Original Article

Spectrum of heart diseases on Echocardiography in a Rural tertiary care Medical college hospital in Bangladesh.

Islam M S¹, Sakib M A M², Talukder R³, Yusuf S M T ⁴.

Abstract:

Background: Echocardiography is a non-invasive, on-injurious, relatively cheap and useful imaging technique for the evaluation of cardiac diseases. The procedure has reliable levels of accuracy. Echocardiography commenced at the Cardiology Department of Khawja Yunus Ali Medical College Hospital, Enayetpur Sirajgonj, Bangladesh since 2004. The aim of this study is to report our experience with the procedure, and to define the clinical cases seen in our setting.

Methods: This is a retrospective analysis of a prospectively collected data. Echocardiography was performed using Aloka Prosound-SSD 5500 SV echocardiograph equipped with 2.5-5.0 MHz transducer.

Results: During the period of 6 months under review (July 2011-December 2011), 1883 procedures were performed. Those reports were reviewed for demographic parameter, indications for the procedure and the main echocardiographic diagnoses. The mean age of the 1883 individuals studied was 50 +/- 18.67 years (10-90). There were 1221 men and 662 women. Four hundred ninety eight(498) (26.45%) had Ischemic Heart Disease, 229(12.16%) subjects were Hypertensive Heart disease, 160 subjects (8.5%) had rheumatic heart disease while 62,(3.3%) had cardiomyopathy. Pericardial diseases, corpulmonale, congenital heart diseases, were present in 36(1.92%), 35 (1.85%), 88(4.67%), respectively. Seven hundred and Seventy Five (41.1%) subjects had normal study.

Conclusion: Ischemic heart disease was found to be the most prevalent cardiac condition in this study. The relatively frequent diagnoses of Hypertensive heart Disease, valvular heart disease, cardiomyopathies and pericardial diseases reflect the impact of infections on the cardiovascular health of adult Bangladeshis. We suggest that prevention and treatment of cardiac diseases in our setting should among other things focus on life style modification, Ceasation of smoking, regular exercise, blood pressure and blood glucose control and early treatment of infections causing heart diseases.

Background

Epidemiological studies have shown that heart diseases are on the increase worldwide especially in low income countries and developing economies where noncommunicable diseases are emerging¹. Cardiovascular disease now constitute major health problem in developing nations. Over 80% of global morbidity and mortality from cardiovascular diseases now occur in these countries. Now a days, Heart disease are increasing as alarming pattern in our country. Knowledge of the prevalent and patterns of heart diseases

Correspondence: Dr. Annaz Mus Sakib, E-mail: sakib6009@gmail.com

^{1.} Prof.Dr.Md.Saiful Islam,DTCD,MD(cardiology),FACC,Prof & Head of Cardiology,KYAMCH,Sirajgonj.

^{2.} Dr.Md. Annaz Mus Sakib, D-card, Assistant Professor, Department of Cardiology, KYAMCH, Sirajgonj.

^{3.} Dr.Ranjan Talukder, D-card, Assistant professor, Department of Cardiology, KYAMCH, Sirajgonj.

^{4.} Dr.Sheikh Mohammed Taslim Yusuf, Intern doctor, Department of Cardiology, KYAMCH, Sirajgonj

in any environment is important in health care planning and in the provision of health care services. Echocardiography has grown to become the most widely used cardiac imaging technique worldwide. In 2003, the medical world marked the 50th anniversary of the original demonstration of cardiac ultrasound by Edler and Hertz. Although the procedure had an unheralded beginning, it has become a powerful tool in the diagnosis of cardiac diseases and in epidemiological studies. In 2003, it was estimated that over 20 million procedures were performed in the United States of America alone². The aim of this study is to report on our experience with the procedure, and to describe the different clinical cases diagnosed with this tool over a period of 6-months.

Methods

This is retrospective and descriptive study of a prospectively collected data. The study was carried out at the Department of Cardiology, of Khawja Yunus Ali Medical College Hospital, Enayetpur Sirajgonj, Bangladesh, The centre is a relatively young tertiary one, established in2004. Echocardiography is performed at our centre on a daily basis. Ethical approval was obtained from our institution's ethical review committee.

Clinical Evaluation:

Baseline clinical and demographic characteristics were obtained from the subjects. These included: date of birth, age, gender and indication for echocardiogram.

Echocardiography

Two-dimensional guided M-mode echocardiography with the use of commercially available echo-machine Aloka Prosound-SSD 5500 SV and a 2.5-5.0 MHz linear array transducer was performed on each subject in the partial decubitus position. All measurements were made according to the American Society of Echocardiography (ASE) leading edge to leading edge convention³. Echocardiographic examination was performed in the parasternal long axis, short axis, apical four chamber and occasionally in the subcostal and suprasternal views. LV measurement was obtained at end diastole and end systole in the parasternal long axis view. The LV measurements taken include right ventricular outflow tract diameter (RVOT), aortic root diameter (AO), and aortic valve opening (AVO) and left atrial diameter (LA). Others include interventricular septal thickness at end-diastole (IVSTd) and end-systole (IVSTs), the posterior wall thickness at end diastole

(PWTd) and end-systole (PWTs), and the LV internal dimensions at end systole (LVIDs) and end diastole (LVIDd). The end of diastole was taken as the peak of the R-wave of the ECG tracing on the echocardiograph while the end-systolic measurements were taken at the nadir of the LV septal wall³. Experienced cardiologist performed all the echocardiography. In our laboratory, the intra-observer concordance correlation coefficient and measurement error have been reported⁴. All the echocardiographic diagnoses were based on standard criteria.

Hypertensive heart disease was diagnosed in the presence of any or combination of the following abnormalities: left ventricular diastolic dysfunction (e.g altered E:A ratio), left ventricular hypertrophy (indexed LV mass > 51 g/ m².7), and dilated left atrium, a surrogate of impaired LV filling (left atrial diameter > 3.8 cm in women and > 4.2 cm in men). Left ventricular geometric patterns were defined according to Ganau⁵.

Ischemic Heart Diseases were documented by detection of RWMA on different region of Heart (such as loss systolic thickening,hypokinesia ,akinesia dyskinesia) and associated with LV systolic dysfunction

Valvular heart diseases (mostly rheumatic in origin) were documented based on the following:

- i. *Mitral stenosis:* Presence of thickened and calcified mitral valve leaflets, loss of the classic M-shaped pattern of a normal mitral valve, diastolic dooming and restriction of the mitral valve leaflet motions.
- ii. *Mitral Regurgitation:* Poor coaptation of the mitral valve leaflets in systole, thickened leaflets, dilated and hyperdynamic left ventricle, dilated LA.
- iii. A*ortic stenosis:* Presence of calcified aortic valve, reduction in aortic cusp separation, highly echo reflectant aortic valve leaflets
- iv. *Aortic regurgitation:* Poor coaptation of the aortic cusps in diastole dilated left ventricles and fine fluttering of the anterior mitral valve in diastole.

Dilated cardiomyopathy was diagnosed when there are dilated heart chambers with normal or decreased wall chambers as well as impaired LV systolic function⁶.

Endomyocardial fibrosis (EMF) was documented in the presence of clinical features coupled with dilated atria and thickening of the endocardium especially at the apices of the ventricles⁶.

Pericardial effusion was diagnosed when there is echo free space between the visceral and parietal pericardium. Corpulmonale was present when there is dilated and hypertrophied right ventricle (RV), evidence of increased RV systolic pressure D-shaped LV in diastole (diastolic flattening of the LV septum)

Data Analysis :

Data management and analysis were performed with SPSS software version 17.0. Continuous variables were

expressed as mean \pm SD (standard deviation) and categorical variables expressed as percentages.

Results:

During the 6 months period One thousand, eight hundred and eighty three (1883) subjects were analyzed. Table 1 shows the clinical and demographic characteristics of the subjects. There were 1221 men and 662 women aged 52.4 ± 17.1 and 48.4 ± 18.3 years respectively.

Parameter	All	Men	Women	
Number	1883	1221	662	
Age	50± 18.67	52.4 ± 17.1	48.4 ± 18.3	
Weight(kg)	66.9(±14.3)	70.0(±15.9)	62.8(±28.3)	
Height(cm)	156.1(9.2)	161.8(±68.7)	152.3(±55.2)	
Pulse (beat/min)	85.2(±14.4)	84.4(±13.3)	86.0(±15.4)	
Systolic BP(mmHg)	130.6(±25.3)	132.7(24.6)	128.6(±26.0)	
Diastolic BP(mmHg)	82.0(15.6)	84.0(±16.4)	80.0(±14.6)	

Table 1 :

The mean age of all the subjects was 50 ± 18.67 years and range 10-90 years. Table 2 shows the indications for referral for echocardiography.About 27.13% were because of Ischemic heart disease. Other reasons for referral include Hypertension 13.6%, congestive heart failure (3.9%), valvular heart disease (5.52%), corpulmonale (1.85%), stroke/ TIA (3.56%) and pericardial disease (1.92%), congenital heart disease(5.95%), pre operative cardiac evaluation (6.59%), pre chemotherapy (4.7%), patients complaints palpitation, Unexplained Dyspnoea, Unexplained leg swelling, (4.40%), (1.70%), (1.10%) respectively; on investigations abnormal ECG (4.7%), cardiomegaly on CXR (3.9%). Four hundred ninety eight(498) (26.45%) had Ischemic Heart Disease, 229(12.16%) subjects were Hypertensive Heart disease, 160 subjects (8.5%) had rheumatic heart disease while 62,(3.3%) had cardiomyopathy. Pericardial diseases, corpulmonale, congenital heart diseases, were present in 36(1.92%), 35 (1.85%), 88(4.67%), respectively. Seven hundred and Seventy Five (41.1%) subjects had normal study.(Table:3)

Among Ischemic heart diseases, more common are Myocardial infarctions than Myocardial hypokinesia.in Myocardial infarction is more common in male populations. Anterior MI was more common (77 cases) and which is male predominant.(Table:4)

SNO	Indication	Frequency	Percent (%)
1	Abnormal ECG	89	4.7%
2	Cardiac murmur	48	2.5%
3	Ischemic Heart Disease	511	27.13%
4	Hypertension	256	13.6%
5	Congenital Heart Disease	112	5.95%
6	Cor-pulmonale/Pulmonary Hypertension,COPD	35	1.85%
7	Congestive Heart Failure	74	3.9%
8	Cardiomegaly on CXR	6	0.3%
9	Myocarditis	13	0.69%
10	Palpitation	83	4.40%
11	Pericardial Diseases	36	1.92%
12	Pre-chemotherapy	89	4.7%
13	Pre-operative cardiac evaluation	124	6.59%
14	Restrictive Heart Disease	06	0.3%
15	Routine medical check-up	56	2.98%
16	Stroke/TIA	67	3.56%
17	Diabetic Heart Disease	54	2.86%
18	Thyroid Heart Disease	45	2.38%
19	Unexplained Dyspnoea	32	1.70%
20	Unexplained leg swelling	21	1.10%
21	Valvular Heart Disease	104	5.52%
22	Not specified	22	1.16%
	Total	1883	100%

Table 2: Indications for Echocardiography in the 1883 subjects.

The commonest type of valvular heart disease was pure rheumatic mitral stenosis (69 cases) in which females are predominant. This is followed by pure aortic stenosis (23 cases), and 14 cases are pure MR, 14 cases of MS with MR &9 cases of AR, 8 cases of AS with AR. Ten cases of primary mitral valve prolapse were documented The commonest form of pericardial disease was effusive constrictive pericarditis (13 cases) followed by effusive type (8 cases) and constrictive pericarditis (4 cases).

Ischemic dilated cardiomyopathy was the commonest form of cardiomyopathy (constituting 43 of the 62 cases seen). Among the adult congenital heart disease (88 cases) VSD was more common (29 cases).

	All (n = 1883)		Males(n = 1	Males(n = 1221)		Females (n = 662)	
Diagnosis	Frequency	Percent	Frequency	Percent	Frequency	Percent	
Hypertensive Heart Disease	229	12.16%	152	12.45%	77	11.64%	
Normal Study	775	41.1%	437	35.8%	338	51.05%	
Valvular Heart Disease	160	8.5%	84	6.8%	76	11.48%	
Rheumatic MS	69	-	23	-	46	-	
Rheumatic MR	14	-	8	-	6	-	
• MS & MR	14	-	7	-	7	-	
• AS	23	-	16	-	7	-	
• AR	9	-	8	-	1	-	
• AS & AR	8	-	7	-	1	-	
• MVP	10	-	7	-	3	-	
MIXED /Complex	13	-	8	-	5	-	
Ischaemic Heart Disease	498	26.45%	412	33.7%	86	12.99%	
 Myocardial hypokinesia 	225	-	178	-	47	-	
• MI	273	-	234		39	-	
Cardiomyopathy	62	3.3%	41	3.35%	21	3.17%	
• IDCM	43	-	31	-	12	-	
• Idiopathic DCM	11	-	05	_	06	-	
• HOCM	04	-	03	-	01	-	
Rstrictive	04	-	02	-	02	-	
Pericardial Diseases	36	1.92%	24	1.96%	12	1.82%	
• Effusive	23	-	15		08	-	
Effusive- constrictive	03	-	02	-	01	-	
Constrictive	10	-	07	-	03	-	
Cor-pulmonale	35	1.85%	25	2.04%	10	1.5%	
• COPD	30	-	23	-	07	-	
• Primary Pulmonary Hypertension	05	-	02	-	03	-	
Congenital Heart Disease	88	4.67%	46	3.7%	42	6.35%	
• ASD	23	-	08	-	15	-	
• VSD	29	-	18	-	11	-	
• PDA	09	-	02	-	07	-	
• COA	04	-	03	-	01	-	
• TOF	14	-	10	-	04	-	
Complex congenital heart disease	09	-	05	_	04	-	

Table 3: Echocardiographic Diagnoses in the 1883 subjects:

Table:4 .Pattern on Ischemic Heart disease:

IHD	ALL(n=49	ALL(n=498)		Males(n=412)		Females(n=86)	
	Frequency	y (%)	Frequency	(%)	Frequenc	(%)	
		45.10	180	42.20/	У		
Myocardial	225	45.18	178	43.2%	47	54.6%	
Hypokinesia		%					
Myocardial Infarction	273	54.8 %	234	56.8%	39	45.3%	
Anterio	r 77	-	69	-	08	-	
Anteros	septa 52	-	46	-	06	-	
l	-						
Inferior	r 55	-	46	-	09	-	
Extensi	<i>ve</i> 10	-	07	-	03	-	
Anterio	r						
Posterie	or 02	-	02	-	00	-	
Inferior	r 57	-	49	-	08	-	
and							
posteria	Dr						
Anterio	r 20	-	15	-	05	-	
and							
Inferio	*						

Fig:2 Spectrum of Myocardial infarction according to location of Heart.

	All (1108)	ll (1108) Males			Females		
Diagnosis	Frequency	(%)	Frequency	(%)	Frequency	(%)	
Ischaemic Heart	498	44.95%	412	52.5%	86	26.5%	
Disease							
Hypertensive Heart	229	20.67%	152	19.3%	77	23.7%	
Disease							
Valvular Heart Disease	160	14.45%	84	10.7%	76	23.4%	
Cardiomyopathy	62	5.6%	41	5.2%	21	6.4%	
Congenital Heart	88	7.95%	46	5.8%	42	12.9%	
Disease							
Pericardial Diseases	36	3.2%	24	3.06%	12	3.7%	
Cor-pulmonale	35	3.1%	25	3.18%	10	3.08%	
Total	1108		784		324		

Table 5: Spectrum of echocardiographic diagnosed heart diseases (excluding individuals with normal study)

Fig: Bar chart shows frequency of IHD (44.95%) is common among all types of Heart diseases.

Discussion

This echocardiographic based study showed that the common heart diseases in adult Bangladesh were Ischaemic heart disease, hypertensive heart disease, valvular heart disease (mostly rheumatic), cardiomyopathy, pericardial diseases, and corpulmonale. and adult congenital heart disease were infrequently diagnosed. Ischaemic heart disease is by far the commonest heart disease in this study. It was well established that this condition forms the bulk and was the foundation of cardiovascular disease in Asia. The relatively frequent diagnoses of rheumatic heart disease, cardiomyopathies and pericardial diseases reflect the impact of infections and infestations on the cardiovascular health of adult in Bangladesh. The large number of normal findings at echocardiography in this study was similar to some previous studies in the world⁷. This can be explained by the fact that many of the referrals came from outside the hospital from different physicians and most often the subjects were not properly screened for heart diseases before referral. Many IHD & hypertensive patients with abnormal electrocardiogram were referred for cardiac function evaluation. The poor predictive value of electrocardiography in identifying patients with cardiac abnormality has been well established. Our findings was not similar to previous similar studies from different parts of Nigeria and which is compared with different study of Nigeria. In a review of 275 echocardiograms performed in Zaria over a 12-month period (1976-1977), Adesanya reported similar findings but our study was not similar to them⁸. In our study ischemic heart disease was more common than Hypertensive heart disease. In a preliminary audit of 100 two-dimensional and Doppler echocardiographic service in a tertiary private hospital in the country, Balogun found that the echocardiographic diagnosis of the aetiology of heart diseases were as follows: hypertensive heart disease (53%), cardiomyopathies (21%), valvular heart disease (7%), pericardial effusion (4%) and ischaemic heart disease (2%). Thirteen percent of their procedure was reported as normal⁹. Ukoh in Benin reviewed 869 patients referred for echocardiography in Benin City (between January 1992 and May 2001), hypertensive heart disease (32.7%), dilated cardiomyopathy (19.2%), rheumatic heart disease (18.1%), and pericardial diseases (12.1%) were the common heart diseases identified¹⁰. Ischaemic heart disease was uncommon (2.9%).But all of those study was differ from us because our findings is four hundred ninety eight(498) (26.45%)

had Ischemic Heart Disease, 229(12.16%) subjects were Hypertensive Heart disease, 160 subjects (8.5%) had rheumatic heart disease while 62,(3.3%) had cardiomyopathy. Pericardial diseases, corpulmonale, congenital heart diseases, were present in 36(1.92%), 35 (1.85%), 88(4.67%), respectively. Seven hundred and Seventy Five (41.1%) subjects had normal study.

In our study, among the heart disease excluding normal cases ischemic heart disease was more common(44.9%)Than Hypertensive heart disease (20.67%).And other cases such as, Valvular heart disease((14.4%),Congenital Heart disease(7.95%), Cardiomyopathy(5.6%),Pericardial disease(3.2%),Cor pulmonale(3.1%).

Among ischemic heart disease, more common were Myocardial infarctions than Myocardial hypokinesia. Myocardial infarction was more common in male populations. Anterior MI was more common (77 cases) and which was male predominant.

Further analysis of the 229 hypertensive patients in this study showed that left ventricular hypertrophy (LVH) either concentric LVH or eccentric LVH was present in 67%. The frequency of LV geometry was as follows in the order of decreasing frequency: concentric LVH (60.2%), concentric remodelling (18.2%), normal LV geometry (6.8%) and eccentric LVH (14.8%). The spectrum of chronic rheumatic heart disease in this study was not also similar to earlier finding in Nigeria ,In our study MS was more commonest valvular heart disease and Nigerian study mitral regurgitation being the commonest valve lesion. In Nigeria found dilated cardiomyopathy as the commonest form of cardiomyopathy in Abeokuta similar to other reports but in our study Ischemic dialated cardiomyopathy was more common. The low frequency of hypertrophic cardiomyopathy was similar to reports from the country. So in our report IHD prvelance was very high but other study also demonstrated the low prevalence of ischaemic heart disease in the NIgeria as reported by previous authors¹¹⁻¹³. Echocardiography (even where M-mode and 2D alone are available) has been shown to be a useful tool in establishing cardiac diagnosis and in evaluating the performance of the heart in various disease conditions. In resource poor setting like ours, it is ideal because it was non-invasive. Worldwide the tool has been shown to be a very useful in clinical patient care and research. In 2003 alone (when the world celebrated the 50th year of existence of

the tool), one can identify more papers using the search term "echocardiography "than in the first 25 years after Edler's initial description combined. Echocardiography was introduced in Bangladesh in the mid 70s mostly in the teaching hospitals. Its growth however has been very slow compared to advanced countries and some developing countries. Currently conventional M-mode, 2-dimensional echocardiography was mostly performed. Some institutions have Doppler and colour echocardiography¹⁹. So, In our Bangladesh, we should apply Echocardiography for evaluation of different types of heart disease. focused on the common cardiovascular diseases in the country such as hypertensive heart disease¹⁴, heart failure, dilated cardiomyopathy including peripartum heart disease¹⁵, and valvular heart disease. Others have also studied cardiac function in diabetes mellitus¹⁶ chronic renal failure, congenital heart diseases¹⁷, mitral valve prolapse¹⁸, sickle cell disease and normal Nigerians. The usefulness of ECG criteria for the diagnosis of left ventricular hypertrophy in Nigerians using echocardiography as standard has also been reported¹⁹. So, In our Bangladesh, we should apply Echocardiography for evaluation of different types of heart diseases.

In Nigeria, studies emanating from the country have

Parameter	Present study	Aje et al[20]	Sani et al [7]*	Ike et al[21]	Ukoh et al[22]*	Agomuoh et al[23]	Balogun et al[9]	Adesanya et al[8]*
Number	1883	1544	594	2527	869	141	100	249
Duration	6 Months	19mth	24 mth	10yrs	8yrs	36mth	30mth	12mth
IHD	498	18	23	20	22	0	2	0
HHD	229	684	228	436	249	48	53	24
VHD	160	54	64	868	152	13	7	14
СМ	62	40	144	237	165	28	21	14
PD	36	22	7	228	12	6	4	20
СР	35	15	7	31	12	1	0	0
CHD	88	10	6	334	52	2	0	0
NS	775	674	100	275	58	43	13	17

Table 5: Comparison of present study with previous studies.

* Classification of various conditions was reclassified. Only the main common diagnoses were included. HHD = Hypertensive Heart Disease, VHD= Valvular Heart Disease, CM = Cardiomyopathy, PD = Pericardial Diseases, CP = Cor-pulmonale, IHD = Ischaemic Heart Disease, CHD = Congenital Heart Disease, NS = Normal Study

Figure 1-6 Shows different Types of Heart disease on Echocardiography

- Fig 1: Concentric LVH with Diastolic dysfunction.
- Fig 2: Atrial Septal Defect (ASD).
- Fig 3: Ventricular Septal defect (VSD).
- Fig 4: Multiple valvular heart disease.(MS,MR,AR)

Fig 5: Aortic valve disease (AS,AR).

Fig 6: Ischemic heart disease (OMI anterior)-0n 2D -M-MOD

Fig: 1

Fig: 2

Fig: 6

Conclusion

Our study showed that Ischemic heart disease, Hypertensive heart disease, chronic rheumatic heart disease, cardiomyopathy, Cor-pulmonale and pericardial diseases are the common causes of heart disease in Bangladesh. On which, Ischemic Heart disease was predominant among all kinds of heart disease. So we should modify our life style such as cessation of smoking, regular exercise, mantain balance diet, regular monitoring of BP and blood glucose, etc. It also showed that the increasing burden of non-communicable diseases in the country coupled with the impact of infective conditions on the heart such as tuberculosis. There is therefore need for strategies to control cardiovascular risk factors such as hypertension, obesity, inactivity. There is also need for and physical improvement in housing and environmental sanitation as well early detection and treatment of throat infection.

Acknowledgements:

We are grateful to the Technicians in the ECG/ECHO room of our centre for their invaluable assistance.

References:

- 1. Whelton PK, Brancati FL, Appel LJ, Klag MJ: The challenge of hypertension and atherosclerotic cardiovascular disease in economically developing countries. High Blood Press 1995, 4:36-45.
- 2. Weyman AE: The year in echocardiography. J Am Coll Cardiol 2004, 43:140-8.
- Sahn DJ, DeMaria A, Kisslo J, Weyman A: Recommendations regarding Quantitation in Mmode Echocardiography. Results of a survey of Echocardiographic measurements. Circulation 1978, 56(6):1072-1083.
- Ogah OS, Adebanjo AT, Otukoya AS, Jagusa TJ: "Echocardiography in Nigeria: Use, Problems, Reproducibility and Potentials". Cardiovacular Ultrasound 2006, 4:13.
- Ganau A, Devereux RB, Roman MJ, G de Simone, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH: Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension.

J Am Coll Cardiol 1992, 19:1550-8.

- 6. Cardiomyopathies. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 1984, 697:7-64.
- Sani MU, Karaye KM, Ibrahim DA: Cardiac morbidity in subjects referred for echocardiographic assessment at a tertiary medical institution in the Nigerian Savana zone. Afr J Med Med Sci 2007, 36:141-147.
- Adesanya CO, Sanderson JE: M-mode echocardiography in the diagnosis of heart diseases in Africans. Trans R Soc Trop Med Hyg 1979, 73:400-5.
- Balogun MO, Urhoghide VA, Ukoh VA, Adebayo RA: A preliminary audit of Two-Dimensional and Doppler Echocardiographic Service in a Nigerian Tertiary Private Hospital. Nig J Med 1999, 8:139-141.
- 10. Ulasi II, Arodiwe EB, Ijoma CK: Left ventricular

hypertrophy in African Black patients with chronic renal failure at first evaluation. Ethn Dis 2006, 16:859-64.

- Falase AO, Cole TO, Osuntokun BO: Myocardial Infarction in Nigerians. Trop Geogr Med 1973, 25(2):147-150.
- Danbauchi SS: Ischaemic heart disease and myocardial infarction in ABU Teaching Hospital, Zaria: a 10 year review (1985 to 1994); a short report. Cent Afr J Med 1996, 42:209-11.
- Sani MU, Adamu B, Mijinyawa MS, Abdu A, Karaye KM, Maiyaki MB, Borodo MM: Ischaemic heart disease in Aminu Kano Teaching Hospital, Kano, Nigeria: a 5 year review. Niger J Med 2006, 15:128-31.
- Adebiyi AA, Aje A, Ogah OS, Ojji DB, Dada A, Oladapo OO, Falase AO: Correlates of left atrial size in Nigerian hypertensives. Cardiovasc J S Afr 2005, 16:158-61.

- 15. Danbauchi SS: Echocardiographic features of peripartum cardiac failure: the Zaria syndrome. Trop Doct 2002, 32:24-7.
- Osunkwo DA, Okeahialam BN: Left ventricular function in Nigerian Africans with non-insulindependent diabetes mellitus. Am J Cardiol 2001, 87:1026-9.
- 17. Sani MU, Mukhtar-Yola M, Karaye KM: Spectrum of congenital heart disease in a tropical

environment: an echocardiography study. J Natl Med Assoc 2007, 99:665-9.

- Oladapo OO, Falase AO: Prevalence of mitral valve prolapse in healthy adult Nigerians as diagnosed by echocardiography. Afr J Med Med Sci 2001, 30:13-6.
- Dada A, Adebiyi AA, Aje A, Oladapo OO, Falase AO: Standard electrocardiographic criteria for left ventricular hypertrophy in Nigerian hypertensives. Ethn Dis 2005, 15:578-84.