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SUMMARY

This research introduces and investigates four approaches for constructing confidence in-
tervals (CIs) associated with the parameter of the Rama distribution—a model often applied
in lifetime data modeling. The methods under consideration comprise the likelihood-based,
Wald-type, bootstrap-t, and bias-corrected and accelerated (BCa) bootstrap intervals. To
assess their practical utility, both Monte Carlo simulations and real data applications were
utilized, emphasizing key performance indicators such as empirical coverage probability
(ECP) and average width (AW) under various experimental conditions. To improve com-
putational efficiency, a closed-form expression for the Wald-type CI was formulated. Sim-
ulation findings indicated that, across most situations, the ECPs obtained from both the
likelihood-based and Wald-type CIs remained closely aligned with the nominal 95% con-
fidence level. However, when the sample size was small, both the bootstrap-t and BCa
bootstrap CIs yielded ECPs that fell short of the nominal level. As the sample size in-
creased, the ECPs associated with these methods progressively approached the targeted
confidence level, though variations in parameter values continued to influence their perfor-
mance. The practical utility of these CIs was further validated through their application
to two real-world datasets: monthly tax revenue in Egypt and plasma concentrations of
indomethacin. The results from these applications were consistent with the findings of the
simulation study, confirming the robustness and applicability of the proposed methods.

Keywords and phrases: bootstrap confidence interval, interval estimation, likelihood func-
tion, lifetime distribution, Wald-type confidence interval

AMS Classification: 62F25, 62F40

⋆ Corresponding author
© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



108 Panichkitkosolkul et al.

1 Introduction

Lifetime data analysis involves estimating the duration until a specific event occurs, such as a failure
or an incident (McAtamney, 2019). A defining feature of this analysis is the handling of censoring,
where certain subjects do not experience the event by the end of the study, necessitating specialized
statistical techniques. Lifetime data typically follow non-normal distributions, such as the Weibull,
exponential, gamma, log-normal, or Lindley distributions. Among existing distributions, the expo-
nential and Lindley distributions are frequently applied in lifetime data analysis. Nevertheless, both
have notable limitations—for instance, the exponential distribution presumes a constant hazard rate
and possesses the memoryless property, which often proves unrealistic in practical applications. Al-
though the Lindley distribution provides an improvement over the exponential distribution (Ghitany
et al., 2008), both remain insufficient for capturing data characterized by non-constant hazard rates.
Therefore, the development of new and flexible probability distributions has become essential to
improve the accuracy of distribution fitting in lifetime data analysis.

Researchers use diverse methodologies to develop new probability distributions or enhance the
efficacy of classical ones. One common approach involves incorporating additional parameters to
increase flexibility, as seen in the two-parameter Lindley distribution (Shanker et al., 2013), the
three-parameter Lindley distribution (Shanker et al., 2017), the exponentiated Shanker distribution
(Abdollahi Nanvapisheh et al., 2019), and the two-parameter Shanker distribution (Olufemi-Ojo
et al., 2024). However, while such modifications improve flexibility, they also introduce complex-
ity, making the models harder to interpret. This complexity can lead to overfitting, requiring larger
datasets to achieve accurate results and complicating the estimation of parameter values. Addition-
ally, the inclusion of extra parameters increases computational demands, which can hinder practical
applications.

In contrast, several researchers have proposed new mixed probability distributions that do not
rely on additional parameters. Examples include the Shanker distribution (Shanker, 2015b), Arad-
hana distribution (Rama, 2016), Gharaibeh distribution (Gharaibeh, 2021), Iwueze distribution (Elechi
et al., 2022), Juchez distribution (Mbegbu and Echebiri, 2022), and Ola distribution (Al-Ta’ani and
Gharaibeh, 2023). These mixed distributions, which extend the Lindley distribution, often outper-
form classical distributions in terms of flexibility and accuracy. They provide a robust framework
for modeling diverse data types, making them highly versatile.

Among these, the Rama distribution, introduced by Shanker (2017a), stands out as a mixture
of exponential and gamma distributions. It has demonstrated exceptional performance in modeling
lifetime data, particularly in applications. This highlights its potential as a reliable tool for analyzing
complex datasets in various fields.

The confidence interval (CI) is an essential tool for accurately estimating the distribution pa-
rameters in statistical inference. However, a review of the current literature found no researches to
construct CIs for the parameter of the Rama distribution. Therefore, this research addressed this gap
by suggesting four methods for estimating CIs for the parameter of the Rama distribution using the
likelihood-based CI, Wald-type CI, bootstrap-t CI, and bias-corrected and accelerated (BCa) boot-
strap CI. Monte Carlo simulation experiments were conducted and two real-world datasets were also
analyzed to evaluate the performances of these four CI estimation approaches.
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2 Methodology
This section provides an overview of the Rama distribution, including point parameter estimation
and the construction of confidence intervals.

2.1 The Rama distribution and its parameter estimation

The Rama distribution is derived as a mixture of the exponential and a gamma distribution, with
specific mixing probabilities applied to combine these two. In this formulation, the gamma distri-
bution is defined with a fixed scale parameter, denoted as θ, and a shape parameter set to 4. Let X
denote a random variable that follows the Rama distribution with parameter θ. The probability den-
sity function (pdf) of the Rama distribution is derived from two classical continuous distributions,
in which each component is associated with a corresponding mixing weight, denoted by w1 and w2.
The resulting pdf is given by:

f(x; θ) = w1fExp(x; θ) + w2fGamma(x; θ, 4),

where w1 = θ3

θ3+6 , w2 = 6
θ3+6 , fExp(x; θ) is the pdf of the exponential distribution with rate

parameter θ and fGamma(x; θ, 4) is the pdf of the gamma distributions with rate parameter θ and
shape parameter 4. Therefore, the pdf of the Rama distribution are expressed as follows

f(x; θ) =
θ3

θ3 + 6

(
θe−θx

)
+

6

θ3 + 6

(
1

6
θ4x3e−θx

)
=

θ4

θ3 + 6
(1 + x3)e−θx,

where x > 0 and θ > 0. The cumulative distribution function of the Rama distribution is given by

F (x; θ) = 1−
(
1 +

θ3x3 + 3θ2x2 + 6θx

θ3 + 6

)
e−θx.

Figure 1 illustrates the probability density function plot of the Rama distribution for various
parameter values. The mean (µX = E(X)) and the rth non-central moment (µ′

r) of X can be
represented as

E(X) =
θ3 + 24

θ(θ3 + 6)
, and µ′

r =
r![θ3 + (r + 1) + (r + 2)(r + 3)]

θr(θ3 + 6)
, r = 1, 2, 3, . . .

2.2 Point parameter estimation

The point estimator for the parameter θ of the Rama distribution can be derived using the maximum
likelihood (ML) method, as outlined in the following steps

Step 1: Find the likelihood function. The likelihood function L(θ;xi) represents the joint probabil-
ity of observing the random sample x = (x1, x2, . . . , xn) of size n drawn from the Rama
distribution. It is expressed as follows

L(θ;x) =

(
θ4

θ3 + 6

)n n∏
i=1

(1 + x3
i )e

−θ
∑n

i=1 xi .
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Figure 1: The probability density function plot of the Rama distribution for several parameter values.

Step 2: Find the log-likelihood function. Due to the complexity of differentiating the likelihood
function, the log-likelihood function is derived to simplify the differentiation. The log-
likelihood function is

logL(θ;x) = n log

(
θ4

θ3 + 6

)
+

n∑
i=1

log(1 + x3
i )− θ

n∑
i=1

xi.

Step 3: Differentiate the log-likelihood function. To determine the value of θ that maximizes the
log-likelihood function, the derivative of logL(θ;xi) with respect to θ is computed. This
yields the score function S(θ;xi), which is expressed as follows

S(θ;x) =
∂

∂θ
logL(θ;xi)

=
∂

∂θ

[
4n log(θ)− n log(θ3 + 6) +

n∑
i=1

log(1 + x3
i )− θ

n∑
i=1

xi

]
=

4n

θ
− 3nθ2

θ3 + 6
−

n∑
i=1

xi.

Step 4: Set the derivative equal to zero and solve for the ML estimator. The value of θ is obtained
by solving the equation S(θ;xi)

set
= 0, which involves setting the score function to zero:

S(θ;x) =
4n

θ
− 3nθ2

θ3 + 6
−

n∑
i=1

xi
set
= 0.
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This process identifies the critical points that may correspond to local maxima of the likelihood
function with respect to θ. As no explicit solution exists for the ML estimator of the parameter
θ, this study applies numerical optimization methods to address the resulting non-linear equation.
Specifically, the Newton-Raphson algorithm, available through the maxLik package (Henningsen
and Toomet, 2011), was utilized in R programming language (R Core Team, 2023) to compute the
ML estimates.

2.3 Confidence intervals

2.3.1 Likelihood-based confidence interval

The likelihood-based CI method estimates parameter by using the likelihood function and its param-
eter match the observed data. The main idea behind this method is to find the range of parameter
value that make the likelihood function as large as possible, while still meeting the desired con-
fidence level. This is done by adjusting the log-likelihood function based on the parameter being
estimated.

The ML estimate of the parameter θ is found by solving the score equation S(θ;xi)
set
= 0, which

means the derivative of the log-likelihood function with respect to θ is zero. This value of θ gives
the best match to the observed data based on the assumed probability model. Using this estimate, a
likelihood-based CI can then be constructed. This approach employs the likelihood ratio, defined as

λ(θ) =
L(θ;x)

L(θ̂;x)
,

which quantifies how the likelihood at a specific value of θ compares to its maximum at θ̂.
Under suitable regularity conditions, Wilks’ theorem (Wilks, 1938) states that the statistic −2 log λ(θ)

asymptotically follows a chi-square distribution with degrees of freedom equal to the number of pa-
rameters being estimated. As a result, the likelihood-based CI for θ at the (1− α)100% confidence
level can be expressed as{

θ

∣∣∣∣∣ −2 log
L(θ;x)

L(θ̂;x)
≤ χ2

1−α,1

}

=

{
θ

∣∣∣∣∣ −2 log

[
θ4n(θ̂3 + 6)n

θ̂4n(θ3 + 6)n
exp

(
−θ

n∑
i=1

xi + θ̂

n∑
i=1

xi

)]
≤ χ2

1−α,1

}
,

where χ2
1−α,1 denotes the (1−α) quantile of the chi-square distribution with one degree of freedom

(Saleh, 2006; Severini, 2000).
For the Rama distribution, the likelihood ratio test (LRT) presents additional complexity due

to the model’s mixed nature. To overcome these computational difficulties, likelihood-based CI is
typically obtained through numerical optimization techniques.

The ML estimator for the parameter θ of the Rama distribution was obtained by numerically
solving the score equation using Brent’s method (Brent, 1973), a hybrid root-finding algorithm. The
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equation to be solved is:

f(θ) = S(θ;x) =
4n

θ
− 3nθ2

θ3 + 6
−

n∑
i=1

xi
set
= 0,

where S(θ;x) is the score function. Brent’s method finds a root of f(θ) = 0 by combining the
reliability of bracketing methods with the efficiency of interpolation techniques.

When f(a) · f(b) < 0, the method begins with a bisection step to ensure that a root lies within
the interval [a, b]. Depending on the function’s behavior and the position of the interval endpoints,
the algorithm alternates adaptively between the secant method and inverse quadratic interpolation.
Specifically, the secant update is given by:

θsecant = θn − f(θn) ·
θn − θn−1

f(θn)− f(θn−1)
,

while the inverse quadratic interpolation step can be expressed as

θquad =
f(θn−1)f(θn−2)

(f(θn)− f(θn−1))(f(θn)− f(θn−2))
θn + . . .

The likelihood-based CI is obtained by iteratively computing the statistic −2 log(λ(θ)) and compar-
ing it against the 0.95 quantile of the chi-square distribution with one degree of freedom. As shown
in Figure 2, the plot displays the profile of −2 log(λ(θ)) (blue curve), the critical chi-square thresh-
old χ2

0.95,1 (red line), and the corresponding 95% likelihood-based CI (green segment), derived from
a simulated sample of size 20 drawn from the Rama distribution with θ = 1.

2.3.2 Wald-type confidence interval

The Wald-type CI is a classic approach to interval estimation that exploits the asymptotic normality
of the ML estimator. By combining the ML estimator with its estimated standard error and the
appropriate quantile of the normal distribution, one obtains an approximate CI for the parameter.
Since the first-order derivative of the log-likelihood function equals zero at the ML estimate, the
Wald statistic approximates the likelihood ratio by using the second-order term of the expansion:

logL(θ;x) ≈ logL(θ̂;x) + (θ − θ̂)
∂

∂θ
logL(θ;x)

∣∣∣∣
θ=θ̂

+
1

2
(θ − θ̂)2

∂2

∂θ2
logL(θ;x)

∣∣∣∣
θ=θ̂

,

log
L(θ;x)

L(θ̂;x)
≈ 1

2
(θ − θ̂)2

∂2

∂θ2
logL(θ|x)

∣∣∣∣
θ=θ̂

,−2 log
L(θ;x)

L(θ̂;x)
≈ (θ − θ̂)2I(θ̂),

where I(θ̂) is the estimated Fisher information. When the sample size is sufficiently large, asymp-
totic theory allows the Wald statistic to serve as a valid approximation to the LRT statistic. Under
such conditions, the log-likelihood ratio can be approximated by a quadratic form (Pawitan, 2001).
We obtain the first and second derivatives of the Rama distribution’s log-likelihood function as fol-
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Figure 2: The plot of −2 log(λ(θ)) versus θ.

lows

∂

∂θ
logL(θ;x) =

4n

θ
− 3nθ2

θ3 + 6
−

n∑
i=1

xi,

∂2

∂θ2
logL(θ;x) = −4n

θ2
− 6nθ

(θ3 + 6)
+

9nθ4

(θ3 + 6)2
= −4n

θ2
−
(
3nθ

(
12− θ3

(θ3 + 6)2

))
.

The estimated Fisher information is therefore given by the following expression

I(θ̂) = E
[
− ∂2

∂θ2
logL(θ;x)|θ=θ̂

]
=

4n

θ̂2
+ 3nθ̂

12− θ̂3

(θ̂3 + 6)2
. (2.1)

The Wald-type confidence interval for θ with a confidence level of (1− α)100% takes the form(
θ̂ − z1−α

2

√
I−1(θ̂), θ̂ + z1−α

2

√
I−1(θ̂)

)
,

where z1−(α/2) denotes the (1− α/2)th quantile of the standard normal distribution, and I−1(θ̂) is
the inverse function of I(θ̂) given in Equation (2.1).

2.3.3 Bootstrap-t confidence interval

The bootstrap-t CI constructs parameter interval estimates by combining the bootstrap resampling
method with the properties of the t-distribution. Unlike the percentile bootstrap method, this ap-
proach explicitly accounts for the estimated standard error of the parameter, thereby enhancing the
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interval’s accuracy and robustness. This technique is especially beneficial when working with small
samples or when the distribution of the estimator is skewed or non-normal (Davison and Hinkley,
1997). The steps for constructing a bootstrap-t CI are outlined as follows

1. The procedure starts with drawing a random sample
(
X1, . . . , Xn

)
from the original popula-

tion. Based on this sample, the parameter θ is estimated using the ML estimator θ̂.

2. Generate a total of B = 1,000 bootstrap resamples by repeating the following procedure: for
each iteration b = 1, . . . , B, construct a bootstrap sample X∗(b) =

(
X

∗(b)
1 , . . . , X

∗(b)
n

)
of size

n by drawing observations with replacement from the original dataset
(
X1, . . . , Xn

)
.

3. For each bootstrap sample X∗(b) (b = 1, . . . , B), compute the bootstrap replicate of the ML
estimator θ̂∗(b). Collecting these values yields the set

{
θ̂∗(1), . . . , θ̂∗(B)

}
, which serves as an

empirical approximation to the sampling distribution of θ̂.

4. For each bootstrap replicate b = 1, . . . , B, compute the bootstrap-t statistic

t∗(b) =
θ̂∗(b) − θ̂√
I−1
(
θ̂∗(b)

) ,
where I−1

(
θ̂∗(b)

)
denotes the inverse of I(θ) evaluated at the bootstrap estimate θ̂∗(b); see

Equation 2.1. Collecting these values yields the set { t∗(1), . . . , t∗(B)}, which approximates
the sampling distribution of the Studentised statistic.

5. Repeat Steps 1-3 for all b = 1, . . . , B to obtain the collection
{
θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B)

}
. This

set constitutes an empirical distribution of the estimator, which serves as a plug-in approxi-
mation to the sampling distribution of the pivotal quantity.

6. Using the corresponding bootstrap-t statistics
{
t∗(1), t∗(2), . . . , t∗(B)

}
, construct their em-

pirical distribution Ft∗(t). This distribution provides a non-parametric estimate of the true
distribution of the studentised statistic and will be used to form the CI.

7. Determine the lower and upper critical values t∗(α/2) and t∗(1−α/2) as the (α/2)th and
(
1 −

α/2
)th

empirical quantiles of the bootstrap–t distribution:

#
{
t∗ ≤ t∗(α/2)

}
B

= α/2,
#
{
t∗ ≤ t∗(1−α/2)

}
B

= 1− α/2,

where #( · ) denotes the counting operator.

8. The resulting (1− α) bootstrap–t confidence interval for θ is(
θ̂ + t∗(α/2)

√
I−1(θ̂), θ̂ + t∗(1−α/2)

√
I−1(θ̂)

)
.
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2.3.4 Bias-corrected and accelerated bootstrap confidence interval

The bias-corrected and accelerated (BCa) bootstrap CI improves the simple percentile method by
introducing two corrections: the bias correction factor z0, and the acceleration parameter a. These
tweaks shift the empirical quantiles to give more accurate intervals for small or skewed samples, all
without parametric assumptions (Bittmann, 2021). The procedure is outlined as follows

1. The procedure begins by drawing a random sample (X1, . . . , Xn) from the population, after
which the parameter θ is estimated by its point estimator θ̂.

2. Next, generate B = 1,000 bootstrap resamples,
{
X

∗(b)
1 , . . . , X

∗(b)
n

}B
b=1

, by sampling n ob-
servations with replacement from the original dataset for each b. Thus, every bootstrap sample
remains the same size n as the original sample.

3. For each bootstrap sample b = 1, . . . , B, compute the corresponding estimate

θ̂∗(b) = g
(
X

∗(b)
1 , . . . , X∗(b)

n

)
,

where g(·) denotes the ML estimator. Collecting these values yields the set
{
θ̂∗(1), . . . , θ̂∗(B)

}
,

which approximates the sampling distribution of θ̂.

4. Determine the proportion p of the bootstrap estimates θ̂∗b that are less than the original estimate
θ̂, that is,

p =
1

B

B∑
b=1

I
(
θ̂∗b < θ̂

)
,

where I(·) is the indicator function. The bias correction factor z0 is then defined as the stan-
dard normal quantile corresponding to the probability p, i.e.,

z0 = Φ−1(p),

where Φ−1(·) denotes the inverse cumulative distribution function (quantile function) of the
standard normal distribution.

5. To account for the asymmetry in the sampling distribution of the estimator, the acceleration
value a is computed. This adjustment reflects the rate of change in the standard error with
respect to the true parameter value. The acceleration factor is commonly estimated via the
jackknife method that assess the asymmetry of the estimator’s distribution.

6. To refine the percentile bounds for constructing the confidence interval, the bias-corrected
normal deviates are transformed using the acceleration factor. The adjusted lower and upper
percentiles are computed as

p∗L = Φ

(
z0 +

z0 + zα/2

1− a(z0 + zα/2)

)
and p∗U = Φ

(
z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)

)
,

where Φ denotes the cumulative distribution function of the standard normal distribution.
The values zα/2 and z1−α/2 represent the lower and upper quantiles of the standard normal
distribution corresponding to the desired confidence level.
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7. The BCa bootstrap CI is obtained by selecting the empirical quantiles that correspond to the
adjusted lower and upper percentiles p∗L and p∗U . Formally, the BCa bootstrap confidence
interval is given by: (

θ̂∗(p∗
L), θ̂

∗
(p∗

U )

)
,

where θ̂∗(p∗
L) and θ̂∗(p∗

U ) represent the p∗L and p∗U quantiles, respectively, of the ordered bootstrap

estimates θ̂∗b .

3 Simulation Studies and Results

In this study, we propose four methods for constructing confidence intervals (CIs) for the param-
eter of the Rama distribution. Their performance is assessed through an extensive Monte Carlo
simulation study, implemented in R, across a wide range of scenarios.

To evaluate the efficiency of each method, we examined seven sample sizes–n = 10, 20, 30, 50,
100, 200, and 500–and ten parameter values, θ = 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 4, and 5. For every
(n, θ) combination, 1,000 Monte Carlo replications were performed. Performance was assessed with
two metrics: (i) the empirical coverage probability (ECP), the proportion of intervals that contain
the true parameter value; and (ii) the average width (AW), the mean length of the intervals, which
reflects their precision.

Figure 3: Plots of the ECPs of the CIs for the parameter of the Rama distribution.

Tables 1-3 and Figures 3-4 compare the ECP and AW of four CIs for the Rama-distribution pa-
rameter. Overall, the likelihood-based and Wald-type intervals achieve the highest ECPs, remaining
close to the nominal level of 0.95 in nearly every situation and stabilising as n increases. By con-
trast, for small samples (n = 10, 20, or 30) the bootstrap-t and BCa intervals frequently undercover,
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Table 1: Empirical Coverage Probability and Average Width of 95% CIs for θ in the Rama Distri-
bution where θ = 0.2, 0.3, 0.5 and 0.75

θ n
Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

0.2

10 0.945 0.951 0.882 0.886 0.1267 0.1264 0.1121 0.1178

20 0.947 0.946 0.915 0.918 0.0887 0.0886 0.0841 0.0861

30 0.932 0.935 0.910 0.917 0.0721 0.0721 0.0695 0.0706

50 0.955 0.957 0.953 0.947 0.0557 0.0557 0.0544 0.0550

100 0.937 0.940 0.943 0.939 0.0393 0.0393 0.0387 0.0390

200 0.940 0.940 0.937 0.939 0.0277 0.0277 0.0275 0.0277

500 0.943 0.946 0.944 0.944 0.0175 0.0175 0.0175 0.0176

0.3

10 0.951 0.950 0.901 0.898 0.1909 0.1905 0.1708 0.1796

20 0.948 0.956 0.923 0.927 0.1334 0.1333 0.1251 0.1275

30 0.948 0.954 0.928 0.921 0.1083 0.1082 0.1036 0.1052

50 0.951 0.946 0.935 0.938 0.0832 0.0831 0.0809 0.0816

100 0.956 0.959 0.954 0.952 0.0585 0.0585 0.0578 0.0583

200 0.952 0.955 0.954 0.948 0.0416 0.0416 0.0412 0.0416

500 0.946 0.947 0.948 0.943 0.0262 0.0262 0.0259 0.0262

0.5

10 0.952 0.954 0.904 0.898 0.3125 0.3122 0.2800 0.2921

20 0.939 0.935 0.913 0.904 0.2186 0.2185 0.2060 0.2097

30 0.959 0.955 0.927 0.921 0.1772 0.1772 0.1705 0.1722

50 0.953 0.956 0.941 0.946 0.1373 0.1373 0.1334 0.1347

100 0.949 0.954 0.945 0.947 0.0970 0.0970 0.0955 0.0964

200 0.952 0.949 0.944 0.951 0.0684 0.0684 0.0680 0.0685

500 0.951 0.949 0.948 0.949 0.0432 0.0432 0.0429 0.0433

0.75

10 0.957 0.960 0.911 0.907 0.4537 0.4535 0.4063 0.4221

20 0.950 0.958 0.923 0.935 0.3164 0.3164 0.2975 0.3016

30 0.943 0.942 0.922 0.921 0.2580 0.2579 0.2479 0.2502

50 0.956 0.959 0.946 0.942 0.1990 0.1990 0.1958 0.1976

100 0.960 0.959 0.952 0.950 0.1408 0.1408 0.1383 0.1394

200 0.953 0.956 0.949 0.948 0.0997 0.0997 0.0983 0.0991

500 0.947 0.944 0.945 0.953 0.0632 0.0632 0.0629 0.0633
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Table 2: Empirical Coverage Probability and Average Width of 95% CIs for θ in the Rama Distri-
bution where θ = 1, 1.5, 2 and 3

θ n
Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

1

10 0.958 0.956 0.896 0.900 0.5828 0.5818 0.5260 0.5521

20 0.940 0.946 0.915 0.919 0.4097 0.4094 0.3915 0.3993

30 0.933 0.940 0.927 0.932 0.3326 0.3325 0.3198 0.3239

50 0.939 0.940 0.933 0.935 0.2573 0.2573 0.2506 0.2531

100 0.936 0.943 0.935 0.938 0.1821 0.1821 0.1802 0.1818

200 0.944 0.942 0.939 0.942 0.1282 0.1282 0.1271 0.1279

500 0.941 0.943 0.941 0.943 0.0813 0.0813 0.0808 0.0816

1.5

10 0.938 0.953 0.893 0.894 0.7219 0.7182 0.6504 0.6978

20 0.947 0.948 0.931 0.926 0.4991 0.4980 0.4760 0.4885

30 0.955 0.957 0.931 0.934 0.4078 0.4072 0.3914 0.3985

50 0.938 0.942 0.927 0.924 0.3144 0.3141 0.3071 0.3110

100 0.956 0.954 0.946 0.955 0.2208 0.2207 0.2181 0.2201

200 0.954 0.955 0.945 0.948 0.1566 0.1566 0.1542 0.1560

500 0.947 0.946 0.944 0.944 0.0985 0.0985 0.0980 0.0987

2

10 0.950 0.961 0.885 0.890 0.8770 0.8688 0.7777 0.8531

20 0.961 0.961 0.944 0.933 0.6015 0.5989 0.5701 0.5915

30 0.953 0.958 0.940 0.944 0.4863 0.4849 0.4666 0.4772

50 0.952 0.959 0.938 0.943 0.3751 0.3745 0.3629 0.3697

100 0.948 0.951 0.943 0.945 0.2639 0.2637 0.2606 0.2632

200 0.942 0.945 0.946 0.951 0.1860 0.1860 0.1844 0.1861

500 0.953 0.952 0.948 0.949 0.1177 0.1177 0.1162 0.1170

3

10 0.948 0.963 0.893 0.882 2.5554 2.4993 2.1393 2.6827

20 0.932 0.946 0.906 0.895 1.6883 1.6682 1.5368 1.6746

30 0.950 0.960 0.926 0.915 1.3325 1.3216 1.2560 1.3180

50 0.942 0.952 0.926 0.930 1.0117 1.0067 0.9725 1.0048

100 0.960 0.958 0.947 0.952 0.6980 0.6962 0.6811 0.6937

200 0.952 0.950 0.942 0.944 0.4925 0.4919 0.4863 0.4928

500 0.951 0.948 0.952 0.950 0.3111 0.3109 0.3092 0.3126
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Table 3: Empirical Coverage Probability and Average Width of 95% CIs for θ in the Rama Distri-
bution where θ = 4 and 5

θ n
Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

4

10 0.949 0.957 0.879 0.836 4.2201 4.1481 3.4849 4.3082

20 0.948 0.966 0.930 0.916 2.7506 2.7247 2.4975 2.7074

30 0.948 0.951 0.928 0.927 2.1702 2.1557 2.0378 2.1370

50 0.950 0.955 0.935 0.928 1.6353 1.6283 1.5694 1.6126

100 0.945 0.948 0.936 0.938 1.1344 1.1320 1.1114 1.1270

200 0.965 0.965 0.952 0.958 0.7973 0.7965 0.7821 0.7911

500 0.950 0.953 0.946 0.943 0.5018 0.5016 0.4970 0.5012

5

10 0.947 0.960 0.893 0.868 5.8087 5.7333 4.8028 5.8397

20 0.949 0.950 0.911 0.909 3.7856 3.7610 3.4046 3.6384

30 0.945 0.946 0.923 0.924 3.0451 3.0316 2.8718 2.9621

50 0.947 0.953 0.927 0.924 2.3021 2.2955 2.2193 2.2636

100 0.959 0.958 0.943 0.945 1.6098 1.6076 1.5643 1.5866

200 0.957 0.959 0.944 0.946 1.1265 1.1257 1.1028 1.1156

500 0.953 0.952 0.942 0.947 0.7077 0.7075 0.6992 0.7060

Figure 4: Plots of the AWs of the CIs for the parameter of the Rama distribution.
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with ECPs below 0.95. This gap narrows at larger sample sizes (n = 100, 200, and 500), where the
ECPs of all four methods converge on the nominal target, indicating that bootstrap-based intervals
are more sensitive to limited data.

Parameter values also affected performance. For small θ (0.20-0.50), the likelihood-based and
Wald-type CIs maintained ECPs near the nominal 0.95. As θ increased (1–5), the bootstrap-t and
BCa intervals began to under-cover, most notably at n = 10 and θ = 2, where their ECPs dropped to
0.885 and 0.890, respectively, compared with 0.950 and 0.961 for the likelihood-based and Wald-
type intervals. Hence, bootstrap methods are more sensitive to large parameter values when data are
sparse. All four CIs widened with increasing θ; however, the bootstrap-based intervals remained the
narrowest, trading precision for reduced coverage in the most challenging situations.

4 Applications to Real Data

To benchmark the practical utility of the Rama distribution, we compared its fit with several one–parameter
lifetime distributions whose pdfs are defined on (0,∞) and are each characterised by a single posi-
tive scale parameter θ > 0:

1. The Ola distribution (Al-Ta’ani and Gharaibeh, 2023) f(x; θ) = θ8

θ7+6θ4+5040

(
x7 + x3 + 1

)
e−θx.

2. The Pratibha distribution (Shanker, 2023b) f(x; θ) = θ3

θ3+θ+2 (θ + x+ x2) e−θx.

3. The Komal distribution (Shanker, 2023a) f(x; θ) = θ2

θ2+θ+1 (1 + θ + x) e−θx.

4. The Chris-Jerry distribution (Onyekwere and Obulezi, 2022) f(x; θ) = θ2

θ+2 (1 + θx2) e−θx.

5. The Juchez distribution (Mbegbu and Echebiri, 2022) f(x; θ) = θ4

θ3+θ2+6 (1 + x+ x3) e−θx.

6. The Adya distribution (Shanker et al., 2021) f(x; θ) = θ3

θ4+2θ2+2 (θ + x)2 e−θx.

7. The Ishita distribution (Shanker and Shukla, 2017) f(x; θ) = θ3

θ3+2 (θ + x2) e−θx.

8. The Rani distribution (Shanker, 2017b) f(x; θ) = θ5

θ5+24 (θ + x4)e−θx.

9. The Sujatha distribution (Shanker, 2016b) f(x; θ) = θ3

θ2+θ+2

(
1 + x+ x2

)
e−θx.

10. The Garima distribution (Shanker, 2016a) f(x; θ) = θ
θ+2 (1 + θ + θx) e−θx.

11. The Shanker distribution (Shanker, 2015b) f(x; θ) = θ2

θ2+1 (θ + x)e−θx.

12. The Akash distribution (Shanker, 2015a) f(x; θ) = θ3

θ2+2 (1 + x2)e−θx.

13. The Lindley distribution (Ghitany et al., 2008) f(x; θ) = θ2

θ+1 (1 + x)e−θx.

14. The exponential distribution f(x; θ) = θ e−θx.
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4.1 Monthly tax revenue in Egypt

Monthly tax revenue data for Egypt from January 2006 to November 2010 (Nassar and Nada, 2011)
exhibit pronounced right skewness. The series, measured in units of 1,000 million Egyptian pounds,
contains the following observations: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5,
21.6, 18.5, 5.1, 6.7, 17.0, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10.0, 4.1, 36.0, 8.5, 8.0, 9.2, 26.2, 21.9,
16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7.0, 8.6, 12.5, 10.3, 11.2,
6.1, 8.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, and 10.8. Descriptive statistics are summarised in Table
4, while Figure 5 provides graphical presentation-including a histogram, Box-and-Whisker plot,
kernel-density estimate, and violin plot.

Table 4: Descriptive statistics for Egypt’s monthly tax revenue.

Sample Sizes Minimum Q1 Median Mean Q3 Maximum St.Dev

59 4.10 8.45 10.60 13.49 16.85 39.20 8.0515

Figure 5: Visual summaries of Egypt’s monthly tax revenue (Jan 2006–Nov 2010)

ML estimation for the parameter was used to fit each candidate distribution, and the resulting
models were compared with three goodness-of-fit criteria: the negative log-likelihood

(
− log

(
L̂
))

,
the Akaike information criterion (AIC) (Akaike, 1974), and the Bayesian (Schwarz) information
criterion (BIC) (Schwarz, 1978). These information criteria are defined by

AIC = 2k − 2 log
(
L̂
)
, BIC = 2k log(n)− 2 log

(
L̂
)
,
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where k is the number of estimated parameters and L̂ is the maximised likelihood.1In Table 5,
Estimate (SE) reports the ML estimate of θ together with its standard error in parentheses, while the
column labelled − log

(
L̂
)

gives the negative log-likelihood evaluated at that estimate.

Table 5: Model-fit analysis of candidate distributions for monthly tax revenue data for Egypt

Distributions Estimate (SE) − log(L̂) AIC BIC

Rama 0.2956 (0.01918) 193.3599 388.7198 390.7974

Ola 0.5931 (0.02720) 205.6559 413.3118 415.3893

Pratibha 0.2144 (0.01608) 194.5842 391.1684 393.2459

Komal 0.1379 (0.01266) 200.9136 403.8273 405.9048

Chris-Jerry 0.2117 (0.01619) 196.8246 395.6493 397.7268

Juchez 0.2935 (0.01897) 193.5395 389.0790 391.1565

Adya 0.2184 (0.01616) 194.0959 390.1918 392.2694

Ishita 0.2214 (0.01655) 193.8824 389.7648 391.8423

Rani 0.3706 (0.02168) 194.7634 391.5267 393.6043

Sujatha 0.2125 (0.01581) 195.0663 392.1326 394.2101

Garima 0.1137 (0.01272) 208.3080 418.6160 420.6935

Shanker 0.1462 (0.01333) 198.5302 399.0605 401.1380

Akash 0.2189 (0.01634) 194.4629 390.9257 393.0032

Lindley 0.1462 (0.01333) 200.7719 403.5439 405.6214

Exponential 0.0741 (0.00965) 212.5068 427.0136 429.0912

Note: Boldfaced values indicate the distribution that yields the minimum AIC and BIC.

The values of the negative log-likelihood, AIC, and BIC reported in Table 5 indicate that the
Rama distribution offers the best overall fit among the candidate distributions. The ML estimate for
the dataset was 0.1623. Table 6 summarises the 95% confidence intervals for the Rama distribution
parameter. The likelihood-based CI extends from 0.2596 to 0.3348 (width = 0.0752), while the
Wald-type CI, 0.2580–0.3332, is practically identical in both location and width. By contrast, the
bootstrap-t and BCa bootstrap CIs are substantially wider, signalling lower estimation precision.
These differences underscore the importance of method choice and highlight how precision can
vary markedly across competing CI procedures.

1Lower AIC, BIC, and − log
(
L̂
)

values indicate a superior balance between fit and parsimony.
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Table 6: The 95% two-sided CIs and widths in Egypt’s monthly tax revenue.

Methods Confidence intervals Width

Likelihood-based (0.2596, 0.3348) 0.0752

Wald-type (0.2580, 0.3332) 0.0752

Bootstrap-t (0.2536, 0.3431) 0.0895

BCa bootstrap (0.2497, 0.3402) 0.0905

4.2 Plasma concentrations of Indomethacin

The plasma concentrations of indomethacin (measured in mcg/ml) are documented by Kwan et al.
(1976). The dataset comprises 66 observations, recorded as follows: 1.50, 0.94, 0.78, 0.48, 0.37,
0.19, 0.12, 0.11, 0.08, 0.07, 0.05, 2.03, 1.63, 0.71, 0.70, 0.64, 0.36, 0.32, 0.20, 0.25, 0.12, 0.08,
2.72, 1.49, 1.16, 0.80, 0.80, 0.39, 0.22, 0.12, 0.11, 0.08, 0.08, 1.85, 1.39, 1.02, 0.89, 0.59, 0.40,
0.16, 0.11, 0.10, 0.07, 0.07, 2.05, 1.04, 0.81, 0.39, 0.30, 0.23, 0.13, 0.11, 0.08, 0.10, 0.06, 2.31,
1.44, 1.03, 0.84, 0.64, 0.42, 0.24, 0.17, 0.13, 0.10, and 0.09. Descriptive statistics for this dataset are
summarized in Table 7. Figure 6 provides visual representations illustrating the dataset’s asymmetry
and confirming its non-normal distribution.

Table 7: Descriptive statistics for the plasma concentrations of indomethacin.

Sample Sizes Minimum Q1 Median Mean Q3 Maximum St.Dev

66 0.050 0.110 0.340 0.592 0.833 2.720 0.6325

Table 8 shows that the Rama distribution delivers the best fit, posting the lowest AIC and BIC
among all candidate distributions. A comparison of 95% CIs for the indomethacin plasma–θ param-
eter (Table 9) reveals that the likelihood-based (2.4378, 3.1953) and Wald-type (2.4111, 3.1658)

intervals are virtually identical, with widths of 0.7575 and 0.7547, respectively. The bootstrap-t
(2.4312, 3.1850) and BCa bootstrap (2.4177, 3.1636) intervals are slightly narrower–0.7538 and
0.7459–indicating a modest gain in precision.

The CIs derived from the two empirical datasets exhibited consistency, with average widths
aligning closely with those obtained through Monte Carlo simulations. This alignment suggests
that the empirical results are consistent with the theoretical expectations established via repeated
sampling. The findings demonstrate that the proposed CI estimation methods perform effectively
and reliably when applied to real-world data.
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Figure 6: Visual summaries of plasma concentrations of indomethacin.
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Table 8: Model-fit analysis of candidate distributions for the plasma concentrations of indomethacin.

Distributions Estimate (SE) − log(L̂) AIC BIC

Rama 2.7884 (0.19245) 29.6692 61.3384 63.5281

Ola 4.1473 (0.16346) 32.2058 66.4116 68.6012

Pratibha 2.3287 (0.18273) 31.1726 64.3451 66.5348

Komal 1.9447 (0.19883) 31.5141 65.0282 67.2179

Chris-Jerry 2.9792 (0.26688) 31.7391 65.4781 67.6678

Juchez 2.8642 (0.20854) 30.6502 63.3004 65.4900

Adya 2.3095 (0.18257) 31.8291 65.6581 67.8478

Ishita 2.2110 (0.17549) 30.6644 63.3288 65.5185

Rani 2.6773 (0.15212) 30.5441 63.0881 65.2778

Sujatha 2.6517 (0.22222) 31.9383 65.8765 68.0662

Garima 2.0965 (0.22581) 31.8037 65.6073 67.7970

Shanker 2.0295 (0.19159) 31.6345 65.2690 67.4587

Akash 2.5060 (0.20727) 30.5833 63.1666 65.3563

Lindley 2.0295 (0.19159) 32.5142 67.0283 69.2180

Exponential 1.6897 (0.20794) 31.3793 64.7586 66.9483

Table 9: The 95% CIs and widths in the plasma concentrations of indomethacin.

Methods Confidence interval Width

Likelihood-based (2.4378, 3.1953) 0.7575

Wald-type (2.4111, 3.1658) 0.7547

Bootstrap-t (2.4312, 3.1850) 0.7538

BCa bootstrap (2.4177, 3.1636) 0.7459
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5 Conclusion and Recommendations

This paper developed and assessed four interval estimations for parameter of the Rama distribution
including likelihood-based, Wald-type, bootstrap-t, and bias-corrected and accelerated (BCa) boot-
strap. The Wald-type CI was formulated and presented as an explicit equation. All the CIs were
assessed through Monte Carlo simulation studies based on empirical coverage probability (ECP)
and the average width (AW) of the CIs. The simulation results indicated that likelihood-based and
Wald-type CIs were superior for attaining ECPs at 95% confidence level, providing consistent per-
formance across various sample sizes and parameter values. The bootstrap-t and BCa bootstrap CIs,
while providing shorter AWs and thus more precise estimates, exhibited lower ECPs, especially
when the sample size was small or the parameter value was high. As the sample size increased, the
performance of the bootstrap-t and BCa bootstrap CIs improved, with ECPs approaching the nomi-
nal confidence level of 0.95 and AWs becoming comparable to the likelihood-based and Wald-type
CIs. Therefore, for applications requiring high ECP, the likelihood-based and Wald-type CIs are
recommended, particularly when dealing with small sample sizes or high parameter values. Con-
versely, the bootstrap-t and BCa bootstrap CIs, with their shorter AWs, may be more suitable when
a more precise interval estimate is required that can accept a slight deviation in ECP. Selection of the
approach depends on the specific requirements of the investigation, including the preferred balance
between ECP and interval precision.

Although the ECPs of all methods are generally close to the nominal level of 0.95, noticeable
differences remain, particularly in small samples and extreme values of θ. Likelihood-based and
Wald-type CIs tend to maintain nominal coverage more reliably, whereas bootstrap methods may un-
derperform in small samples but improve as the sample size increases. Differences in AWs, though
small, reflect a balance between accuracy and stability. Moreover, while ECPs are theoretically ex-
pected to increase with larger sample sizes, slight deviations—especially for likelihood-based and
Wald-type CIs–were observed, likely due to finite-sample variability and the sensitivity of asymp-
totic approximations in Monte Carlo simulations. These details highlight the importance of choosing
a suitable method based on the sample conditions.

The computational requirements of bootstrap techniques, particularly the bootstrap-t and BCa
bootstrap CIs, can pose a challenge to limited computational resources. To facilitate the computation
of bootstrap CIs in R, several packages are accessible, with the ’boot’ package (Canty and Ripley,
2017) and the ’bootstrap’ package (Kostyshak, 2024) being notable examples. Future research could
study hypothesis testing for the parameter of the Rama distribution. This topic represents valuable
opportunities for future studies.
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