
Journal of Statistical Research https://doi.org/10.3329/jsr.v59i1.83688
2025, Vol. 59, No. 1, pp. 99-106 ISSN 0256 - 422 X

A NOTE ON THE SAMPLE COVARIANCE FROM A BIVARIATE
NORMAL POPULATION

ANWAR H. JOARDER∗

Department of Computer Science and Engineering
Northern University of Business and Technology Khulna, Khulna 9100, Bangladesh

Email: anwar.joarder@nubtkhulna.ac.bd

M. HAFIDZ OMAR

Department of Mathematics and Statistics
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Email: omarmh@kfupm.edu.sa

SUMMARY

Both the Moment Generating Function and the Probability Density Function of sample
covariance based on a bivariate normal distribution have been presented in a simpler way
by using conditional distributions. We also prove that the random variable sample covari-
ance is a linear combination of two chi-square random variables if they are statistically
independent.
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1 Introduction
Covariances have significant applications in finance and Modern Portfolio Theory (MPT). For ex-
ample, in the capital asset pricing model (CAPM), which is used to calculate the expected return of
an asset, the covariance between a security and the market is required.

Building on the work of Bose (1935), Mahalanobis et al. (1937) derived the probability den-
sity function (pdf) of the sample covariance based on a bivariate normal population. Bose derived
the distribution of correlated variance ratio with the help of Fischer et al. (2023). It was shown by
Pearson et al. (1929) that the sample covariance has the Bessel function distribution. An alternative
proof is given by Kotz et al. (2001) in the Proposition 4.1.5. Press (1966) presented some character-
istics of random sample covariance including the asymptotic distribution. Joarder and Omar (2011)
also derived compact expressions for moments of sample covariance based on a bivariate normal
population.

In Section 2, we overview the bivariate chi-square and a compounded normal distribution com-
monly known as the Variance Gamma (VG) Distribution. In Theorem 3.1, the Moment Generating
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Function (MGF) of sample covariance is presented in a gentle way. In Theorem 3.2, we prove that
the sample covariance is a linear combination of two chi-square random variables if and only if they
are independent. In Section 4, we present a gentle derivation of the above century old problem of the
probability density function of sample covariance for the modern readers of econometrics, business,
computer science and others by using the VG Distribution.

2 Bivariate Chi-square and Compounded Normal Distribution

In this section, we overview the joint PDF of the two correlated chi-square random variables and a
special compounded normal distribution better known as Variance Gamma (VG) Distribution.

Theorem 1. (Joarder et al., 2012, Theorem 3.1) Let U and V be chi-square random variables
based on a bivariate sample size n = m+ 1 ≥ 2 with correlation coefficient ρ2 have the joint PDF
(Probability Density Function) given by

f(u, v) =
(uv)(m−2)/2

2m Γ2(m/2)(1− ρ2)m/2
exp

(
− u+ v

2− 2ρ2

)
0F1

(
;
m

2
;

ρ2uv

(2− 2ρ2)2

)
, (2.1)

u > 0, v > 0, with MGF (Moment Generating Function)

MU,V (t1, t2) = [1− 2(t1 + t2) + 4(1− ρ2)t1t2]
−m/2, (2.2)

where −1 < ρ < 1 and 0F1(; b; z) is a generalized hypergeometric function defined in (A.2).
In case ρ = 0, the PDF in (2.1) would be that of the product of two independent chi-square

random variables each having the same degrees of freedom m..
Let the gamma distribution G(α, β) have the shape parameter α and mean αβ so that the MGF

is (1 − βt)−α where α > 0, β > 0 and t > 1/β. If X|V ∼ N(µ + θV, σ2V ), −∞ < x < ∞,

−∞ < θ < ∞, σ > 0, v > 0, as assumed by Finaly and Seneta (2006), then MX(t) = EV MX|V (t)

where MX|V (t) = exp{(µ + θV )t + σ2V t2/2}. Assuming V ∼ G(α, 1/α), α > 0, the MGF of
X simplifies to (2.4) with PDF in (2.3). The PDF in (2.3) is thus the compounded normal PDF with
the mixture of mean (µ + θV )and variance (σ2V )by a gamma random variable V ∼ G(α, 1/α),

and can be derived by elementary probability distribution theory.

Theorem 2. (Finaly and Seneta, 2006) If X|V ∼ N(µ+ θV, σ2V ) and V ∼ G(α, 1/α), the PDF
of Xis given by

fX(x) =

√
2

π

αα

σΓ(α)
exp

(
θ(x− µ)

σ2

)(
|x− µ|√
θ2 + 2ασ2

)α−1/2

Kα−1/2

(√
θ2 + 2ασ2

σ2
|x− µ|

)
,

(2.3)
with MGF

MX(t;µ, θ, σ, α) = eµt
(
1− θt

α
− σ2t2

2α

)−α

, (2.4)

where −∞ < x < ∞,α > 0, −∞ < θ < ∞,σ > 0,−∞ < µ < ∞ and Kα(w) is defined by (A.3).
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Proof. The PDF of X|V ∼ N(µ+ θV, σ2V ) can be written as

fX|v(x|v) =
1

σ2
√
2πV

exp

[
−1

2

{x− (µ+ θV )}2

σ2V

]
.

Then the PDF in (2.3) of X can be derived by the following

fX(x) =

∫ ∞

v=0

fX|v(x|v)fV (v)dv

where fV (v)is the PDF of V ∼ G(α, 1/α).

The PDF in (2.3) is a special case of PDF (2.1) by Fischer et al. (2023). Following them, we will
denote the PDF in (2.3) by X ∼ V G2(α, θ, σ, µ). See also equation (2.3) of Madan et al. (1998). If
we put α = λ,θ = 2bλ/(a2 − b2), σ2 = 2λ/(a2 − b2), in (2.3), we get the following hyperbolic
form of the PDF of Variance Gamma Distribution

fY (y) =
(a2 − b2)λeb(y−µ)

(2a)λ−1/2 Γ(λ)
√
π
|y − µ|λ−1/2Kλ−1/2(a|y − µ|),−∞ < y < ∞, (2.5)

where λ > 0, −∞ < a < ∞, −∞ < b < ∞, −∞ < µ < ∞,
√
a2 − b2 > 0 with MGF

MY (t) = eµt
(

a2 − b2

a2 − (b+ t)2

)λ

, λ > 0, a2 > (b+ t)2. (2.6)

See for example, Gaunt (2014).

3 The MGF of Sample Covariance and Some Related Charac-
terizations

Let X̄and Ȳ be the means of two random variables Xand Y based on a sample of size n = m+1 ≥
2. Then the sample covariance W is defined by

mW =

n∑
j=1

(Xj − X̄)(Yj − Ȳ ). (3.1)

Let Xand Y be two random variables with the moment generating function MX,Y (s, t) = E(esX+tY ).

Then for any t, h < t < h, h > 0, the random variables X and Y are independent if MX,Y (s, t) =

MX(t) MY (t) where MX(t) = E(etX).

Let (X,Y ) have a bivariate normal distribution (BND) with E(X) = µ1, V (X) = σ2
1 ,E(Y ) =

µ2, V (Y ) = σ2
2 and Cov(X,Y ) = ρσ1σ2. Also let W be the sample covariance defined by (3.1)

based on a sample of size n = m+ 1. For a BND, it can be easily proved that

(Y |X = x) ∼ η

[
µ2 + ρ

σ2

σ1
(x− µ1), (1− ρ2)σ2

2

]
,
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a conditional normal distribution. It can also be proved that (mW |X1 = x1, X2 = x2, ..., Xn =

xn) ∼ η
[
ρσ2

σ1
ms21, (1− ρ2)σ2

2ms21

]
, or,

(W |X1 = x1, X2 = x2, ..., Xn = xn) ∼ η

[
ρ
σ2

σ1
s21,

1

m
(1− ρ2)σ2

2s
2
1

]
.

The following proof of the MGF of the sample covariance is known (Johnson, Kotz and Balakrish-
nan, 1995) and based on the conditional distribution of W |X = ∼x where ∼x = (X1 = x1, X2 =

x2, ..., Xn = xn). A brief proof is presented for broad spectrum of readers.

Theorem 3. Let (X,Y ) have a bivariate normal distribution with E(X) = µ1, V (X) = σ2
1 ,

E(Y ) = µ2, V (Y ) = σ2
2 and Cov(X,Y ) = ρσ1σ2 where σ1 > 0, σ2 > 0 and 1 ≤ ρ ≤ 1. Also, let

the sample covariance be defined by (3.1). Then the MGF of W defined by (3.1) is given by
Equation (a):

MW (t) =

[
1− 2ρ

(σ1σ2

m

)
t− (1− ρ2)

(σ1σ2

m

)2
t2
]−m/2

(3.2)

or by Equation (b):
MW (t) = [(1− 2bt)(1− 2ct)]

−m/2 (3.3)

where b and c are defined by 2mb = σ1σ2(1 + ρ) and 2mc = −σ1σ2(1− ρ) respectively.

Proof. Proof of Part (a): We know that the moment generating function of X ∼ N(µ, σ2) is given
by

MX(t) = exp

(
µt+

1

2
σ2t2

)
, t ∈ R.

Then for the bivariate normal distribution, we have

(W |∼X = ∼x) ∼ η

[
ρ
σ2

σ1
s21,

1

m
(1− ρ2)σ2

2s
2
1

]
.

It has the following MGF:

MW |∼x
(t) = E

(
etW |∼X = ∼x

)
= exp

[
ρ
σ2

σ1
s21t+

1

2
t2

1

m
(1− ρ2)σ2

2s
2
1

]
,

which can be simplified to be

E
(
etW |∼X = ∼x

)
= exp

[{
ρσ1σ2

m
t+

1− ρ2

2

(σ1σ2

m

)2
t2
}

ms21
σ2
1

]
.

Letting d = ρσ1σ2

m t+ 1−ρ2

2

(
σ1σ2

m

)2
t2 and u =

ms21
σ2
1
, we have

E
(
etW |∼X = ∼x

)
= edu.
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Then we have

MW |∼X
(t) = E

(
etW |∼X

)
= edU , where U =

mS2
1

σ2
1

∼ χ2
m.

Now taking expectation over ∼X, we have E
[
E
(
etW |∼X

)]
= MU (d), the MGF of U ∼ χ2

m so that

E
[
E
(
etW |∼X

)]
= (1− 2d)−m/2.

But the left hand side is the E
(
etW

)
= MW (t), i.e.,

MW (t) =

[
1− 2

{
ρσ1σ2

m
t+

1− ρ2

2

(σ1σ2

m

)2
t2
}]−m/2

which is the same as (3.2) or (32.123) of Johnson et.al. (1995).

Proof of Part (b): The inner quadratic trinomial of MGF of W in (3.2), say, q(t), can be written as

q(t) = 1− [(1 + ρ)− (1− ρ)]
(σ1σ2

m

)
t− (1− ρ2)

(σ1σ2

m

)2
t2,

q(t) = 1− 2bt− 2ct+ 4bct2.

The above can be factored as q(t) = (1− 2bt)(1− 2ct). The proof is thus complete.

The presentation of the following theorem in Johnson, Kotz and Balakrishnan (1995) is improved
below.

Theorem 4. Let (X,Y ) have a bivariate normal distribution with E(X) = µ1, V (X) = σ2
1 ,E(Y ) =

µ2, V (Y ) = σ2
2 and Cov(X,Y ) = ρσ1σ2. Also let the sample covariance W be defined by (3.1)

based on a sample of size n = m + 1 ≥ 2. Also let b and c be defined by 2mb = σ1σ2(1 + ρ) and
2mc = −σ1σ2(1− ρ) where each of the random variables Uand V be defined by χ2

m, a chi-square
random variable with m degrees of freedom. Then the random sample covariance can be expressed
as W = bU + cV if and only if U and V are statistically independent.

Proof. (Proof of the First Part:) By definition, the MGF of bU + cV is given by

MbU+cV (t) = E
[
et(bU+cV )

]
= E

[
e(tb)U e(tc)V

]
.

By statistical independence of Uand V , we have

MbU+cV (t) = E
[
e(tb)U

]
E
[
e(tc)V

]
, or, MbU+cV (t) = MU (bt) MV (ct).

Since U ∼ χ2
mand V ∼ χ2

m, we have MbU+cV (t) = (1 − 2bt)−m/2 (1 − 2ct)−m/2, which is the
MGF of bU + cV . But the above is also the MGF of W . By the uniqueness theorem of MGF, if
Uand V are independent, then Whas the characterization W = bU + cV .

(Proof of the Second Part:) For any two random variables U ∼ χ2
m and V ∼ χ2

m, the MGF of the
quantity bU + cV is given by

MbU+cV (t) = E
[
et(bU+cV )

]
= E

(
etbU etcV

)
. (3.4)
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The right hand side of the MGF of W in (3.3) can be written as

(1− 2bt)−m/2(1− 2ct)−m/2 = E
[
e(tb)U

] [
e(tc)V

]
, (3.5)

where U ∼ χ2
m and V ∼ χ2

m. Obviously, the MGF of bU + cV in (3.4) and that of W in (3.3) or
equivalently in (3.5) will be the same, i.e., if

E
(
etbU etcV

)
= E

[
e(tb)U

] [
e(tc)V

]
,

i.e., if the random variables Uand V are independent. By the uniqueness theorem of MGF, we have
proved that W = bU + cV if the random variables Uand V are independent.

4 The PDF of Sample Covariance by Variance Gamma Distri-
bution

The following derivation is briefly mentioned in Fischer et al. (2023).

Theorem 5. Let W be the sample covariance defined by (3.1) based on a sample n = m + 1 ≥ 2

from a bivariate normal distribution. Then the PDF of W is given by

fW (w) = Cm,ρ
σ1,σ2

|w|(m−1)/2 exp

(
ρmw

(1− ρ2)σ1σ2

)
K(m−1)/2

(
m|w|

(1− ρ2)σ1σ2

)
, (4.1)

−∞ < w < ∞, 2(m−1)/2
√
π(1− ρ2)Γ (m/2)Cm,ρ

σ1,σ2
= (m/σ1σ2)

(m+1)/2, σ1 > 0, σ2 > 0,

−1 < ρ < 1 and Kα(x) is the modified Bessel function of the second kind represented by (A.3).

Proof. If α = m/2, θ = ρσ1σ2, σ
2 = (1 − ρ2)(σ1σ2)

2/m, µ = 0, in (2.4), we get the MGF
of W in (3.2) and then by the pdf in (2.3) we get the pdf in (4.1) which will be denoted by
W ∼ V G2

(
α = m/2, θ = ρσ1σ2, σ

2 = (1− ρ2)(σ1σ2)
2/m, µ = 0

)
. The pdf in (4.1) can also

be derived by (2.6) and (2.5).

Interested readers can go through moments and related characteristics derived by Joarder and Omar
(2011). The graph of the PDF of covariance is drawn in Appendix 2 for several values of ρ.

5 Conclusion
Though there have been huge research on sample correlation coefficient for over a century, we do not
see much on the sample covariance. Recently sample covariance has been applied to many business
investigations. We hope the research will lead to further investigation in mathematical statistics and
find applications in business, econometrics, finance etc.
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A Appendix 1
We will be using the following product of kconsecutive ascending integers:

a{k} = a(a+ 1) · · · (a+ k − 1), a{0} = 1 (A.1)

The generalized hypergeometric function pFq(a1, a2, · · · , ap; b1, b2, · · · , bq; z) is defined by

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq; z) =
∞∑
k=0

(a1){k}(a2){k} · · · (ap){k}
(b1){k}(b2){k} · · · (bq){k}

zk

k!
, (A.2)

where a{k} is defined in (A.1). The modified Bessel function of the second kind admits numerous
integral representations. We present the following (Seneta, 2004):

Kα(w) =
1

2

∫ ∞

0

xα−1 exp

[
−w

2

(
x+

1

x

)]
dx, w > 0. (A.3)

B Some graphs of pdf of sample covariance

(a) ρ = −0.1 (b) ρ = −0.5 (c) ρ = −0.9

(d) ρ = 0.1 (e) ρ = 0.5 (f) ρ = 0.9
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