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Abstract

Cabbage (Brassica oleracea L.) is one of the major vegetable crops in the world.
Several somatic hybrids between cabbage and Chinese cabbage have been
produced. These show hybrid vigor. To identify differences in protein expression
that might be relevant to hybrid characteristics of interest, proteins from leaves of
a somatic hybrid and its two parents were subjected to 1D and 2D gel analyses,
followed by MALDI-TOF and MS/MS of selected spots. 1D gel analysis of the leaf
proteins at 14th day post-germination (14 DPG) showed very similar profiles for
all three Brassicas. However, upon 2D gel analysis, several differentially
expressed protein spots from leaves were discerned. Of the five differentially
expressed leaf proteins examined, all the protein spots were photosynthesis-
related , including RbcS (the rubisco small subunit). It is possible that differential
expression of these photosynthesis-related proteins may relate to the improved
growth of the somatic hybrid.

Introduction

Cabbage (Brassica oleracea L. var. capitata) and Chinese cabbage (B. campestris L.
var. pekinensis) are important vegetables, with world-wide use, and where
propagation is entirely viz seeds. In the mild winters of the tropics and
subtropical regions, seed production by cabbage (Brassica oleracea L. var. capitata)
is very problematic due to their vernalization process. To introduce seed
vernalization characteristic into cabbage, significant numbers of somatic hybrids
have been produced between cabbage (cv. Yoshin) and Chinese cabbage (cv.
Kenshin) through protoplast fusion (Hossain and Yazawa 1994, Yamagishi et al.
1992). Somatic hybridizationis a developing field of greatimportance and has
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opened up the possibility of combining genetic factors between sexually
incompatible species, thereby increasing the spectrum of genetic variation in
higher plants (Yamagishi et al. 1992, Hossain and Asahira 1992, Choung et al.
1988). Interspecific somatic hybridization in Brassica has various advantages over
sexual hybridization. For example, cytoplasmic organelles can be hybridized by
cell fusion, and this may provide additional new genetic variations useful for
future new breeding programs. However, the success in interspecific sexual
hybridization is limited and it is more difficult when cabbage is used as the
female parent (Hossain et al. 1988, Inomata 1997).

Somatic hybrid cabbages can produce larger seeds (average weights of 3.4, 2
and 5 mg per seed of cabbage, Chinese cabbage and somatic hybrid, respectively)
and grow faster than their parents, starting at germination, which occurs earlier
than in either parent (Hossain and Asahira 1992)

These novel traits must reflect patterns of gene expression and biochemical
activity unique to the hybrid(s), evidence of which would be provided by
comparing the protein profiles of the hybrid(s) and the parents. While one-
dimensional SDS-PAGE analysis can detect alterations in expression of a number
of gene products, the resolution is limited. Two-dimensional gel electrophoresis
(2DGE) is increasingly used to gain new insights into plant functioning (Lery
et al. 2008), as it allows the separation of several hundreds of gene products in a
single gel and their subsequent identification and quantification. In recent years
2-DGE has been applied to the analysis of plant development (Hochholdinger
et al. 2006, Mechin et al. 2004), deciphering of biotic or abiotic stress (Vincent
et al. 2005) and characterization of plant mutants (Sorin et al. 2006).

This paper is the first report of a proteomic analysis of a somatic hybrid
between Brassica oleracea and Brassica campestris, and mainly focusses on evidence
of differential protein expression in the leaves of this hybrid and the parent
species.

Materials and Methods

Leaves of cabbage (Brassica oleracea L. var. capitata), Chinese cabbage (B.
campestris L., var. pekinensis), and a somatic hybrid (synthesized B. napus L.)
variety IPSA (Institute of Postgraduate Studies in Agriculture, Bangladesh)
cabbage were used as plant materials. Seeds were collected from these plants
and preserved in a desiccator. Plants were grown in the greenhouse of the
University of Greenwich (Medway campus), UK, the growth temperature being
maintained at 22°C. Seeds were planted in separate trays for each category.
Leaves were collected from the plants from 14 days post-germination (DPG),
21DPG and 28 DPG and stored at —80°C until use.
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Triplicate samples of the leaves and seeds of the somatic hybrid and its
parents were frozen in liquid nitrogen and ground into a fine powder using a
sterile mortar and pestle with liquid nitrogen. For each sample 100 mg of leaf
powder were then measured into a sterile Eppendorf tube and 1 ml of ice-cold
acetone containing 10% (w/v) trichloacetic acid (TCA), 0.07% (v/v) [p-mercapto-
ethanol was added into the tube. The powdered samples were mixed by
vortexing and then kept at —20°C for 2 hrs. The extract was centrifuged at 16,000
g for 20 min at 4°C and the supernatant discarded. Each pellet was resuspended
and washed in 1 ml cold acetone containing 0.07% (v/v) B-mercaptoethanol. The
samples were vortexed and centrifuged at 16,000 g for 20 min at 4°C and the
supernatant again discarded. Washing steps were repeated until all pellets were
colourless. After discarding the final supernatant, the pellet was dried under
vacuum for 2 - 5 min. Each vacuum-dried pellet was then resuspended in 950 ul
freshly prepared lysis buffer (10 % (w/v) TCA, 0.07 % (v/v) p-mercaptoethanol in
acetone) and kept at —20°C for 2 hrs. The suspensions were then sonicated on ice
for 3 - 6 sessions of 15 sec each and further incubated on a rotary shaker for 10-
15 min at room temperature. Then 5 pl of 99% N,N-dimethylacrylamide (DMA)
were added to each lysate followed by incubation on a rotary shaker for 30 min
at room temperature, to effect alkylation. Excess DMA was quenched by adding
10 ul 2 M dithiothreitol (DTT) and insoluble material was removed by
centrifugation at 16,000 g for 30 min at 4°C. Each supernatant was stored at
—20°C until protein concentration determination by the Bradford method
(Bradford 1976) and analysis by gel electrophoresis analysis.

For both 1D and 2D gel analyses 100 ug amounts of protein were taken from
each sample.

For 1D SDS PAGE analysis was carried out on NuPAGE gel (4 - 12%) using
MES buffer and then stained by simply blue safety stain (Life Technologies)
following the manufacturer’s instructions. The gels were scanned using the
Epichemi Gel Doc system (UVP Ltd., Cambridge, UK).

For 2D gels separation in the first-dimension, by isoelectric focusing (IEF),
was performed using 13-cm linear IPG strips (pH 3-10) in the IPGphor system.
All IPG strips were rehydrated with 250 ul of dehydration buffer (8 M urea, 2%
CHAPS, 0.5% ampholytes, 0.002% bromophenol blue) containing 100 ug of
protein. The voltage settings for IEF were 200 V for 20 min, 450 V for 15 min, 750
V for 15 min and 2000 V for 30 min. Separation in the second dimension followed
immediately. The IPG gel strips were incubated in equilibration buffer 1 (50 mM
Tris-HCl (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, 0.002% bromophenol blue,
1% DTT), followed by equilibration buffer 2 (50 mM Tris-HCI, pH 8.8, 6 M urea,
30% v/v glycerol, 2% SDS, 0.002% bromophenol blue, 2.5% iodoacetamide), for
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15 min. The strips were subsequently placed onto a 4 - 12% IPG-well NuPAGE
Tris-Bis gel (18 x 16 cm) with a Tris-glycine buffer system, as described by
Natarajan et al. 2005. Strips were overlayed with 0.5% agarose. The
electrophoresis was performed using the XCell SureLock Minl-Cell Electro-
phoresis system from Life Technologhies according to the manufacturer’s
recommendations (Invitrogen). The 2D-PAGE gels were then stained with
colloidal Coomassie Blue for 3 hrs, destained with distilled water, and finally
stored in 2% NaCl solution at room temperature. The gels were scanned using
the Epichemi Gel Doc system.

Triplicate 2-DGE analysis was performed on the protein samples from each
of the three plant types. Differentially expressed protein spots from leaf proteins
in 2D gels were identified by careful visual inspection on triplicate gels. There
are numerous protein spots visible in the original gel and many of them are
masked by the highly expressed leaf proteins. Therefore, 5 protein spots were
selected which are clearly visible and differentially expressed (Fig. 2).

Protein spots were accordingly excised from the stained gel as "gel plugs",
and washed with ultrapure water and then sent to Department of Biology of
University of York , UK for trypsin digestion and protein identification by Mass
Spectrometry. The protocols followed are described below.

In gel tryptic digestion was performed after reduction with DTE and S-
carbamidomethylation with iodoacetamide. Gel pieces were washed two times
with 50% (v/v) aqueous acetonitrile containing 25 mM ammonium bicarbonate,
then once with acetonitrile and dried in a vacuum concentrator for 20 min.
Sequencing-grade, modified porcine trypsin (Promega) was dissolved in the 50
mM acetic acid supplied by the manufacturer, then diluted five-fold by adding
25 mM ammonium bicarbonate to give a final trypsin concentration of 0.02 pg/pl.
Gel pieces were rehydrated by adding 10 ul of trypsin solution, and after 30 min
enough 25 mM ammonium bicarbonate solution was added to cover the gel
pieces. Digests were incubated overnight at 37°C.

A 1 ul aliquot of each peptide mixture was applied directly to the ground
steel MALDI target plate, followed immediately by an equal volume of a freshly-
prepared 5 mg/ml solution of 4-hydroxy-o-cyano-cinnamic acid (Sigma) in 50%
aqueous (v/v) acetonitrile containing 0.1% , trifluoroacetic acid (v/v).

Positive-ion MALDI mass spectra were obtained using a Bruker ultraflex III
in reflectron mode, equipped with a Nd : YAG smart beam laser. MS spectra
were acquired over a mass range of m/z 800 - 4000. Final mass spectra were
externally calibrated against an adjacent spot containing 6 peptides (des-Arg!-
Bradykinin, 904.681; Angiotensin I, 1296.685; Glu'-fibrinopeptide B, 1750.677;
ACTH (1-17 clip), 2093.086; ACTH (18-39 clip), 2465.198; ACTH (7-38 clip),
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3657.929). Monoisotopic masses were obtained using a SNAP averagine
algorithm (C 4.9384, N 1.3577, O 1.4773, 5 0.0417, H 7.7583) and a S/N threshold
of 2.

For each spot ten strongest peaks of interest, with an S/N greater than 30,
were selected for MS/MS fragmentation. Fragmentation was performed in LIFT
mode without the introduction of a collision gas. The default calibration was
used for MS/MS spectra, which were baseline-subtracted and smoothed
(Savitsky-Golay, width 0.15 m/z, cycles 4); monoisotopic peak detection used a
SNAP averagine algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 7.7583) with
a minimum S/N of 6. Bruker flexAnalysis software (version 3.3) was used to
perform the spectral processing and peak list generation for both the MS and
MS/MS spectra.

Tandem mass spectral data were submitted to database searching using a
locally-running copy of the Mascot program (Matrix Science Ltd., version 2.1),
through the Bruker Protein Scape interface (version 2.1). Search criteria included:
enzyme, trypsin; fixed modifications, carbamidomethyl (C), variable modifi-
cations, oxidation (M), peptide tolerance, 250 ppm, MS/MS tolerance, 0.5 Da.

Protein identification was performed by searching the National Center for
Biotechnology Information (NCBI) non-redundant database using the Mascot
search engine, which uses a probability-based scoring system. The following
parameters were used for database searches with MALDI-TOF peptide mass
fingerprinting data: monoisotopic mass, 25 ppm mass accuracy, trypsin as
digesting enzyme with 1 missed cleavage allowed, carbamidomethylation of
cysteine as a fixed modification, oxidation of methionine, N-terminal
pyroglutamic acid from glutamic acid or glutamine as allowable variable
modifications. For database searches with MS/MS spectra, the following
parameters were used: average mass; 1.5 Da peptide and MS/MS mass tolerance ;
peptide charge of +1, +2, or +3; trypsin as digesting enzyme with 1 missed
cleavage allowed; carbamidomethylation of cysteine as a fixed modification;
oxidation of methionine, N-terminal pyroglutamic acid from glutamic acid or
glutamine as allowable variable modifications. Taxonomy was limited to green
plants for both MALDI and MS/MS ion searches. For MALDI-TOF-MS data to
qualify as a positive identification, a protein’s score had to equal or exceed the
minimum significant score. Positive identification of proteins by MS/MS analysis
required a minimum of two unique peptides, with at least one peptide having a
significant ion score.
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Results and Discussion

1D gel analysis of leaf proteins from 14, 21 and 28 DPG showed no obvious
qualitative differences in protein profiles i.e. all samples shared all the bands
observed in the gel (Fig. 1). However, there are two prominent bands with
apparently increased amounts of protein in the hybrid, at all growth stages,
relative to the parents (Fig. 1A, B), and their molecular weights of c. 52 kDa and
c. 19 kDa, indicative of the large and small subunits of ribulose-1,5-bisphosphate
carboxylase (Rubisco). Leaf proteins from the cabbage (CB), Chinese cabbage
(CCB) and somatic hybrid (CBS) at different growth stages were subjected to 1D
gel analysis and at least 15 protein bands were generated from each sample (Fig
1). No significant protein profile differences between samples were observed.
Two prominent bands c. 52 kDa (marked A) and c. 19 kDa (marked B) were seen
in all samples (Fig. 1). These two bands are probably large and small subunits of
rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) since rubisco is the
most abundant protein in plant leaves, comprising approximately 50% of the
total protein (Kapralov and Filatov 2007). Rubisco is a decahexameric
holozenzyme consisting of eight large subunits (RbcL) and eight small subunits
(RbcS), with a molecular mass of 560 kDa. RbcS is encoded by a multigene family
of 2 to 22 genes, according to species, located in the nucleus, and encoding 14 - 18
kDa polypeptides. RbcL is specified by a single gene present in the chloroplast,
encoding 45 - 55 kDa large polypeptide (Kapralov and Filatov 2007, Ogawa et al.
2012, Warren et al. 2000). Other semi permanent bands of c. 45 kDa and c. 26 kDa
are probably degraded large subunit proteins since degradation of rubisco is
readily triggered by alterations in the rate of photosynthesis and the nitrogen
economy (Zhang et al. 2012).

Due to the similar protein profiles through developmental stages 14 to 28
DPG, only protein samples from CB, CCB and CBS at 14 DPG were subjected to
2D gel analysis.

Since leaf proteins from cabbage, Chinese cabbage and their somatic hybrid
showed similar profiles on 1D gel analysis, at all three developmental stages
examined, only one developmental stage, (14 DPG), was selected for 2D gel
analysis. 2D gels 502, 503 and 504 represent cabbage (CB), Chinese cabbage
(CCB) and their somatic hybrid (CBS), respectively (Fig. 2). There is a strong
overall similarity, as expected from the 1D gel result, but there is substantially
more complexity evident in the hybrid proteome. Spot 503-1, with a MWt of
c. 52 kDa, and clearly observed in all three samples (though not labeled in gels
502 and 504), was used as an internal control. This spot, identified as the large
subunit of rubisco (Table 1), is presumably a minor isoelectric form of the main
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component, which forms a massive protein spot at the same molecular weight
position in all three gels, but appears most abundant in the hybrid.
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Fig. 1. 1D gel analysis of proteins of Brassica leaves collected at different growth times.
Lanes: 1 - 3 leaf stage, 14 DPG; 4 - 6 leaf stage, 21 DPG; 7 - 9 leaf stage 28 DPG. Lanes 3,
4 and 7 from Chinese cabbage; 1,5 and 8 from cabbage; 2,7 and 9 from somatic hybrid.
The markers used were SeeBlue Plus2 pre-stained standards (Invitrogen).

Four spots: 502-1, 502-2, 502-3 and 504-1 indicating substantially different
expression levels of the relevant proteins in the three plant types, were also more
closely examined. The MWt of spot 502-1 (gel 502, CB) is c. 24 kDa, and its
equivalent was observed on gel 504 (CBS), with a possibly reduced level, but it
was not seen in gel 503 (CCB). Spot 502-2, MWt c. 45 kDa, was seen in gel 502
(CB) but was not observed in 503 (CCB) and showed a higher level in gel 504
(CBS). Spot 502-3, MWt 19 kDa, was present in 502 (CB) and - at a higher level -
in 504 (CBS), but absent in gel 503 (CCB). Spot 504-1, MWt 19 kDa, was present
in all samples but highest in 504 (CBS) followed by 502 (CB).

All five spots were excised and the extracted proteins analyzed via
trypsinisation, MS and Mascot searching: the putative identities of the protein
spots (Table 1).
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Five protein spots, including the standard, appeared differentially expressed
to various degrees on gels 502 (CB), 503 (CCB) and 504 (CBS) (Table 1), and were
selected for protein identification. All five spots were identified as
photosynthesis-related proteins e.g. rubisco (must be acknowledged that 2D gel
analysis of low abundance proteins is much hindered by rubisco in nearly all
species (Krishnan and Nataranjan 2009). The identities and relative abundances
of these proteins are summarized in Table 1.

3 pH 10

Fig. 2. 2D gel analysis of proteins from leaf of cabbage (502), Chinese cabbage (503) and
somatic hybrid (504). The spot numbers of representative proteins were excised for
protein identification and relative expression levels are indicated in Table 1.

Spot 502-1, identified as chloroplastic photosystem I reaction center subunit

II, appeared to be more highly expressed in the hybrid than the cabbage, and at a

much lower in the Chinese cabbage. Spot 502-2, identified as the large subunit of

rubisco, RbcL was evident in cabbage, but found at a lower level in the hybrid
and much lower in Chinese cabbage. Spot 502-3 was identified as a precursor of
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the small subunit of rubisco, RbcS, and was seen in the cabbage, with a very low
level in the Chinese cabbage, but the highest levels were in the hybrid. Spot 503-1
was identified as the large subunit of rubisco, RbcL, and was more abundant in
the hybrid than the parents. Like 502-3, spot 504-1 was identified as RbcS
precursor; it was found to be the highest in the hybrid, followed by cabbage and
Chinese cabbage. These two RbcS precursor spots, with different pls are
apparently different forms of RbcS, perhaps reflecting multiple RbcS genes
(Koivu 2004).

Overall, this 2D analysis indicates that the somatic hybrid produces more
RbcS and RbcL subunits than its parents, cabbage and Chinese cabbage, and this
may enhance the production of rubisco: rbcs regulates rubisco formation via
activation of transcription or translation of the rbcL subunit, thus raised RbcS
levels should increase levels of rbcL. subunits, and thence the levels of the rubisco
holoenzyme (rodermel 1999). It has been reported that RbcS, not RbcL, controls
the formation of Rubisco, and a positive correlation has been observed between
rubisco content and the total RbcS mRNA (Cohen et al. 2006). It has also been
suggested that a balanced expression of the respective RbcS genes is important
for accumulation of Rubisco holoenzyme in rice (Ogawa et al. 2012). The authors
therefore speculate that accumulation of more Rubisco in the somatic hybrid,
because of up-regulation of the RbcS protein, can contribute to a faster growth
rate (Parikh et al. 2006) in the hybrid. This vigour characteristic may also be seen
in the hybrid’s large seed mass (on average, 5 mg compared to 3.4 and 2 mg in
CB and CCB, respectively) and early germination. It has been observed that
seeds with greater mass produce more vigorous plants (Gonzalez 1993).
Elevated photosystem I subunit levels in the hybrid could also be a factor in
hybrid growth vigor.

Acknowledgement

The authors would like to thank the Commonwealth Scholarship Commission in
the UK for providing a Fellowship (BDCF-2009-15) to M. M. Hossain to carry out
this work.

References

Bradford MM (1976) A rapid and sensitive method for the quantification of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:
248-254.

Choung PV, Deslauriers C, Kott L and Beversdorf WD (1988) Effects of donor genotype
and bud sampling on microspore culture of Brassica napus. Can. J. Bot. 66(8): 1653-
1657.



A Proteomic Analysis of Leaf Proteins 77

Cohen I, Sapir Y and Shapira M (2006) A conserved mechanism controls translation of
Rubisco large subunit in different photosynthetic organisms. Plant Physiol. 141: 1089-
1097.

Gonzalez EJ (1993) Effect of seed size on germination and seedling vigor of Virola koschuyi
Warb. Forest Ecol. Management 57: 275-281.

Hochholdinger F, Sauer M, Dembinsky D, Hoecker N, Muthreich N, Saleem M and Liu
Y (2006) Proteomic dissection of plant development. Proteomics 6: 4076-4083.

Hossain MM, Inden H and Asahira T (1988) Intergeneric and interspecific hybrids
through in vitro ovule culture in the Cruciferae. Plant Sci. 58: 121-128.

Hossain MM and Asahira T (1992) Development of heat tolerant somatic hybrids by
PEG-mediated protoplasts fusion between Brassica oleracea L. and B. campestric L.
Plant Tiss. Cult. 2: 61-69.

Hossain MM and Yazawa S (1994) High frequency plant generation from fused
protoplast between B. oleracea L. and B. campestris L. Plant Tiss. Cult. 4: 93-103.

Inomata N (1997) Wide hybridization and meiotic pairing. In: Recent advances in oil seed
Brassica, Kalia HR and Gupta SK (eds.), Kalyani Publications, India, New Delhi,
Madras, pp. 53-76.

Kapralov MV and Filatov DA (2007) Widespread positive selection in the photosynthetic
Rubisco enzyme. BMC Evol. Biol. 7: 73-82.

Krishnan HB nd Natarajan SS (2009) A rapid method for depletion of rubisco from
Soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins,
Phytochem. 70: 1958-1964.

Koivu K (2004) Novel sprouting technology for recombinant protein production, In:
Molecular farming- Plant-made pharmaceuticals and technical proteins, Fischer R
and S. Schillberg S (Eds.) Wiley-VCH. pp. 37-53.

Lery LMS, VonKruger WMA, Viana FC, Teixeira KRS and Bisch PM (2008) A
comparative proteomic analysis of Gluconacebacter diazotrophicus PAL5 at exponential
and stationary phases of cultures in the presence of high and low levels of inorganic
nitrogen compound. Biochem. Biophys. Acta 1784: 1578-1589.

Mechin V, Balliou T, Chateau-Joubert S, Davanture M, Olivier L, Negroni L, Prioul J-L,
Thevenot C, Zivy M and Demerval C (2004) A two-dimensional proteome map of
maize endosperm. Phytochem. 65: 1609-1618.

Nataranjan S, Xu C, Caperna T] and Garett WM (2005) Comparison of protein
solubilization methods suitable for proteomic analysis of soybean seed proteins.
Anal. Biochem. 342: 214-220.

Ogawa S, Suzuki Y, Yoshizawa R, Kanno K and Makino A (2012) Effect of individual
suppression of RBCS multigene family on rubisco contents in rice leaves. Plant Cell
Environ. 35: 546-563.

Parikh MR, Greene DN, Woods KK and Matsumara I (2006) Directed evolution of
rubisco hymorphs through genetic selection in engineered E. coli. Protein Eng. Design
Select. 19: 113-119.

Rodermel S (1999) Subunit control of rubisco biosynthesis - a relic of an endosymbiotic
past? Photosynthesis Res. 59: 105-123.



78 Hossain et al.

Sorin C, Negroni L, Balliau T, Corti H, Jacquemot M-P, Davanture M, Sanberg G, Zivy
M and Bellini C (2006) Proteomic analysis of different mutant genotypes of
Arabidopsis led to the identification of 11 proteins correlating with adventitious root
development. Plant Physiol. 140: 349-364.

Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L and Zivy M (2005) Water deficit
affect caffeate o-Methyltransferase, lignifications, and related enzymes in maize
leaves. A proteomic investigation. Plant Physiol. 137: 949-960.

Warren CR, Adams MA and Chen Z (2000) Effect of N-source on concentration of rubisco
in Eucalyptus diversicolor, as measured by capillary electrophoresis. Physiologia
Plantarum. 110: 52-58.

Yamagishi H, Hossain MM and Yonezawa K (1992) Production of somatic hybrids
between southern type Chinese cabbage ‘Kenshin’ and cabbage ‘Yoshin’ and their
flowering characteristics. J. Japan. Soc. Hort. Sci. 61: 311-316.

Zhang L, Zhang Y, Rui Q, Ren Y and Xu L (2012) Effects of ATP and Zn 2+ in
degradation of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase
in wheat leaves. African J. Agri. Res. 7 : 711-720.



