Original Article

Distribution of Microorganisms in Neonatal Sepsis and Possible Outbreak of Enterobacter spp. in Neonatal Intensive Care Unit

Tania Rahman¹, Md. Anisur Rahman², Kamrunnahar Alo¹, Momtaz Begum⁴, Sharmin Sarwar⁵, Sharmeen Sultana Nila⁶.

Abstract

Background: Neonatal sepsis is one of the leading causes of neonatal mortality and morbidity globally, more in developing countries. Frequent monitoring of changing pattern of pathogens causing neonatal sepsis is mandatory for effective treatment. Objectives: This study was done to isolate and identify different organisms of sepsis and to compare different types of organisms between early-onset neonatal sepsis (EONS) and late-onset neonatal sepsis (LONS). Materials and Methods: This cross sectional descriptive study was conducted in Department of Microbiology in collaboration with Department of Neonatology, (DMCH) Dhaka. Blood sample was collected from 106 clinically suspected septicemic neonates and isolation and identification of organism was done by automated blood culture and standard microbiological protocol. Data was collected from attendants by filling a predesigned questionnaire.

Results: Among 106 samples, 76 (71.69%) were blood-culture positive. Prevalence of (LONS) was higher 42 (55.26%) in comparison to (EONS) 34 (44.74%). Male neonates were affected more 42 (55.26%) than female 34 (44.74%). Among the isolated organisms, Enterobacter spp. was the predominant organism 20 (26.31%) followed by Klebsiella pneumoniae 18 (23.68%) and Candida spp. 12 (15.79%). Conclusion: Gram-negative organisms play the leading role for causing neonatal sepsis and Enterobacter outbreak should be concerned. Therefore, regular surveillance of organism profile causing neonatal sepsis is of utmost necessity.

Keywords: Neonatal sepsis, Early-onset neonatal sepsis (EONS), Late-onset neonatal sepsis (LONS), Enterobacter spp.

Introduction

Neonatal period, first 28 days of life is a crucial time when the newborn has to adopt to a new environment. During this time, a neonate is susceptible to many problems ranging from mild morbidity to life threatening condition. Each year, approximately three million children die in the first 28 days after birth.⁶ The leading cause of death globally are preterm birth (35.7%), intrapartum complications (23.4%) and sepsis (15.6%). Systemic illness caused by microbial invasion of normally sterile parts of the body is referred to as sepsis.⁸ Neonatal sepsis is a clinical syndrome of systemic illness accompanied by bacteremia occurring in the first month of life.⁹ The condition may be defined both clinically and/or microbiologically, by positive blood and/or cerebrospinal fluid cultures.⁹

Neonatal sepsis is classified in two groups: EONS and LONS. EONS has been variably defined based on the age at onset, with bacteremia or bacterial meningitis occurring at <72 hrs in infants hospitalized in the neonatal intensive care unit

¹. Assistant Professor, Department of Microbiology, Khwaja Yunus Ali Medical College, Enayetpur, Sirajganj, Bangladesh.
². Assistant Professor, Department of Microbiology, Abdul Malek Ukil Medical College, Noakhali, Bangladesh.
³. Assistant Professor, Department of Physiology, Khwaja Yunus Ali Medical College, Enayetpur, Sirajganj, Bangladesh.
⁴. Assistant Professor, Department of Microbiology, Dhaka Community Medical College and Hospital, Moghbazar, Dhaka, Bangladesh.
⁵. Lecturer, Department of Microbiology, Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh.
⁶. Assistant Professor, Department of Microbiology, Monno Medical College and Hospital, Monno City, Gilondo, Manikganj, Bangladesh.

Correspondent: Dr. Tania Rahman, Assistant Professor, Department of Microbiology, Khwaja Yunus Ali Medical College, Enayetpur, Sirajganj. Tel: +8801710941941, E-mail: taniassmc@yahoo.com

DOI: https://doi.org/10.3329/kyamcj.v11i1.47145
Many risk factors are found to influence the development of neonatal sepsis. Some are maternal factors and some are neonatal factors. Among the maternal factors, the maternal intrapartum fever, prolonged labor, unclean vaginal examination (UVE), foul smelling liquor, young mother (<20 y), and poor income group are much associated with the occurrence of sepsis. Among the neonatal factors, prematurity, resuscitation at birth and low APGAR score carry the significant risk of developing sepsis.13,14

Neonatologists remain constantly baffled by the changing patterns of microbial flora, making neonatal septicemia a difficult problem to tackle.14 A number of organisms are associated with neonatal sepsis and bacterial pathogens may vary from one country to another and within a country from one hospital or region to another and even vary at different times within the same place.15-17

Neonatal surveillance in developed countries generally identifies Group B Streptococcus (GBS) and Esch. coli as the dominant EONS pathogens and coagulase negative Staphylococci (CONS) as the dominant LONS pathogen followed by GBS and Staph. aureus.18 In developing countries, overall gram-negative organisms are more common and are mainly represented by Klebsiella spp., Esch. coli and Pseudomonas spp. Of the gram-positive organisms, Staph. aureus, CONS, Streptococcus pneumoniae, Streptococcus pyogenes and Candida spp. are most commonly isolated.19

In Bangladesh, the current Neonatal Mortality Rate is 28 per 1000 live births.17 The overall sepsis rate estimated is 7.45%.20 Increase in mortality of 7.6% was observed for every hour delay in administrations of antimicrobials in case of septic shock.21 Therefore, this study was designed to detect the microbial profile in neonatal sepsis in NICU by automated blood culture and different biochemical tests.

Materials and Methods
This cross-sectional descriptive study was conducted in Department of Microbiology, in collaboration with Department of Neonatology, DMCH, Dhaka during the period from January 2016 to December 2016 after approval of the protocol by Research Review Committee of the Department of Microbiology and Ethical Review Committee of Dhaka Medical College.

A total 106 neonates of either sex of age 0-28 days, both in-born and out-born, admitted in NICU of DMCH with suspected clinical features of sepsis at admission or developing such features afterwards when admitted for other indications, irrespective of antibiotic intake were included.
Results
Among one hundred and six septicemic neonates, 76 (71.69%) were found blood culture positive and 30 (28.31%) were found blood culture negative (Figure 1).

Figure 1: The results of blood culture among suspected septicemic neonates (N = 106).

Among 76 culture positive cases, bacteria were isolated from 64 (84.21%) cases and Candida spp. were isolated from 12 (15.79%) cases (Table I).

Table I: Distribution of the isolated organisms among blood culture positive cases (N=76).

<table>
<thead>
<tr>
<th>Isolated organisms</th>
<th>Positive n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>64 (84.21)</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>12 (15.79)</td>
</tr>
<tr>
<td>Total</td>
<td>76 (100.00)</td>
</tr>
</tbody>
</table>

Out of 76 culture positive cases, 42 were male, 34 were female and EONS was found in 34 cases whereas LONS was found in 42 cases. Among 34 EONS cases, 10 (62.5%) were term male, 6 (37.5%) were term female and 8 (44.4%) were preterm male, 10 (55.56%) were preterm female. Ten (55.56%) term male, 8 (44.44%) term female and 14 (58.33%) preterm preterm male, 10 (41.67%) preterm female was found among 42 LONS cases (Table II).

Table II: Sex distribution of EONS and LONS cases in relation to term and preterm delivered babies (N = 76).

<table>
<thead>
<tr>
<th>Sex</th>
<th>EONS (N = 34)</th>
<th>LONS (N = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term n (%)</td>
<td>Preterm n (%)</td>
</tr>
<tr>
<td>Male (n=42)</td>
<td>10 (62.5)</td>
<td>8 (44.44)</td>
</tr>
<tr>
<td>Female (n=34)</td>
<td>6 (37.5)</td>
<td>10 (55.56)</td>
</tr>
<tr>
<td>Total</td>
<td>16 (47.06)</td>
<td>18 (52.94)</td>
</tr>
</tbody>
</table>

Note: EONS = Early-onset Neonatal Sepsis
LONS = Late-onset Neonatal Sepsis
N = Total number
n = Number of positive cases

Out of 34 (44.74%) EONS cases, Enterobacter spp. was found to be the predominant organism which was 10 (29.41%) followed by Klebsiella pneumoniae 8 (23.53%). The other organisms isolated from EONS cases were Pseudomonas aeruginosa 4 (11.76%), Staphylococcus aureus 4 (11.76%), CONS 2 (5.88%), GBS 2 (5.88%) and Candida spp. 4 (11.76%). Ten (23.81%) Enterobacter spp. and 10 (23.81%) Klebsiella pneumoniae were isolated among 42 (55.26%) LONS cases followed by 4 (9.52%) Pseudomonas aeruginosa, 4 (9.52%) Acinetobacter baumannii, 2 (4.76%) CONS, 2 (4.76%) Micrococcus spp. and 8 (19.05%) Candida spp. (Table III).

Table III: Distribution of organisms in EONS and LONS (N=76).

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>EONS n (%)</th>
<th>LONS n (%)</th>
<th>Total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter spp.</td>
<td>0 (29.41)</td>
<td>10 (23.81)</td>
<td>10 (26.31)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>8 (23.53)</td>
<td>10 (23.83)</td>
<td>18 (23.68)</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>4 (11.76)</td>
<td>8 (19.05)</td>
<td>12 (15.79)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4 (11.76)</td>
<td>4 (9.52)</td>
<td>8 (10.53)</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>0 (0.0)</td>
<td>4 (9.52)</td>
<td>4 (5.26)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>4 (11.76)</td>
<td>0 (0.0)</td>
<td>4 (5.26)</td>
</tr>
<tr>
<td>CONS</td>
<td>2 (5.88)</td>
<td>2 (4.76)</td>
<td>4 (5.26)</td>
</tr>
<tr>
<td>GBS</td>
<td>2 (5.88)</td>
<td>0 (0.0)</td>
<td>2 (2.63)</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>0 (0.0)</td>
<td>2 (4.76)</td>
<td>2 (2.63)</td>
</tr>
<tr>
<td>Micrococcus spp.</td>
<td>0 (0.0)</td>
<td>2 (4.76)</td>
<td>2 (2.63)</td>
</tr>
</tbody>
</table>

CONS= Coagulase Negative Staphylococcus
GBS= Group B Streptococcus
Discussion
Neonatal sepsis still remains a diagnostic and treatment challenge for the neonatal health care providers. The spectrum of organisms responsible for neonatal sepsis change over time and also varies from region to region. The study of bacteriological profile plays a very important role for effective management of neonatal sepsis. In this study, 71.69% of cases were blood culture positive out of 106 cases. In previous studies, the reported prevalence of neonatal sepsis by authors in Bangladesh was much lower such as 7.45%, 15.8%, 13% and 48.75%. Rahman24 reported 48.75% prevalence of neonatal sepsis in NICU of DMCH in 2015. Lower isolation rates were reported in Iran (6.6%), Libya (5.9%) and Bahrain (4.2%). The relatively higher isolation rates were reported by Al-Shamahy et al.24 (57%) from Yemen, Awrangzeb and Hameed25 (59.82%) from Pakistan, Chelliah et al.26 (60.4%) and Misra et al.27 (65.21%) from India and Aowoniyi et al.28 (78%) from Nigeria. The higher isolation rate in this study than the previous studies in Bangladesh might be due to the fact that automated blood culture system was used in this study (FAN method) but other researchers used conventional blood culture method. Isolation of 26.31% of Enterobacter spp. as a causative organism of neonatal sepsis is a striking feature of this study and this also may have contributed to the high prevalence rate. Moreover, overcrowding in NICU of DMCH and high patient to healthcare provider ratio may be another contributing factor for high isolation rate. However, the incidence of neonatal sepsis may vary from country to country as well as, within the same country from one institution to another and even year to year in the same institution.2,3

According to this study, male neonates (55.26%) suffered more from neonatal sepsis than female neonates (44.74%) and the blood culture positive male to female ratio was 1.2:1. These findings correspond to the male to female ratio of 1.3:1 reported by Eman et al.4. Though the difference in male to female predominance in this study was not statistically significant (P>0.05), male predominance was found in almost all the studies of neonatal sepsis.4,12,16 Increased male septicemic neonates in this study may be due to gender biasness for hospital care in Bangladesh like other developing countries. Moreover, males are more prone to infection as genetic loci on the X chromosome. Presence of one X chromosome in the male baby confers less immunological protection compared to the female counterpart.17,29

LONS (55.26%) was found more prevalent than EONS (44.74%) in this study. This finding is almost similar to the reports from other countries such as, 55.8% LONS vs 44.2% EONS in Egypt, 58% LONS vs 42% EONS in Pakistan.28,30 In contrast, more EONS were reported in some studies such as, 22.5% LONS vs 77.5% EONS in Iran.37 The possible explanation for higher frequency of LONS in this study might be attributed to the increasing use of life supporting measures and improved survival of sick neonates, as well as delay discharge policy in DMCH, failure of early enteral feeding with breast milk and poor hygienic policies may have some role in rise of LONS due to nosocomial infections. Genetic factors, such as the polymorphism in immunity associated genes may also be implicated in neonatal susceptibility to LONS.40

It is evident from this study that neonatal sepsis occurs more in case of preterm babies than term babies, such as, 57.14% preterm vs 42.86% term in case of LONS and 52.94% preterm vs 47.06% term in case of EONS were reported. This finding agrees with the previous study conducted by Rahman24 who reported 67.71% preterm vs 39.42% term in NICU of DMCH in 2015. This is also similar to the findings documented by other studies.20,21,22,23 Serum immunoglobulin (Ig) level is significantly lower in preterm babies compared to term babies. Trans-placental passage of serum IgG from mother to fetus starts at about 12th weeks of gestation and most of the passage occurs after 32 weeks to term.41 Therefore, IgG level is directly proportional to gestational age. These preterm babies are lack of first line defense than term babies, therefore, they are more susceptible to infection.

In this study, Candida spp. accounted for 15.79% of cases and bacteria for 84.21% cases of neonatal sepsis and Candida spp. was the 3rd most common pathogen responsible for total neonatal sepsis cases. Rahman24, in his study in NICU of DMCH also reported Candida spp. as the 3rd most common pathogen and was responsible for 16.98% of the total cases which is almost similar to this study. This finding is in agreement with some other studies from different countries.42,43,44,45 To this date, in spite of isolating Candida spp. from blood of suspected neonatal sepsis cases, antifungal drug is not used in our country as because Candida spp. is thought to be the contaminant.

Enterobacter spp. was the predominant (26.31%) and Klebsiella pneumoniae was the 2nd most common (23.68%) organisms among the isolated bacteria found in this study. No other studies in this country reported Enterobacter spp. as the predominant organism to cause neonatal sepsis. In the previous study conducted by Rahman2 in NICU of DMCH, Klebsiella pneumoniae (24.53%) was the predominant followed by Staphylococcus aureus (22.64%). In Bangladesh, Begum et al. reported 52.3% Klebsiella spp. as the predominant pathogen followed by 20% Enterobacter spp. in 2012 and in 2013, Begum et al. reported 42.04% CONS followed by 27.27% Acinetobacter spp. as most common pathogen and 3.04% of Enterobacter spp. was reported in that study. In India, Das et al. reported Escherichiacoli (25.55%) followed by Klebsiella spp. (24.44%) and in Nepal, Shrestha et al. reported Klebsiella pneumoniae (28.72%) followed by Staph. aureus (18.1%) as the predominant organism. 22.5% Enterobacter cloacae and 78.1% Enterobacter spp. were reported as predominant pathogen of neonatal sepsis in Egypt and Iran respectively.46,47 This striking high frequency of Enterobacter spp. reported in this study may be due to an
outbreak of neonatal sepsis by this bacteria having similar antimicrobial susceptibility. In India, Antony reported an outbreak of neonatal sepsis by Enterobacter cloacae. Outbreak of Enterobacter spp. in NICU is also evident from studies of researchers in other countries as well. Contaminated water source in NICU, contaminated TPN (Total per-ental nutrition) solution or contamination by baby's attendants could be the possible source of Enterobacter outbreak.

Conclusion
In this study, Enterobacter spp. were the predominant pathogen and were responsible for 26.31% cases of neonatal sepsis. The high prevalence suggests that there might be an outbreak of Enterobacter spp. in NICU of DMCH. Extreme measures should be taken regarding eradication of the source of Enterobacter spp., hygiene of health-care workers and strict monitoring of visitors.

Acknowledgement
We would like to acknowledge the support of Department of Microbiology and the active co-operation of Department of Neonatology, Dhaka Medical College and Hospital, Dhaka.

References


50. Karambin M, Zarkesh M. Enterobacter, the most common pathogen of neonatal septicaemia in Rasht, Iran. Iran J Pediatr 2011;21(1): 83-87.

