 - 100% of the reconstructed sequences with eValue 0.0 and
also with 97 - 99% identity (Table 4). When these reconstructed were validated
using promoter prediction software, they showed similar results as described in
Tables 2 and 3.

Later, we constructed promoter sequences of 4 sets of genes; each set
representing genes differentially expressed in the rice varieties IR29, Pokkali,
FL47 and IR63, respectively. Our algorithm was capable of constructing a
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maximum of 1319 (67.4%) promoter sequences out of 1957 reference promoters
(Table 5). Among these, 754 constructed sequences contained gaps. We
reconstructed these sequences with GFS algorithm using L = 5 - 10, which
returned a total of 723 complete promoter sequences. Thereby, our algorithm
was capable to completely reconstruct 1288 promoters (65.82%) out of the total
1957 reference promoters. However, L = 5 provided the highest number of
complete promoters sequences (133 promoters), whereas L = 8 produced the
lowest number of promoters (102 promoters). The reconstructed promoter
sequences from length 7, results the highest identity ranging 93.5% - 100% and e-
Value ranging 0.0 - 9e¥. The number of promoter sequences obtained decreased
with the increasing value of L, interestingly except for L = 9. However, the
average identities of the reconstructed promoters with the reference sequences
was decreased to L =5 (Table 6).

Table 4. Results of 8 reconstructed promoter for different length of consensus

sequences.
File id Length  Score eValue Identity = Coverage (%)
0s02t0686800-01 5 1496 0.0 98% 94.3%
7 1496 0.0 98% 94.3%
9 1496 0.0 98% 94.3%
0s03t0184100-01 5 1653 0.0 97% 100%
6 1653 0.0 97% 100%
9 1653 0.0 97% 100%
0s03t0826800-01 5 1742 0.0 98% 100%
7 1742 0.0 98% 100%
0s07t0572100-01 5 1443 0.0 93% 100%
8 1437 0.0 93% 100%
0s07t0529600-02 9 1075 0.0 99% 94%
10 1548 0.0 95% 100%
0Os01t0307500-01 7 1786 0.0 99% 100%
0s01t0613800-01 10 1792 0.0 99% 100%
0s03t0265900-01 5 1417 0.0 99% 96.8%

The aforementioned results indicated that the newly assembled sequences
were comparable and homologous with reference rice O. sativa Japonica
promoter sequences. Thereby, this proposed algorithm can be used to construct
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the sequence of a genetic element at least up to 1000 bases from a generously
defined raw genome sequence data, given that the reference sequence is
available.

Table 5. Pokkali promoters obtained using the proposed algorithm.

Set BlastAssemb After replacing N Percentage
Set 1 609 244 59
Set 2 180 101 43
Set 3 219 203 73
Set 4 311 175 43

Table 6. Number of constructed promoters based on consensus sequence length (L).

Length Promoters eValue Identities (%)
5 133 0.0 -3e2 90.25 - 100
6 128 0.0 - 2e4 89.00 - 100
7 124 0.0 - 9% 93.50 - 100
8 102 0.0 - 6e2 91.20 - 100
9 129 0.0 - 3e1 89.75 - 100
10 107 0.0 - 9% 88.75 - 100
Conclusion

We have proposed an algorithm which constructs genetic elements from raw
genome sequence with the help of reference sequence. For this, eValue-based
weighted consensus generation showed better results. Furthermore, our
algorithm also uses suffix array which is a time-and-space efficient algorithm for
string matching. By using this, we have successfully identified the missing
characters in the constructed genetic elements which results in complete genetic
element. Using our algorithm, named SeqDev, we have successfully constructed
1288 promoter sequences of Pokkali rice variety. In future, we will further
validate the efficacy and efficiency of the proposed method by assembling
genetic elements from other available raw sequences and comparing this method
with other available comparative genome assembly software/methods.
Furthermore, our ultimate future plan is improve this algorithm and to build a
complete desktop tool which will be used to construct any kind of genetic
element from raw genome.
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