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Abstract 
Considerable progress has been made in identification and cloning of genes 
involved in plant defense responses. With the aid of plant molecular biology and 
biotechnology, a large number of antifungal proteins and peptides have been 
isolated and assessed through in vitro bioassays. Genes and gene products that 
are involved in signaling pathways have also been predicted. Strategies like 
enhancement of plant structural defense, neutralization of fungal toxins and 
exploitation of antifungal genes from non-plant sources have been used to 
produce transgenic plants. Exploitation of these approaches has shown 
significant reduction of fungal diseases in many cases. Moreover, using the 
knowledge gathered from characteristics of these transgenic plants, it has been 
possible to obtain better resistance. Co-expression of multiple genes rather than 
single, use of inducible promoters instead of constitutive ones have been shown 
to give superior performance of transgenic plants. Further improvement in above 
strategies are however still necessary because all the above approaches have only 
resulted in varying degree of resistance, not complete fungus tolerance. 
 
Introduction 
In March, 2001, the New York City dedicated a memorial park to the misery of 
hundreds of thousands of starving Irish people who immigrated to the United 
States while a quarter of a million of fellow  countrymen died from starvation 
during the Irish Potato Famine of 1845 to 1847 (Moffat 2001). This is a fitting 
reminder of the devastation plant diseases can cause and a constant reminder to 
improve our agricultural system to protect our crops from such colossal losses. 
Even now, after adoption of various agricultural practices and agrochemicals, 
every year plant diseases cause approximately 12 % yield loss at the field level, to 
which are added 9 - 20 % during post-harvest stages (Agrios 1997). Among the 
culprits causing this huge loss, the most devastating pathogens are fungi (Pennisi 
2001).  
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 Husbandry techniques and agrochemical usages reduce fungal inoculum 
and spread. But it does not improve host resistance ability. To improve disease 
resistance genetically, plant breeding techniques were also employed. But such a 
procedure is applicable only within sexually compatible species and can take up 
to 15 - 20 years (Rommens and Kishore 2000). As a result, co-evolution of 
pathogens may overthrow the success of generating resistant varieties 
(Cornelissen and Schram 2000). For this reason, scientists are presently engaged 
in generating disease resistant varieties through genetic transformation followed 
by conventional breeding for better protection of crops against pathogenic fungi.   
 Genetic engineering has the advantage of incorporating resistant genes from 
any species to improve disease resistance genetically (Erik 2001). With the 
beginning of the molecular era of plant biology in the early 1980s, many complex 
mechanisms that evolved in plants in response to pathogen infection have been 
identified. The role of multitude genes that are involved in immune responses 
after fungus infestation and the various pathways involved therein have been 
elucidated (Shah 1997, Swords et al. 1997, Bushnell et al. 1998, Evans and 
Greenland 1998; Honée 1999, Melchers and Stuiver 2000, Rommens and Kishore 
2000). Transgenic plants have been produced with genes involved in these 
pathways in order to evaluate their effects in enhancing disease resistance. Prior 
to the application of genetic engineering techniques, genes were selected on the 
basis of in vitro bioassay. During these assays, toxicity of the gene product 
toward fungal growth or development and effectiveness of specific gene(s) in 
disease response pathway were assessed. Depending on such assessment 
potential molecules were identified for their utility in producing transgenic 
tolerant plants (Fig. 1).  
 Some of the identified potential genes or gene products are normally 
expressed in plants. However, it takes a relatively long time for the toxin to reach 
an effective concentration following pathogen invasion. Such a time lag offers an 
inadequate defense response towards the invading pathogen. To overcome this 
situation transgenic plants are made which are capable of expressing or over-
expressing genes of interest at an early stage, preferably with constitutive 
expression throughout the plant body system to combat any pathogen invasion.  
 The present paper gives an overview of different strategies and progress so 
far made in fungus resistant transgenic plant development giving examples of 
representative defense gene products of each category and ends up with 
comments on the efforts currently under way in the optimization of antifungal 
gene expression in transgenic plants.  
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Fungus Resistant Transgenic Plant Production:  
On the basis of known defense mechanisms, overall transgenic approaches can 
be grouped into seven categories (Punja 2001, Grover and Gowtham 2003). 
1.  Over-expression of genes that produce compounds e.g. pathogenesis-related 

proteins (PR proteins) and phytoalexins, which are directly toxic to 
pathogens or reduce their growth. 

2. Expression of genes, e.g. polygalacturonase, oxalic acid and lipases that 
destroy or neutralize the components of pathogen arsenal. 

3.  Expression of gene products e.g. peroxidase and lignin, that can potentially 
enhance structural defense in the plants.  

4.  Expression of genes, e.g. elicitor, hydrogen peroxidase (H2O2), salicylic acid 
(SA) and ethylene (C2H4),  that regulate signals to control plant defenses. 

5.  Expression of the resistance gene (R) products involved in hypersensitive 
response (HR) for their interaction with avirulence (Avr) gene. 

6.  Binding or inactivation of fungal toxins thus stopping invasion of fungus by 
expression of R gene.  

 7.  Other strategies are production of RNAi, RNase and lysozyme . In such cases 
genes isolated from sources apart from plants are exploited. Available 
reports include introduction of double stranded RNA from viruses found in 
fungi (Clausen et al. 2000), genes of lysozymes cloned from human tissues 
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(Nakajima et al. 1997; Takaichi and Oeda 2000), and genes isolated from 
fungi (Lorito et al. 1998), insects (Osusky et al. 2000) and microbes (Lorito 
and Scala 1999).  

 In the following sections all these categories will be highlighted with the 
advancements so far achieved and observation made. 
 Transgenic plants expressing pathogenesis-related proteins: Plant proteins that are 
produced in response to pathogen invasion and hinder growth, differentiation 
and multiplication of pathogens are called Pathogenesis-Related proteins or PR-
proteins. So far 17 families of PR-protein have been identified on the basis of 
their primary structure homology. The first report on developing fungus 
resistant transgenic plant came in 1991. Broglie et al. (1991) constitutively 
expressed bean chitinase in tobacco and Brassica napus to enhance resistance 
towards Rhizoctonia solani. Among the PR proteins hydrolytic enzymes (chitinase 
and glucanase), osmotins, thionins and defensins are specially importnat. 
 Hydrolytic enzymes: Chitinase and glucanase - The most widely used 
approach of developing fungus resistant plants has been over-expression of 
chitinases and glucanases in transgenic plants. This is because chitin and glucan 
comprise major components of the cell wall of most of the fungi. Over-expression 
of these hydrolytic enzymes in the plant cells is postulated to cause hyphal lysis, 
thereby inhibiting fungal growth (Mauch and Staehlin 1989). This was proved by 
in vitro experiments with an observation that different fungi have different 
degrees of sensitivity to these enzymes (Boller 1993, Yun et al. 1997). However, 
not all chitinase and glucanase show antifungal activity (Cornelissen et al. 1993). 
In addition, chitinases have no effect on some fungi such as Cercospora nicotianae, 
Colletotricum lagenarium and Pythium spp. as these species do not possess any 
chitin in their cell wall. The effectiveness of the chitinase gene in transgenic 
plants has been demonstrated by the reduced rate of lesion development and 
reduction of overall size and number of lesions upon challenge with pathogenic 
fungi. However, Punja reported in 2001 that there were no reports of complete 
control of disease (Punja 2001). In comparison with chitinase there are fewer 
reports of transgenic plants with glucanase activity. Combinations of both of 
these hydrolytic enzymes have also been expressed in transgenic plants. 
 Broglie et al. (1991) showed that both transgenic tobacco and Brassica napus 
exhibited enhanced resistance towards Rhizoctonia solani, following constitutive 
expression of the chitinase gene. Transgenic peanut plants following transfor-
mation with tobacco chitinase, showed partial resistance to Cercospora arachidicola 
(Rohini and Rao 2001). When Salehi et al. (2005) introduced bean chitinase gene 
in soybean driven by a constitutive promoter, they obtained a few transgenic 
lines that showed greater chitinase activity compared to un-transformed plants 
towards Rhizoctonia solani during an in vitro assay. 
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 Zhu et al. (1994) reported constitutive co-expression of basic chitinase from 
rice and acidic glucanase from alfalfa in tobacco. They observed protection 
against Cercospora nicotianae to be enhanced when both genes were expressed in a 
single plant, compared to expression of either of the single genes. Co-expression 
of hydrolytic enzyme with other PR-proteins has also been studied. Jach et al. 
(1995) regenerated transgenic tobacco plants containing barley Ribosome 
Inactivation Protein (RIP) in combination with either chitinase or glucanase 
genes. They showed that these double transgenics with the chitinase gene 
provide enhanced protection compared to RIP. However, they also found that 
protection level did not increase when glucanase and RIP were co-expressed in 
the transgenic plants.  
 Attempts were also made to evaluate these hydrolytic genes that are isolated 
from non-plant sources. In 1998, Lorito et al. reported lower lesion number and 
reduced size of lesion in Alternaria solani infection when potato plant was 
transformed with Trichoderma harzianeem endochitinase. However, when Broglie 
et al. (1991, 1993) tried to develop resistance in tobacco by introducing bean 
chitinase, no inhibition was achieved against Pythium aphanidermatum as the 
fungi lack chitin in their cell wall. These results highlight the importance of 
testing sensitivity of a fungus to a gene product before attempting 
transformation with the corresponding gene. 
 PR proteins -small cysteine rich peptides: Defensins and thionins are two types 
of antimicrobial peptide that fall into this category. Both of these peptides are 
small (~5kDa) and cysteine-rich. Both of these peptides contain eight cysteines, 
but differ in 3D structures which determine their antimicrobial efficiency. 
 Defensins (PR-12): Plant defensins exhibit antifungal activity in micro-molar 
concentrations (Thomma et al. 2002). They also proved to put up first line of 
defense in host plants against fungal pathogens. In addition, because of their 
small size, they can be synthesized swiftly with minimal energy input. Due to 
these reasons attempts were made to develop fungal resistant transgenic plants 
by expressing these peptides.   
 The first transgenic plants with defensin were regenerated by Terras et al. 
(1995). They transformed cDNA of Rs-AFP2 (Defensin isolated from radish seed) 
gene under constitutive promoter CaMV35S in tobacco to see the efficiency of the 
defensin peptide in a heterologous system. They found that upon artificial 
inoculation of Alternaria longipes the transgenic plants showed enhanced 
resistance. The transgene product showed typical morphological effects on the 
fungus. Apart from reduced disease epidemic, the lesion size was also reduced 
seven - eightfolds in the transgenic tobacco plant. Recently, a defensin peptide 
termed alfalfa antifungal peptide (alfAFP) was identified from Medicago sativa 
(alfalfa) (Gao et al. 2000). In vitro assays showed this new member of defensin 
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peptide to have inhibitory effect on Verticillium dahliae, Alternaria solani and 
Fusarium culmorum, the causal agents of potato wilt, potato early blight and 
wheat head scab, respectively.  They transformed the most widely used potato 
cultivar in the USA, Russet Burbank, which lacks resistance to V. dahliae. Under 
greenhouse and field trials the regenerated transgenic potato plants showed 
resistance to V. dahliae at a level or more than those obtained through conven-
tional means based on fumigants. This was the first report of fungal resistance in 
commercial crop showing effective resistance even under field conditions, and 
the effects were assessed for two consecutive years. This report demonstrates 
that agronomically useful levels of fungal control can be achieved through 
expression of a single transgene in agricultural crops (Gao et al. 2000).  
 Using the potato virus X (PVX) as a vector, Saitoh et al. (2001) transformed 
Nicotiana benthamiana with Wasabi defensin. They reported that defensin peptide 
isolated from the transgenic plants showed antifungal activity against M. grisea 
and Botrytis cinerea. However, during in vitro assay, the isolated defensin peptide 
did not show antibacterial activity against P. cichorii. Recently, the gene encoding 
chickpea defensin peptide, Ca-AFP, was introduced in tobacco. The transgenic 
plants showed enhanced resistance to complete suppression of Alternaria solani 
as determined during in vitro bioassay (Islam 2004). 
 Thionins (PR-13): Thionins have been found to inhibit several plant 
pathogenic Gram-positive and Gram-negative bacteria and also fungi including 
Oomycetes under in vitro conditions. These observations suggested that plants 
containing thionins could provide fungal resistance in planta. Epple et al. (1997) 
transformed Arabidopsis thaliana with Arabidopsis endothionin Thi2.1 gene and 
found enhanced resistance in the transgenic against Fusarium oxysporum f. sp. 
matthiolae, whereas, the untransformed Arabidopsis showed no defense against 
the same fungus. This implies that each transgenic plant needs to be evaluated in 
a case by case manner.  
 Other PR Proteins: Other PR proteins that are induced either in presence of 
pathogen infection or under stress have also been reported to have antifungal 
activity. These include osmotins, thaumatin-like proteins, peroxidase, oxalate 
oxidase etc. There have been attempts to develop fungus resistant transgenic 
plants by over-expressing these genes (Jach et al. 1995, Lorito et al. 1996, Chen 
and Punja 2002).  
 Osmotin and thaumatin-like proteins (PR-5): Osmotin is a basic 24-kDa protein 
belonging to the PR-5 family whose members have a high degree of homology to 
the sweet-tasting protein thaumatin from Thaumatococcus danielli. This group of 
protein is triggered by several factors such as wounding, NaCl, desiccation, 
ethylene, abscisic acid and various phytopathogens such as fungi and viruses.  
The precise function of osmotin is not clearly understood. However, the results 
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of some preliminary experiments have revealed that this chemical it causes 
damage in the fungal cell releasing cytosolic solutes, thus causing inhibition of 
fungal growth (Broekaert et al. 2000). In vitro experiments showed antifungal 
activity against Phytophthora infestans, Candida sp., Neurospora crassa and 
Trichoderma reesei (Liu et al. 1994).  When tested in combination with chitinase 
and glucanases, it enhanced their lytic activity (Lorito et al. 1996).  
 Nonetheless, fungi exhibit varying degrees of sensitivity to osmotin. Liu        
et al. (1994) reported the effects of tobacco osmotin on Phytophthora sp. in vitro 
and in transgenic potato. Tobacco osmotin gene has been reported to cause 
reduced rate of late blight infection in potato. But, in tobacco over-expression of 
the same gene had no effect on P. parasitica var. nicotianae. 
 Chen and Punja (2002) introduced thaumatin-like protein (tlp) along with 
another agronomically important gene, bar (herbicide resistant gene) in carrot. 
They obtained 45 primary transformants of which four transgenic lines showed 
significantly enhanced tolerance to the foliar and root pathogen Botrytis cinerea 
and Sclerotinia sclerotiorum under controlled environment conditions. Two of 
those four lines showed significantly enhanced tolerance to the herbicide 
phosphinothricin. These results demonstrate the feasibility of simultaneous 
introduction of two potentially useful agronomic traits through genetic 
engineering. 
 Ribosome inhibitory proteins (RIP): RIPs possess 28S rRNA N-glucosidase 
activity that inhibits the binding of 60S ribosomal subunit to elongation factor 2, 
thereby terminating the elongation process of protein chain in eukaryotic 
ribosomes. Plant RIPs inactivate ribosomes of distantly related species and of 
other eukaryotes including fungi (Cornelissen and Schram 2000).  Logemann et 
al. (1992) have shown that RIP isolated from barley, when expressed under the 
control of an inducible promoter, resulted in an increased protection of 
transgenic tobacco against Rhizoctonia solani without affecting or influencing 
plant growth. The level of resistance observed in these plants was higher than 
transgenic tobacco plants constitutively expressing exo-chitinase gene. Jach et al. 
(1995) developed transgenic tobacco transferring the two genes together. They 
introduced chitinase and RIP in one set of experiments, and in another set 
chitinase and glucanase genes isolated from barley,  and  tobacco and  
demonstrated that both combinations; i.e., chitinase and glucanase; and chitinase 
and RIP show enhanced resistance against R. solani in vitro than any of the genes 
singly. However, the best resistance was obtained from transgenics having 
combined expression of barley RIP gene with barley chitinase. These plants were 
reported to show 5% reduction in disease development following artificial 
inoculation of R. solani (Jach et al. 1995). 
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Transgenic plants producing phytoalexins 
Phytoalexins are low molecular mass secondary metabolites with antimicrobial 
activities produced in a broad range of plant species. These are produced in 
plants after pathogen attack and under abiotic stresses. Production of these 
phytoalexins to develop fungus resistant plants has also been exploited. Many 
unrelated plant species produce same phytoalexins. So over-expression of such 
genes in unrelated plants may be fruitful to achieve the goal. Grapevine, peanut 
and pine synthesize the stilbene-type phytoalexin, ‘resveratrol’, when attacked 
by pathogens. This molecule was postulated to have antifungal activity. Stilbene 
synthase, also termed resveratrol synthase, is the enzyme that synthesizes the 
phytoalexin resveratrol. Thomzik et al. (1997) introduced grapevine stilbene 
synthase gene in tomato plants and found accumulation of the phytoalexin 
resveratrol (the product of stilbene synthase) shortly after fungal inoculation. The 
transformants showed enhanced resistance against Phytophthora infestans. No 
significant increase in resistance was observed in transgenic tomato plants 
although accumulation of resveratrol occurred after they were inoculated with 
Botrytis cinerea and Alternaria solani. Hain et al. (1993) introduced the stilbene 
synthetase gene from grapevine into tobacco plants. Expression of the transgene 
resulted into production of resveratrol and the transgenic plants exhibited 
enhanced resistance against Botrytis cinerea. However, the level of resistance 
obtained was not sufficient for commercial exploitation.  
 Production of phytotoxins metabolites, such as mycotoxins and oxalic acid 
by fungi has been shown to facilitate infection of host tissues followed by cell 
death. Degradation of these compounds by enzymes expressed in the transgenic 
plants could provide an opportunity to enhance resistance against diseases. 
Expression of trichothecene-degrading enzymes from Fusarium sporotrichioides in 
transgenic tobacco reduced plant tissue damage and enhanced seedling 
emergence in presence of trichotecene (Muhitch et al. 2000). 
 

Transgenic plant production using genes neutralizing fungal virulence 
products 
Fungus produces a large number of enzymes such as plant cell wall degrading 
enzymes (depolymerases) and toxins (e.g. oxalic acid) to degrade plant cell walls 
in order to enter the cells. Several strategies to engineer resistance against fungal 
infection have targeted the inactivation of these pathogen virulence products. 
Polygalacturonase inhibiting proteins (PGIP) are glycoproteins present in the cell 
wall of many plants and they can inhibit the activity of fungal endopolygalac-
turonases (Powell et al. 1994, Desiderio et al. 1997). Transgenic plants with PGIP 
genes were speculated to show enhanced level of protection. But very 
contrasting results were obtained. In transgenic tomato, expression of bean PGIP 
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showed no enhancement of resistance against  Fusarium, Botrytis and Alternaria 
(Desiderio et al. 1997); but pear PGIP  expressed in tomato plants showed 
enhanced resistance against Botrytis (Powell et al. 2000). In an earlier study, it 
was shown that the PGIPs from bean plants differed in specificity to fungal 
polygalacturonase in vitro and the PGIP-1 that had been selected for 
transformation was not inhibitory (Desiderio et al. 1997). This emphasized the 
need of appropriate in vitro screening of PGIPs prior to undertaking 
transformation experiments.  
 Oxalic acid is one of the toxic products that fungi release inside the plant cell. 
Oxalate oxidases are glycoprotein that acts on oxalic acid and breakdown into 
CO2 and H2O2. H2O2 is a defense signal molecule.  On one hand accumulation of 
H2O2 is expected to trigger defense response, on the other hand, it improves the 
tolerance of the host plant against the fungal toxin (Thompson et al. 1995). They 
expressed barley oxalate oxidase gene in oilseed rape enhancing its tolerance to 
phytotoxic effect of oxalic acid.  
 Some of the phytopathogenic fungi like A. alternata, secrete mannitol to 
quench reactive oxygen species (ROS), an activator of defense response pathway 
of plants. Jennings et al. (2002) showed that MTD (Mannitol dehydrogenase) in 
the host plant is capable to metabolizing mannitol to the non-quenching sugar 
mannose, thus protect plants from ROS loss and helps in triggering defense 
response. They showed this in transgenic tobacco by introducing MDT gene from 
celery. Though, MTD mediated process reported to beresponsible for 
enhancement of fungal resistance, this cannot be employed to all fungi as not all 
of them produce mannitol. 
 

Expression of structural components in transgenic plants 
From the above discussion it is clear that by introducing antifungal gene into the 
transgenic plants fungal resistance can be obtained only for few selective fungi. 
But at any point of time, plants are attacked by different pathogens including 
various fungi. Therefore, research is going on to develop transgenic plants that 
will have more durable resistance directed towards a broader spectrum of 
pathogens. One strategy to achieve such a goal is by inducing local cell death 
called apoptosis at the site of infection, which is a general defense response of 
plants during incompatible plant-pathogen interaction to stop the progression of 
the pathogen. Nicholson and Hammerschmidt (1992) reported that lignification 
of plant cells around sites of infection or lesions can potentially slow down the 
spread of the invading pathogen. The enzyme peroxidase is required for the final 
polymerization of phenolics derivatives into lignin and may also be involved in 
suberization or wound healing. The importance of phenolic compounds in 
defense was demonstrated in transgenic potato by Yao et al. (1995). They showed 
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transgenic potatoes to be more susceptible to Phytophthora infestans due to lignin 
reduction in tubers. However, cucumber peroxidase in potato and tobacco 
anionic peroxidase in tomato had no effect on disease resistance against Fusarium 
sambucinum, F. oxysporum, Verticilium dahliae and Phytophthora infestance 
(Lagrimini et al. 1993, Ray et al. 1998). Moreover, over-expression of peroxidase 
gene in plants can have negative effects on their physiological parameters (Punja 
2001).  Overall, the results obtained so far showed less promises for enhancing 
disease resistance through incorporation of structure alteration genes.  
 

Activation of signal transduction pathway 
After perceiving the avr gene product, elicitors, signal cascade is trigger by 
activation of host activator molecules. These activator molecules then interact 
with signal molecules such as H2O2, salicylic acid (SA), jasmonic acid (JA) and 
ethylene thereby triggering defense responses in plants, exemplified by HR, PR 
proteins and phytoalexin (Heath 2000; McDowell and Dangl 2000; Shirasu and 
Schulze-Lefert  2000).  
 H2O2 is one of the activator molecules interacting with signal cascade and 
induces PR proteins, phytoalexins, SA and ethylene. Wu et al. (1995, 1997) 
reported that by introducing Aspergillus niger glucose oxidase gene in potato, 
delayed lesion development by Phytophthora infestans, reduced disease 
development by Alternaria solani and Verticillium dahliae can be achieved. 
However, high level of expression of these proteins can also be phytotoxic. 
Therefore, induction of H2O2 accumulation throughout the plant needs to be 
approached with caution.  
 There are many other signaling molecules such as salicylic acid (SA), 
jasmonic acid (JA), and ethylene (Yang et al. 1997, Dong 1998, Reymond and 
Farmer 1998, Dempsey et al. 1999). Evidence for the role of SA in defense 
response has been obtained by its overproduction in transgenic plants. Plants 
expressing the SA-metabolizing enzyme salicylate hydroxylase, a bacterial 
protein that converts SA to the inactive form catechol, are reported to hinder 
accumulation of high levels of SA, thereby enhancing susceptibility to pathogen 
infection (Gaffney et al. 1993, Delaney et al. 1994, Donofrio and Delaney 2001), 
and in some cases resulted in unaltered susceptibility (Yu et al. 1997). Verberne et 
al. (2000) showed that over-expression of SA in transgenic tobacco plants can 
enhance PR-protein production and provide resistance to fungal pathogens. 
Depending on these findings it was postulated that over-expression of the signal 
molecule SA may enhance resistance in host plants. These studies demonstrated 
that by manipulating SA levels disease resistance may be enhanced.  
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 Ethylene and JA appeared to act as signals in response to necrotrophic 
pathogen attack in plants. They are so far reported to work independently or 
show antagonism to SA-mediated responses (Thomma et al. 1999).  
 Ethylene- and extracellular PR-protein production were found to be induced 
by expression of cytokinins in transgenic tomato cells (Bettini et al. 1998). 
Insertion of anti-sense version of nitrilase 1 gene in Arabidopsis is reported to 
reduce the IAA level and the development of Plasmodiophora brassica-induced 
root galls (Neuhaus et al. 2000). Over-expression of IAA in tobacco is reported to 
have enhanced ethylene production and peroxidase activity and increased lignin 
content (Sitbon et al. 1999). However, response to disease resistance of these 
transgenics has not been tested.  
 

Activation of defense response by ‘avr’ gene products and host resistance genes  
The invading fungus releases a number of 'avr' gene products following its entry 
into the plant cells to establish infection. On the other hand, plant resistance 
genes produce molecules that have the ability to recognize these 'avr' gene 
products. The second phase of defense response starts when these R gene and 
elicitor makes a complex and generate activator molecules which finally interact 
with signal molecules such as H2O2, SA, JA and ethylene.  
 Elicitor produced by Cladosporium fulvum is a product of virulence gene ‘avr9’ 
and De Wit (1992) proposed that if ‘avr9’ gene can be introduced, then broad 
spectrum resistance could be obtained. In 1994, Hammond-Kosack et al. showed 
HR response in tomato seedlings by expression of the  ‘avr9’ transgene. 
Transgenic tobacco plants were made harboring a fusion between the pathogen-
inducible tobacco ‘hsr203J’ gene promoter and Phytophthora cryptogea gene 
encoding elicitor cryptogene in order to control the expression of ‘avr9’ gene only 
in presence of pathogen (Keller et al. 1999). They reported the expression of 
cryptogene to be tightly controlled; i.e., HR response was tightly controlled and 
only in presence of P. parasitica var. nicotianae. Moreover, the transgenic plants 
displayed enhanced resistance to few other unrelated species, such as 
Thielaviopsis basicola, Erysiphe cichoracearum and Botrytis cinerea. This report not 
only demonstrates that single gene can produce broad spectrum resistance, but 
also implies that when transgenes are introduced into heterologous system the 
effectiveness of the gene needs to be assessed very cautiously. Because the 
introduced gene may produces resistance towards many more untargeted, non-
related species. 
 Techniques which allow determination of differential expression will result 
in identification of specific proteins and their relative role in fungus tolerance. 
Recently, Zou et al. (2005) identified nearly 4000 genes through microarray 
approach in soybean in response to pathogenic bacteria. Similar experiments can 
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also be done to identify R gene in plants in order to identify genes with broad 
resistance capacity.  
 
 

Antifungal proteins from non-plant sources 
All organisms produce antimicrobial proteins (AMPs) to protect themselves from 
fungal pathogens. To find out effective antifungal proteins and to develop 
transgenics with better fungal resistance, various non-plant sources have also 
been exploited. Among these mycoparasitic fungi, viruses infecting fungus, 
cationic antimicrobial peptides from insects and bacteria, human gene and 
synthetic peptides deserve special mention.  
  AMP from mycoparasitic fungi: Trichoderma harzianum is a mycoparasite, 
which has an antagonistic effect on fungi and cause lyssis of the delicate hyphal 
tip and chitin wall of mature hyphae and conidia. The endochitinase gene was 
isolated from Trichoderma harzianum and transferred to tobacco and potato by 
Agrobacterium tumefacience by Lorito and his colleagues (1998). Some of the 
transgenic lines, they developed were found to be highly tolerant or completely 
resistant to certain foliar (e.g. Alternaria alternate, A. solani, B. cinerea) and soil 
borne pathogens (e.g. R. solani).  
 Endochitinase gene from another mycoparasitic fungi Trichoderma virens was 
introduced by Emani et al. (2003) into cotton and tobacco plants. In both species, 
the  endochitinase activity was observed throughout the plant body. When 
homozygous T2 plants of the highly expressing cotton lines were tested against a 
soil-borne pathogen, Rhizoctonia solani and a foliar pathogen, Alternaria alternate, 
they showed significant resistance to both pathogens.  
  AMP from Virus Infecting Fungi: Similarly, Clausen and co-workers 
regenerated transgenic wheat by transferring an antifungal gene KP4 of non-
plant origin under the control of the ubiquitin promoter of maize (Clausen et al. 
2000). Koltin and Day (1975) showed that when Ustilago maydis strain ATCC 
32357 is infected by the double stranded RNA U. maydis virus, the fungus 
secretes a protein, KP4 (Killer Protein 4). This KP4 exhibits antifungal activity 
towards U. tritici, which causes loose smut disease in wheat. Upon discovering 
the biological characteristics of KP4 protein, Clausen et al. (2000) transferred this 
gene into Swiss wheat varieties which are highly susceptible to smut infection. 
Under greenhouse conditions these transgenic wheat lines exhibited stable 
antifungal activity over many generations and reduced reproduction rate of U. 
tritici (Clausen et al. 2000). 
 AMP from Insects:  Insect cecropins are members of a peptide family 
consisting of small, highly basic, α-helical antibacterial peptides. Cecropin A 
isolated from giant silk moth, Hyalophora cecropia are ca. 35 amino acids long, and 
shows antimicrobial activity in vitro. Melittin is another peptide which was 
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isolated from bee venom and has a strong hemolytic activity, making it a highly 
unsuitable candidate for transgenic applications. Through molecular modelling 
and engineering of peptides, a chimeric peptide CEMA was made demonstrating 
the same antimicrobial activity. But since CEMA also showed lytic capacity, this 
engineered molecule was not recommended for transgenic use. Osusky and co-
workers (2000) then modified CEMA further and developed MsrA1 that had in 
vitro antimicrobial activity,   but no   lytic effect. They transformed two potato 
varieties, Desiree and Russet Burbank, with ‘msrA1’ driven by a constitutive 
promoter and found that transgenic potato lines were resistant against bacterial 
(Erwinia sp.) as well as fungal pathogens (Fusarium sp. and Phytophthora sp.). 
However, constitutive expression of ‘msrA1’ in Russet Burbank potato caused 
lesion-mimic phenotype. On the contrary, expression of ‘msrA1’ in the transgenic 
Desiree variety had virtually no deleterious effects on the morphology or yield of 
plants and tubers. This observation demonstrates the importance of assessing 
every transformation event in a case by case manner. Each evaluation needs to 
include from morphology of transgenic plants to effectiveness of transgenes in 
those transformants.  
 Human lysozyme gene: Nakajima and coworkers (1997) introduced human 
lysozyme gene into tobacco under CaMV35S promoter though Agrobacterium-
mediated method. The introduced human lysozyme gene product in the 
transgenic tobacco plants showed enhanced resistance against Erysiphe 
cichoracearum by reducing mycelial growth and conidia formation. Growth of the 
phytopathogenic bacteria Psedomonas syringae was also reduced. This report 
makes it possible to use the human lysozyme gene to protect crops against 
fungal diseases. 
  Two-component system: From Bacillus amyloliquefaciences two proteins were 
isolated, namely, ‘barnase’, a protein with RNase activity and 'barstar' inactivitor 
of ‘barnase’. Strittmatter et al. (1995) introduced both these protein encoding 
genes into potato to see their effectiveness in fungal resistance. Barnase gene was 
placed under the control of pathogen-inducible potato promoter so that its 
activity to kill the cell was restricted only at the site of pathogen invasion. To 
avoid cell death due to unwanted expression of barnase gene, the barstar gene was 
expressed constitutively throughout the plant. Cells were killed only when 
barnase activity was higher than that of barstar. Transgenic potato plants showed 
leaf tissue necrosis at the P. infestans inoculation site. Though disease symptoms 
were was reduced, the transgenics were not tested at the field level. 
 Synthetic AMP gene: Extensive search for antimicrobial peptide to be used in 
generating transgenic plant have lead to development of several synthetic 
peptides. Ali and Reddy (2000) reported effectiveness of four synthetic cationic 
peptides, namely, pep6, pep7, pep11 and pep20. All these peptides exhibited 
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complete inhibition of two important pathogenic fungi P. infestans and A. solani 
during in vitro assay. Oard et al. (2004) compared antifungal activity of 12 natural 
and synthetic peptides. Of the tested peptides, natural peptide purothionin 
showed the strongest inhibitory activity followed by synthetic peptide, D4E1 
against R. solani. Rajasekaran et al. (2005) transformed D4E1 peptide in cotton. In 
vitro assays with crude leaf protein extracts from T0 and T1 plants showed that 
D4E1 was expressed at sufficient levels to inhibit the growth of F. verticillioides 
and V. dahliae. In planta assays with the fungal pathogen, Thielaviopsis basicola 
transgenic T1 seedlings showed a significant reduction in disease symptoms and 
increased seedling fresh weight, demonstrating tolerance to the fungal pathogen. 
There are more reports on efficiency of synthetic peptides in controlling fungal 
pathogens. It is now matter of time to see the efficiency of those peptides in 
transgenic plants. 
 

Optimization of antifungal gene expression in transgenic plants 
All the strategies mentioned above concentrate on introduction and over-
expression of antifungal genes to make transgenic plants to combat fungal 
infection. In most of the cases the antifungal genes have been introduced under 
constitutive expression resulting in the continuous expression of transgenes. So, 
the ultimate success of a transgenic plant to inhibit fungal infection depends on 
the expression level of the transgene(s) introduced in it.   
 In many cases, it was observed that the level of expression in the transgenic 
plants is not enough to inhibit fungal infestation (Hain et al. 1993). It is therefore 
imperative that emphasis is directed to express transgenes at a level effective for 
fungal inhibition. A word of caution against the use of cationic antifungal 
proteins. They do express antimicrobial properties but at the same time induce 
plant cell damage and cause deleterious effects on plant growth and 
development (Honée et al. 1995). Osusky and co-workers (2000) reported lesion-
mimicked phenotype in transgenic potato plants when they used a small 
synthetic peptide, ‘msrA1’, to obtain broad-spectrum fungal resistance. Under 
constitutive promoter CaMV35S, transgenic tomato was also reported to die 
when transformed with elicitor gene ‘avr9’ to produce fungal resistant plants 
(Honée et al. 1995). Although T0 generation was morphologically normal, Anad 
et al. (2003) reported necrotic lesions containing dead cells in T2 and subsequent 
generations, when the wheat transgenic lines were homozygous for the 
transgenes (co-expression of chitinase and glucanase). In contrast, lesions were 
not observed in hemizygous transgenic lines or lines silenced for transgene 
expression, indicating a requirement for high levels of transgene expression for 
the development of the lesioned phenotype.  
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 In light of these observations, attempts are now made to develop transgenic 
plants with regulated or tissue-specific expression of transgenes in order to avoid 
such deleterious effects of putatively harmful transgene products as well as to 
minimize the loss of energy due to continuous production of transgene products. 
Yevtushenko et al. (2005) constructed a plant transformation vector with 
transcriptional fusion between the pathogen-responsive win3.12T promoter from 
poplar and the gene encoding the CEMA (cercopin A-melitin hybrid peptide). 
When they evaluated this promoter-transgene combination in transgenic tobacco, 
an enhanced plant resistance was observed. Transgene expression in leaves was 
increased following either fungal infection or mechanical wounding, followed by 
an accumulation of CEMA transcripts throughout the plant body and positively 
correlated with the number of transgene insertions. Moreover, the expression 
level of the CEMA peptide was sufficient to confer resistance against F. solani in 
transgenic tobacco. Most importantly, accumulation of CEMA peptide in 
transgenic tobacco had no deleterious effect on plant growth and development. 
This is the first report showing the application of a heterologous pathogen-
inducible promoter to direct the expression of an antimicrobial peptide in plants. 
Earlier similar attempts were made but with pathogen-inducible promoter. 
Transgenic tobacco plants were made harbouring a fusion product between the 
pathogen-inducible tobacco ‘hsr203J’ gene promoter in combination with 
cryptogene elicitor encoded by Phytophthora cryptogea. The object of this exercise 
was to control the expression of transgene only in presence of the pathogen, as 
continuous expression ‘avr9’ gene leads to premature death of the transgenics 
(Keller et al. 1999). The transgenic tobacco plants regenerated with this 
homologous pathogen-inducible promoter were reported to have tightly 
controlled expression of the transgene only in presence of the pathogen.  
 A second approach for antifungal gene expression can be tissue-specific 
expression of the transgenes. Altpeter et al. (2005) attempted epidermis-specific 
expression of a PR protein in transgenic wheat. They developed a novel 
epidermis-specific promoter by fusion of 2.3 kb fragment of wheat GstA1 
promoter with an intron-containing part of wheat WIR1a gene. When this 
promoter-intron combination was used to over-express TaPERO peroxidise, it 
showed enhanced resistance against powdery mildew. This suggests that wheat 
GstA1 promoter in combination with WIR1a intron is a useful approach to confer 
fungal disease resistance in cereals. 
 Expression and accumulation of antimicrobial proteins at extra-cellular space 
where the target fungi invade is another strategy to improve resistance. As two 
or more antifungal genes give better response, Francois et al. (2002) introduced a 
cleavable chimeric polyprotein in Arabidopsis by linking two defensin peptides, 
DmAMP1 and RsAFP2, with a ‘linker peptide’ at the downstream of a ‘leader 
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sequence’. They reported cleavage of the chimeric polypeptide in transgenic 
Arabidopsis plants and secretion of individual defensins into the extracellular 
space. Moreover, the expressions of these small AMPs in transgenic plants were 
higher than expression of any one of these AMPs in singly transformed plants. In 
in vitro assay the purified proteins from the transgenic plants showed antifungal 
activity. This report shows that polyprotein expression strategy can be a way to 
boost expression levels of small proteins. 
 

Conclusion 
Fungal pathogens cause numerous diseases ranging from rust, smut, blight 
mildew to many more kinds. These diseases not only cause yield loss but quality 
is also reduced. Moreover, accumulation of mycotoxin in our food cause health 
hazard. Based on the available knowledge of plant-pathogen interaction several 
strategies have evolved to improve fungal resistance in plant species. In the 1990s 
enormous work has been carried out to identify potential genes and gene 
products involved in plant resistance. Extensive evaluation of such genes 
through transgenic plant approach was also carried out during this period.  
 Unfortunately, a major portion of this research involved production of 
transgenics in model system, tobacco. As a result much progress has not been 
attained in regenerating transgenic plants in economically important crops. 
Moreover, most of the studies were restricted within in vitro bioassay. Some 
transgenics have been taken to greenhouse for evaluation. But, there were only a 
few reports on field evaluation and commercialisation of these plants. One of the 
reasons for this is inadequate level of resistance found in the lab tests. Disease-
mimic phenotype production in the transgenic plants due to transgene over-
expression is another drawback. Again stability of transgenes for durable 
resistance is another challenge to meet.  
 To overcome these limitations innovative approaches such as pathogen 
induced promoter usage and identification of genes conferring broad spectrum 
resistance are now under study. 
 Enhancement of fungal resistance through transgenic approach is largely 
restricted within few phytopathogenic fungi like P. infestans, V. dahliae, A. solani, 
R. solani etc. But as there is about 10,000 plant-pathogenic species attention needs 
to be given to develop resistance towards other fungi as well. Our experience 
with transgenic plants have already shown that though some time transgenes 
were inserted for specific pathogen(s), resistance was achieved in many 
unrelated species as well. So, during evaluation two things needs to in mind, 
evaluation of resistance against target fungi and evaluation of non-target 
pathogenic or symbiotic fungi. This assessments needs to be performed for each 
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transgenic-host species/variety as same transgene can act differently in different 
varieties of the same species.  
 Along with these scientific issues, there are obvious questions involved with 
safety and public acceptance. Biosafety issues include food and feed safety for 
human and animals, allergicity, potential spread of genes to wild relatives and 
development of super-weeds, effects on non-target organisms and eco-
unfriendly effects on the environment. So, although ground-breaking work has 
been done in the leading laboratories, there is a long way to go to   obtain 
transgenic plants with significant resistance capacity.    
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