Review Article

Pathogenesis and Factors associated with Insulin Resistance

Rahman A¹, Sajani TT², Alo K³

Abstract

Insulin resistance has been the subject of much debate over the last two decades. Its pathophysiological basis, however, still remains to be clearly understood. Both genetic and environmental factors have been implicated in its pathogenesis. Mutation of genes encoding signal transduction molecules of insulin and acquired factors like aging, diets, physical activity, obesity and related molecular changes, dyslipidemia, hypertension and smoking were proposed by many groups. This review examined both acquired and genetic factors and discussed model of hormone-receptor-postreceptor interactions to explore the molecular basis of insulin resistance.

Key words: Insulin receptor, Insulin resistance, Dyslipidemia.

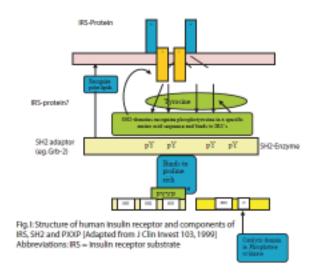
Introduction

The etiopathogenesis of Insulin resistance is a field of extensive research. Insulin resistance attributed to both inherited and acquired factors. Mutations in several genes including insulin receptor substrate-1 (IRS-1) and glycogen synthase gene have been described. Gene mutations so far implicated collectively, however, explain only a small proportion (<5%) of all cases of insulin resistance which suggest that genetically determined insulin resistance is not a dominant cause for the development of type 2 diabetes¹.

Results of impaired insulin signaling system in insulin resistance

Impaired insulin signaling results from mutations or post translational modifications of the insulin receptor itself or any of its downstream effector molecules². Evidence suggests that aggravated insulin resistance in T2DM is primarily of a post receptor nature³. Insulin receptor tyrosine kinase activity in patients with T2DM is significantly reduced⁴.

The insulin receptor signaling pathways


There are two major insulin signaling pathways are MAP kinase (Figure I) and PI3-K pathways (Figure II). The heterotetrameric insulin receptor with proteinprotein interaction domains involved in insulin signaling². The insulin receptor (Fig I and II) is a transmembrane tyrosine kinase (tyr-kinase) which is widely expressed. It consists of two ligand binding a subunits and two tyr-kinase b subunits that are disulfide linked and form a2b2 heterotetrameric complex^{3,5}. Binding of insulin in specific regions of the a subunit generates a signal across the plasma membrane that autophosphorylates the intracellular tyr-kinase domain of the b subunit. This autophosphorylation results in activation of the tyr-kinase activity of the receptor. The catalytic site of the tyr-kinase is occluded by the 'activation loop' in its inactive state which prevents of ATP and various substrates. access Autophosphorylation of tyrosine residues in the activation loop causes a conformational change that allows ATP and substrates to reach the catalytic site^{6,7}.

- 1. Dr. Md. Atiqur Rahman, Associate Professor, Dept. of Community Medicine, AKMMC.
- 2. Dr. Tabassum Tahmin Sajani, Assistant Professor, Dept. of Community Medicine, AKMMC.
- 3. Dr. Kamrunnahar Alo, ICU Medical Officer, Khwaja Yunus Ali Medical College & Hospital, Enayetpur, Sirajgonj.

Correspondence: Dr. Md. Atiqur Rahman, Associate Professor, Dept. of Community Medicine, AKMMC.

Mobile: +88-01715299026; E-mail: atiqur125@gmail.com

The activated insulin receptor kinase then phosphorylates substrate proteins at their tyrosine residue and these phosphorylated tyrosine residues in turn serve as docking sites for downstream effectors. Different molecules such as Shc, insulin receptor substrate (IRS) engage the insulin receptor directly and provide a docking interface with downstream substrates^{2,8}. IRS proteins contain a conserved pleckstrin homology (PH) domain, located at the NH2- terminus that serves to localize the IRS proteins in close proximity to the receptor⁹.

Figure-I: Structure of human insulin receptor and components of IRS, SH2 and PXXP [Adapted from J Clin Invest 103, 1999] Abbreviations: IRS=insulin receptor substrate.

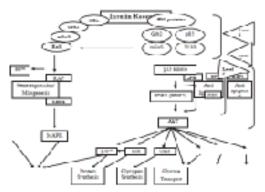


Fig. II: Imulin receptor, components of the mitogen activated (MA2) kinuse and phosphatytid inosirol 13 kinuse (P13-K) signaling pathways, and around actions-42 [Adapted from Dath Care 24: 2001]

Figure-II: Insulin receptor, components of the mitogen activated (MAP) kinase and phosphatydil inositol 13 kinase (p13-K) singnaling pathways, and insulin actions42 [Adapted from Diab Care 24: 2001] IRS

proteins also contain a PTB (phosphate tyrosine binding) domain COOH-terminal to their PH domain which recognizes the phosphotyrosine in the amino acid sequence asparagine-protein-anyamino acid-phosphotyrosine (NPXPY). The PTB domain which is present in a number of signaling molecules shares 75% sequence identity between IRS-1 and IRS-2 and functions as a binding site to the NPXY amino acid motif of the juxtamembrane region of the insulin receptor to promote IR/IRS-1 interactions. The COOH-terminal region of IRS proteins contains multiple tyrosine phosphorylation motifs that serve as docking sites for proteins which mediate the metabolic and growth promoting functions of insulin.

Insulin receptor signaling (Fig I and II) involves two major pathways, i.e., the (MAP) kinase and the PI3 kinase. Each of these two pathways under certain circumstances can activate the other. Thus, Akt (protein Ser/Thr kinase B) may activate Raf kinase and conversely Ras may activate PI3-K42. The metabolic response to insulin is primarily mediated via the PI3-K pathway.

Nuclear transport of signaling molecules: Signaling substrates of the Tyr-kinase receptors can be grouped into three levels (Fig. II) depending on their proximity to the receptor.

Level-1: The proximal substrates e.g. IRS proteins and SHC and the proteins that directly interact with them.

Level-2: Downstream intermediates e.g. MAP kinases, Akt and related substrates.

Level-3: Molecules that affect the final biological responses e.g. Gsk3, aPKC

Level-1 and level-2 molecules function primarily at the plasma membrane or in the cytosol. On the other hand, many of level-3 molecules are transported into the nucleus because their specific function involves the regulation of gene transcription¹¹.

Insulin enhances glycogen synthesis. Glycogen synthase kinase-3 (GSK-3) mediates the activation of glycogen synthase in response to insulin. Activation of Akt by insulin causes in the phosphorylation and inactivation of GSK-3, making it incapable of inhibiting glycogen synthase activity. GSK-3 also inactivates the protein synthesis eukaryotic initiation factor (eIF)-2B by phosphorylation. Insulin enhances protein synthesis by inactivating GSK-3 via activated Akt¹². Insulin also activates protein synthesis at the translational level by phosphorylation of p70S6 kinase and 4E-BPI via

the kinase mammalian Target of Rapamycin mTOR. It is also reported that all types of dyslipidemia have relations with insulin resistance¹³. These interactions need so broad discussion that is beyond the limit of present article. A separate review article is needed for this.

Environmental factors

Environmental factors implicated in the development of insulin resistance include: 1) aging, 2) dietary constituents, 3) level of physical inactivity, 4) pregnancy, 5) obesity and 6) hypertension and 7) smoking.

Aging: It is argued that insulin sensitivity decreases with age since (i) advancement of age showed association with changes in body composition, i.e. loss of muscle mass and increase in fat deposition which cause reduction of active metabolic tissue; ii) change in lifestyle (diet and physical activity); iii) neuro-hormonal variation; and iv) increased oxidative stress¹⁴⁻¹⁹. However, healthy centenarians found to have a preserved insulin action compared to aged subjects¹⁹, in healthy Europeans, age per se is not a significant cause of insulin resistance¹⁵. Age related deterioration in glycemic dysregulation suggested to be resulting from decrease in beta cell function without change in insulin sensitivity²⁰.

Dietary constituents: Dietary constituents are known to influence insulin sensitivity. Individuals often accustomed to diet rich in calorie. It is known that choice of food attributed to socio-cultural factors. In case of diet habit of rich food excess calorie is deposited as fat giving rise to chance of obesity. Diet containing high fat, low fibers and more refined carbohydrates tend to reduce insulin sensitivity²¹. It is not only calorie value of food counts rather dietary fibers and trace elements are also of great importance. Dietary fibers play important role in dynamics of absorption from the intestine. Trace elements play critical role as cofactors of different enzymes. So far magnesium and selenium found to have important influence on insulin sensitivity^{22,23}.

Exercise: Physical activity found to improve insulin sensitivity²⁴. Short term low intensity exercise reduces insulin resistance without affecting BMI²⁵ although it does not affect insulin secretion. The underlying mechanism of exercise to reduce insulin resistance is yet to fully understood, however, it have been proposed that exercise causes increase in insulin induced glucose

uptake and subsequently increased glycogen synthesis activity in skeletal muscle¹. It was also suggested that exercise causes contraction-induced increase in GLUT-4 content in skeletal muscle. Acute exercise also enhances insulin stimulated GLUT-4 translocation²⁶⁻²⁸. Exercise also found to reduce triglyceride levels and improve insulin sensitivity. However, the effect of exercise on insulin sensitivity is transient and disappears after 17-19 days on discontinuation²⁹.

Pregnancy: Women with pregnancy both obese and non-obese were reported to develop insulin resistance during third trimester³⁰. The mechanism of development of this insulin insensitivity has, however, not yet fully elucidated. Although from metabolic point of view pregnancy was claimed to be a state of accelerated starvation³¹. In early part of gestation maternal fat deposition was reported and possibly owing to effects of lipolytic hormones e.g. human placental lactogen and human chorion gonadotropin¹ plasma free fatty acids level rise during later part of pregnancy and might be other plausible factors accentuating the insensitivity if insulin which are yet to be identified.

Obesity: Obesity is reported to be one of the strongest predictors of low insulin sensitivity. For each kilogram of weight gain, the risk of diabetes increases between 4.5% and 9%^{1,32}. Insulin resistance increases with weight gain and decreases with weight loss; indicating insulin resistance related to obesity is a reversible condition. Causes of insulin resistance in obesity are not fully understood. It is hypothesized that the expanding adipose tissue of the obese individuals may produce compounds that are either released into the bloodstream and cause insulin resistance in remote targets (e.g. in skeletal muscle or liver), or in close vicinity of target organs acting through paracrine mechanisms³³. Among these secreted compounds are: 1) Tumour necrosis factor alpha (TNF), 2) free fatty acids (FFA), 3) leptin, 4) resistin and 5) adiponectin.

TNFa- TNFa is over expressed in adipose tissue of obese insulin resistant rodents and humans, and has been shown to produce insulin resistance in isolated cell systems³⁴. However, several others have suggested TNFa to be unlikely contributor in the development of insulin resistance associated with obesity^{35, 36}. FFAs - There are many evidences which show that FFAs are an important link between obesity and insulin resistance^{33,37,38}. Location of the FFAs induced defect may be either at the level of ISGU or glucose phosphorylation or an inhibition of carbohydrate oxidation^{39,37}.

Rates of ISGU, glycogen synthesis and glycolysis all were found to reduce in the presences of higher blood FFAs levels. Increasing plasma FFAs was associated with an acute increase in intramyocellular triglyceride (IMCL-TG) and 40% increase in insulin resistance. IMCL-TG is a metabolically active pool of fat consisting of small oil droplets located in close proximity to mitochondria providing fuel¹.

Leptin - Leptin was identified⁴⁰ as an adipocyte derived hormone and found to reduce body weight via specific receptors in hypothalamic areas regulating energy expenditure and satiety. Leptin deficiency and receptor defects in rodents found to cause marked obesity as well as hyperinsulinaemia and hyperglycaemia. Number of studies has focused on the effects of leptin on insulin resistance and insulin secretion. Both inhibition and stimulation of insulin action have been shown by leptin in different cell systems. Therefore, the conclusion that leptin causes a defect in the insulin signaling chain or that it is capable of improving -cell dysfunction in human subjects cannot yet be made on the basis of these studies⁴¹.

Resistin - Resistin is a protein released from white adipose tissue of mice which can cause insulin resistance⁴². However, whether it plays a role in human physiology is still unclear.

Adiponectin - It is also a protein released from adipose tissue which has been reported to have potential role in the determination of insulin sensitivity. It is more strongly inversely related with intra abdominal than subcutaneous fat^{43,44}. Though some recent studies have shown that it was not BMI but the quantity of intra-abdominal fat was strongly related to insulin sensitivity⁴⁵.

Hypertension: Studies show that there is significant relationship between plasma insulin level and both diastolic and systolic blood pressure in both obese and non-obese subjects⁴⁶⁻⁴⁸.

Smoking: Smoking is reported to reduce serum HDL-Cholesterol levels and increase serum triglyceride levels both of which causes diminution of insulin sensitivity. Moreover, a number of medications including corticosteroids⁴⁹ and growth hormone⁵⁰ have been shown to induce insulin resistance.

Conclusion

Insulin resistance is the result of interactions of genetic and acquired causes. Effective measures to ameliorate the common factors (Environmental factors in particular) may help prevent the possible chance of developing the insulin resistant and its related conditions and improve the situation apart from already established phenomena.

Reference

- 1. Boden G. Pathogenesis of type 2 diabetes. Endocrinology and Metabolism Clinics of North America. 2001; 30(4): 801-13.
- Rizza Ra, Mandarino LJ, Gerich JE. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production and impaired stimulation of glucose utilization. Diabetes 1982; 31: 663-669.
- Virkamaki A, Ueki K, Kahn CR: Protein-protein interaction in insulin signaling and the Molecular mechanisms of insulin resistance. J Clin Invest. 1999;103:931-943. http://dx.doi.org/10.1172/JCI6609 PMid:10194465 PMCid:408269
- Caro JF, Shafer JA, Taylon SI, Raju SM, Perrotti N, Sinha MK. Insulin stimulated Protein phosphorylation in humen plasma liver membranes: detection of endogenous or plasma membrane associated substrates for insulin recetor kinase. Biochem Biophys Res Commun 1987; 149: 1008-1016.
- 5. Roith DL and Zick Y, Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care. 2001; 24: 588-597.
- 6. Ullrich A, Bell Jr, Chen Ey, Herrera R, Petruzzeli LM, Dull Tj, Gray A, Coussens L, Liao Yc, Tsubokawa M, Takai T, Noda M, Mishina M, Shimizu S, Furutani Y, Kayano T, Ikeda T, Kubo T, Takahashi H, Takahashi T Human. IR and its relationship to the tyrosine kinase family oncogenes. Nature 1985; 313:756-761.
- 7. Pessin JE and Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000; 106: 165-169.
- Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human IR. Nature 1994; 372:746-752.
- Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-a suppresses insulin-induced tyrosine phosphorylation of IR and its substrates. J Biol Chem 1993; 268: 26055-26058

 Halsam RJ, Koide HB, Hemings BA. Pleckstrin domain homology. Nature 1993; 363: 309-310. 48. Pawson T. Protein modules and signaling networks. Nature 1995; 373: 573-580.

- Theis RS, Molina JM, Ciaraldi TP, Friedenberg GR, Olefsky JM. Insulin receptor autophosphorylation and endogenous substrate phosphorylation in human adipocyte from control obese and NIDDM subjects. Diabetes 1990; 39: 250-259.
- Marshal CJ: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal regulated kinase activation. Cell1195; 80: 179-185
- 13. Dohety RO, Stein D and Foley J. Insulin resistance. Diabetologia 40: B10-B15. 50. Al Mahmood AK, Ismail AA, Faridah AR, Wan Mohamed WB. Insulin sensitivity of non-obese nondiabetic Malay Subjects: relationship with Lipid status. Internation Med J 2006; 13: 47-52.
- 14. DeFronzo RA. Glucose tolerance and aging. Diabetes 1979; 28: 1099-1101.
- Ferrannini E, Vichi S, Beck-Nielsen H, Laakso M, Paolisso G and Smith U. Insulin action and age. Diabetes 1996; 45: 947- 953.
- Fink RI, Kolterman Og, Griffin J and Olefsky JM. Mechanism of insulin resistance in aging. J Clin Invest 1983; 71: 1523-35.
- 17. Rowe JW, Minaker KL, Pallota JA and Flier JS. Characterization of insulin resistance of aging. J Clin Invest 1983; 71: 1581-87.
- Chen M, Bergman RN, Pacini G and Porte DJr. Pathogenesis of age related glucose intolerance in man: Insulin resistance and decreased? -cell function. J Clin Endocrinol Metab 1985; 60 (13): 13-20.
- 19. Barbieri M, Rizzo MR, Manzella D, Paolisso G. Age related insulin resistance: is it an obligatory finding? The lesson from healthy centenarians. Diabetes Metab Res R 2001; 17: 19-26.
- 20. Yates AP, Laing I. Age-related increase in haemoglobin A1c and fasting plasma glucose is accompanied by a decrease in? cell function without change in insulin sensitivity: evidence from a crosssectional study of hospital personnel. Diabe Med 2002; 19 (3): 254-58.
- 21. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the

- pathophysiology of Type 2 diabetes. Diabetologia 2003; 46: 3-19. PMid:12637977
- 22. Paolisso G, Scheen AJ, D'Onofrio F. Magnesium and glucose homeostasis. Diabetologia 1990; 33: 511-14.
- Paolisso G, Sgambato S, Gambardella A. Daily Magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 1992; 55: 1161-67. PMid:1595589
- Kelley DE, Goodpaster BH. Effects of physical activity on insulin action and glucose tolerance in obesity. Med Sci Sports Exerc 1999; 31 (11 Suppl): S619-23.
- 25. Kishimoto H, Taniguchi A, FukushimaM, Sakai M, Tokuyama K, Oguma T, Nin K, Nagata I, Hayashi R, Kawano M, Hayashi K, Tsukamoto Y, Okumura
- 26. Nagasaka S, Mizutani H, Nakai Y. Effect of short-term low intensity exercise on insulin sensitivity, insulin secretion, and glucose and lipid metabolism in non-obese Japanese type 2 diabetic patients. Horm Metab Res 2002; 34: 27-31.
- 27. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med 2000; 21: 1-12
- 28. Wojtaszewski JFP, Hansen BF, Gade J, Kiens B, Markuns JF, Goodyear LJ, Richter EA. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 2000; 49: 325-331.
- Mickines KJ, Sonne B, Farrel PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 1988; 254: E248. PMid:3126668
- Vanninen E, Uusitupa M, Siitonen O, Latinen J, Lansimies E. Habitual physical activity, aerobic capacity and metabolic control in patients with newly-diagnosed type 2 diabetes mellitus: effect of 1- year diet and exercise intervention. Diabeologia 1992; 35: 340-46.
- 31. Sivan E, Chen X, Homko CJ, Reece EA, Boden G. Longitudinal study of carbohydrate metabolisms in healthy obese pregnant women. Diabetes Care 1997; 20: 1470-1475.
- 32. Freinkel N Of pregnancy and progeny. Diabetes 1980; 29: 1023-1035.
- 33. Ferannini E, Natali A, Bell P, Cavallo-perin P, Lalic N, Mingrone G Insulin resistance and hypersecretion

in obesity. J Clin Invest 1997; 100: 1166-1173.

- 34. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46: 3-10.
- 35. Hotamisligil GS, Speigelman BM. Tumor necrosis factor? key component of the obesity-diabetes link. Diabetes 1994; 43: 1271-1278.
- 36. Nolte LA, Hansen PA, Chen MM et al. Short term exposure to tumor necrosis factor does not affect insulin-stimulated glucose uptake in skeletal muscle. Diabetes 1998; 42 721-726.
- 37. Oefi F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996; 45: 881-885.
- 38. Boden G, Chen X, Ruiz A et al. Mechanisms of fatty acids induced inhibition of glucose uptake. J Clin Invest. 1994; 93: 2438-2446.
- Reaven GM, Hollenback C, Jeng C-Y, Wu MS, Chen YI. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 h in patients with NIDDM. Diabetes. 1996; 37:1020-1024.
- 40. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171-176.
- 41. Frederich RC, Lollmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS. Expression of ob mRNA and its encoded protein in rodents. Impacts of nutrition and obesity. J Clin Invest 1995; 96: 1658-63.
- Matthaei S, Stumvoli M, Kellerer M and Haring H. Pathophysiology and pharmalogical treatment of insulin resistance. Endocrine Reviews 2000; 21: 585-618.
- 43. Steppan CM, Bailey ST, Bhat S, Brown EJ,

- Banerjee RR, Wright CM, Patel HR. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307-312.
- 44. Cnop M, Havel PJ, Utzschneider KM et al. Gender based differences in adiponectin and leptin levels are related to differences in body fat distribution. Diabetes 2002; 50 (Suppl 2): A404(Abstract).
- 45. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86: 1930-1935.
- Yoshitomi Y, Ishii T, Kaneki M, Tsujibayashi T, Sukarai S, Nagakura C, Miyauchi A. Realationship between insulin resistance and effect of Atorvastatin in non-diabetic subjects. J Atheroscler Thromb 2005; 12: 9-13
- 47. Bonora E, Zavaroni I, Alpi O, Pezzarossa A, Bruschi F, Dall'Agillo E, Guerra L, Cosselli C, Butturini U. Relationship between blood pressure and plasma insulin in non-obese and obese non-diabetic subjects. Diabetologia 1987; 30: 719-23
- 48. Reaven GM. Insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension parallels between human disease and rodent models. Diabetes Care 1991; 14: 195-202.
- 49. Loredo LD, Steinacher MA, Luquez H, Madorery R, Carry D, Gonzalez C (2003). Prevalence of insulin resistance and its association with cardiovascular risk factors in Cordoba, Argentina. Diabetes Metab 1991; 29: 4S 16.
- 50. Beard JC, Haltler JB, Best JD, Pfeifer MA, Porte D Jr. Dexamethasone-induced insulin resistance enhances B-cell responsiveness to glucose level in normal men. Am J Physiol 1984; 247: E592-E596.