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SUMMARY

In this paper, we discuss the problem of predicting intervals for future order statistics and
k -record values based on observed concomitants of order statistics and observed concomi-
tants of k -record values arising from a Morgenstern family of distributions. The coverage
probabilities obtained are accurate and independent of the parent distribution. A real data
set is also considered to exemplify the proposed methodologies developed in this paper.
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1 Introduction

Let {(Xi, Yi), i = 1, 2, . . . n} be n independent and identically distributed (iid) bivariate random
sample of observations arising from an absolutely continuous bivariate population with cumulative
distribution function (cdf) F (x, y) and joint probability density function (pdf) f(x, y). Let FX(x)

and FY (y) be the marginal cdfs ofX and Y , and let fX(x) and fY (y) be the corresponding marginal
pdfs of X and Y respectively. By arranging the Xi values in non-decreasing order of magnitude as
X1:n ≤ X2:n ≤ · · · ≤ Xn:n, the order statistics of the X variate will be obtained. Then the Y -
variate associated with the rth order statisticXr:n is called the concomitant ofXr:n and it is denoted
by Y[r:n]. The term concomitant of order statistic was first introduced by David (1973).

Concomitants of order statistics have found wide range of applications in the field of engineer-
ing, inference and prediction problems and double sampling plans. There are numerous studies
available in the literature that deal with concomitants of order statistics. David et al. (1977) derived
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the distribution of the rank of Y[r:n]. The asymptotic behaviours of the rank of Y[r:n] were exten-
sively discussed by David and Galambos (1974). Balasubramanian and Beg (1997, 1998) discussed
the concomitant for Morgenstern type bivariate exponential distributions and Gumbel’s bivariate
exponential distributions, respectively and provided its recurrence relations for single and product
moments. David and Nagaraja(1998) made a significant use of concomitants of order statistics in
selection procedures when k(< n) individuals are chosen on the basis of X values. Then the cor-
responding Y values represent the performance on an associated characteristic. The cdf and pdf of
the concomitant of rth order statistic Y[r:n] are respectively given by (see, David, 1981)

FY[r:n]
(y) =

∞∫
−∞

FY |X (y|x) fr:n (x) dx (1.1)

and

fY[r:n]
(y) =

∞∫
−∞

fY |X (y|x) fr:n (x) dx, (1.2)

where FY |X and fY |X are respectively denote the conditional cdf and pdf of Y givenX and fr:n (x)

is the density function of Xr:n which is given by (see, Arnold et al., 1992 )

fr:n (x) =
1

B (r, n− r + 1)
[FX(x)]

r−1
[1− FX(x)]

n−r
fX(x), −∞ < x <∞, (1.3)

where B (·, ·) denotes the complete beta function.
Let {Xn, n ≥ 1} be a sequence of iid random variables with an absolutely continuous cdf FX(x)

and pdf fX(x). If an observation Xj exceeds all of its previous observations, that is, Xj > Xi for
every i < j, then it is referred to as an upper record value. Thus X1 is the first upper record value
by definition. Similarly, the lower record values can be defined. Many authors have studied the
record values of iid random variables as well as their features in the literature. Arnold et al.(1998),
Ahsanullah(1995) and the literature contained therein can be used to have a more in-depth look in
this topic.

One of the challenges in dealing with problems involving inference with record data is that the
expected waiting time for consecutive records after the first may be infinite. Such an issue does not
arise if we use the k -records proposed by Dziubdziela and Kopocinski (1976). We use a formal
definition of k -record values given by Arnold et al. (1998).

For a fixed positive integer k, the upper k -record times τn(k) and the upper k -record values Un(k)
are defined as follows. Define τ1(k) = k and U1(k) = X1:k. Then for n > 1,

τn(k) = min
{
i : i > τn−1(k), Xi > Xτn−1(k)−k+1:τn−1(k)

}
,

where Xr:m denotes the rth order statistic in a sample of size m. Then the sequence of upper
k -records

{
Un(k), n ≥ 1

}
is defined as

Un(k) = Xτn(k)−k+1:τn(k)
.
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The cdf of the nth upper k -record value Un(k), for n ≥ 1, is given by

Fn(k)(x) = 1−
[
F̄X(x)

]k n−1∑
i=1

{
−k log

[
F̄X(x)

]}i
i!

, −∞ < x <∞, (1.4)

where F̄ = 1− F . The pdf corresponds to the cdf (1.4) is given by

fn(k)(x) =
kn

Γ(n)

[
− log F̄X(x)

]n−1 [
F̄X(x)

]k−1
fX(x), −∞ < x <∞, (1.5)

where Γ(·) denotes the complete gamma function. The sequence of lower k -record values can be
defined in a similar manner.

Let {(Xi, Yi) , i ≥ 1} be a sequence of iid bivariate random variables arising from a bivariate
population with absolutely continuous cdf F (x, y) and joint pdf f(x, y). Let

{
Un(k), n ≥ 1

}
be

the sequence of upper k -record values extracted from the X values. Then the Y -variable associated
with theX-value which is quantified as the nth upper k -record value is called the concomitant of nth
upper k -record value and is denoted by U[n(k)]. An analogous definition deals with the concomitant
of nth lower k -record value.

The cdf of the concomitant of nth upper k -record value U[n(k)] is defined as given below (see,
Houchens, 1984).

F[n(k)](y) =

∫ ∞
−∞

FY |X (y|x) fn(k)(x)dx. (1.6)

The pdf corresponds to the cdf (1.6) is obtained as

f[n(k)](y) =

∫ ∞
−∞

fY |X (y|x) fn(k)(x)dx, (1.7)

where fn(k) is defined in (1.5).
In the area of modelling statistical data, families of distributions with members in a wide range

of forms have aroused substantial interest. One standard method for solving modelling issues is
choosing a family of distributions and selecting a member that best fits the observations. The most
crucial factor in a modelling challenge is that the chosen family should be adaptable and including
a wide range of models that can reflect any data scenario. In modelling bivariate data, when the
prior information is in the form of marginal distributions, it is of advantage to consider families
of bivariate distributions with specified marginals. Morgenstern families of distributions (MFD) is
characterized by the specified marginal distribution functions FX(x) and FY (y) of random variables
X and Y respectively and a parameter α. A bivariate random variable (X,Y ) whose distribution
belongs to MFD if its cdf is given by (see, Kotz et al., 2000).

F (x, y) = FX (x)FY (y) [1 + α (1− FX (x)) (1− FY (y))] , −1 ≤ α ≤ 1. (1.8)

The pdf corresponds to the cdf (1.8) is given by

f (x, y) = fX (x) fY (y) [1 + α (1− 2FX (x)) (1− 2FY (y))] , −1 ≤ α ≤ 1. (1.9)
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The estimation of parameters of Morgenstern type bivariate exponential distribution using concomi-
tants of order statistics is extensively discussed by Chacko and Thomas (2011). Bairamov and
Bekci(1999) looked at the concomitants for bivariate Farlie-Gumbel-Morgenstern type bivariate uni-
form distribution with uniform marginals by introducing additional parameters and found a recur-
rence relation between moments and moment generating function of concomitants order statistics.

In statistical inference, predicting future events based on current knowledge is a fundamental
problem. It can be expressed in a variety of ways and various settings. There are two different sorts
of prediction problems. The one sample prediction problem is that the event to be predicted comes
from the same sequence of events, whereas the two sample prediction problem is when the event to
be predicted comes from a different independent sequence of events.

There is a considerable amount of literature on the statistical prediction of future events. Sev-
eral authors have considered prediction problems involving record values and order statistics. Hsieh
(1997) developed the explicit expression for the prediction intervals for future Weibull order statis-
tics. AL-Hussaini and Ahmad (2003) obtained the Bayesian prediction bounds for future record
values from a general class of distributions. Prediction of distribution-free confidence intervals
based on record values, order statistics and progressively type-II censored sample are extensively
discussed by Ahmadi and Balakrishnan (2005, 2008, 2010), Ahmadi et al. (2010) and Guilbaud
(2004), respectively. However, to the best of our knowledge, the prediction of any future observa-
tions based on the observed sequence of concomitants of order statistics or concomitants of k -record
values is not yet seen done in the available literature. Hence in this paper, based on the observed con-
comitants of order statistics and concomitants of k -record values arising from MFD with cdf given
in (1.6), we obtain the two sample prediction intervals and the corresponding coverage probabilities
for order statistics and k -record values from a future sample.

An explicit expression for the cdf and pdf of concomitants of order statistics and concomitants
of k - record values is essential for finding the coverage probability of the prediction interval based
on concomitants of order statistics and concomitants of k - record values. But the majority of well-
known bivariate models, such as bivariate normal distribution, bivariate Pareto distribution, the pdfs
and cdfs of concomitants of order statistics and concomitants of k - record values cannot be found
explicitly. Suppose we have observed n concomitants of order statistics or concomitants of k -record
values arising from MFD. Based on these data, we wish to construct the two sample prediction
intervals for order statistics and k -record values from a future sample. Then the results developed in
this paper can be used to find the prediction intervals and the corresponding prediction coefficients
of order statistics and k -record values from a future sample.

The rest of this paper is structured as follows. In Section 2, we obtain the prediction intervals of
future order statistics based on the observed sequence of concomitants of order statistics. In Section
3, we discuss the interval prediction of future order statistics based on the observed concomitants
of k -record values. In Section 4, we obtain the interval prediction of future k -record values based
on the observed concomitants of order statistics. The interval prediction of future record values
based on the observed concomitants of k -record values are considered in Section 5. In Section 6,
a real data set is used to exemplify the proposed methods developed in this paper and finally, some
concluding remarks are made in Section 7.
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2 Prediction Interval of Future Order Statistics Based on Con-
comitants of Order Statistics

In this section, we find the prediction intervals for future order statistics and derive the corresponding
coverage probabilities based on the observed sequence of concomitants of order statistics arising
from MFD. The cdf and pdf of the concomitant of rth order statistic Y[r:n] arising from MFD are
respectively given by (see, Scaria and Nair, 1999)

FY[r:n]
(y) = FY (y)

{
1 + α

(
n− 2r + 1

n+ 1

)
[1− FY (y)]

}
(2.1)

and

fY[r:n]
(y) = fY (y)

{
1 + α

(
n− 2r + 1

n+ 1

)
[1− 2FY (y)]

}
. (2.2)

Let (Xi, Yi) , i = 1, 2, . . . be a sequence of bivariate random sample of observations arising from a
bivariate population with cdf F (x, y). Let {Tn, n ≥ 1} be a sequence of observed concomitants of
order statistics or concomitants of k -record values arising from (Xi, Yi) , i = 1, 2, . . . . Suppose we
are interested in obtaining an interval of the form (Tm, Tn), for 1 ≤ m < n, such that

η (m,n) = P (Tm ≤ T ≤ Tn) = 1− η.

Then we refer to the interval (Tm, Tn) as a 100 (1− η) % prediction interval for the future observa-
tion T .

We can choose m and n so that η (m,n) surpasses η0 if the desired confidence level η0 are
supplied. Because η (m,n) is a step function, the confidence coefficient may not equal η0 but may
be set to a value somewhat higher than η0. Furthermore, the choice of m and n is not unique. We
would like to generate a prediction interval as short as possible among all prediction intervals with
the same level for a given confidence level of η0. First, notice that the two-sided prediction intervals
exist for a given η0, if and only if, for large m,

P (T1 ≤ T ≤ Tm) ≥ η0.

The following theorem establishes the prediction intervals and the corresponding coverage probabil-
ities of order statistics from a future sample based on the observed concomitants of order statistics.

Theorem 2.1. Let
{
Y[r:n], r = 1, 2, . . . , n

}
be n observed concomitants of order statistics arising

from a MFD with cdf given in (1.8). Let FY be the marginal cdf of Y and let Y1:m ≤ Y2:m ≤ · · · ≤
Ym:m be the order statistics of a future random sample of size m arising from the same cdf FY .
Then

(
Y[s:n], Y[t:n]

)
, for 1 ≤ s < t ≤ n, is a prediction interval for the rth order statistic Yr:m, for

1 ≤ r ≤ m, with the corresponding prediction coefficient, being free of FY and is given by

1. If Y[s:n] < Y[t:n] and 0 < α < 1, then
(
Y[s:n], Y[t:n]

)
is a prediction interval with the corre-

sponding prediction coefficient given by

η1 (s, t, r;α,m, n) =
2αr (t− s) (m− r + 1)

(n+ 1) (m+ 1) (m+ 2)
. (2.3)
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2. If Y[t:n] < Y[s:n] and −1 < α < 0, then
(
Y[t:n], Y[s:n]

)
is a prediction interval with the

corresponding prediction coefficient given by

η2 (s, t, r;α,m, n) =
2αr (s− t) (m− r + 1)

(n+ 1) (m+ 1) (m+ 2)
. (2.4)

Proof. First we consider the case when Y[s:n] < Y[t:n]. Then for any fixed real number v and
1 ≤ s < t ≤ n, then we have

P
(
Y[s:n] ≤ v

)
= P

(
Y[s:n] ≤ v, Y[t:n] < v

)
+ P

(
Y[s:n] ≤ v, Y[t:n] ≥ v

)
= P

(
Y[t:n] < v

)
+ P

(
Y[s:n] ≤ v ≤ Y[t:n]

)
.

Hence
P
(
Y[s:n] ≤ v ≤ Y[t:n]

)
= P

(
Y[s:n] ≤ v

)
− P

(
Y[t:n] ≤ v

)
. (2.5)

Using (2.1), (2.5) can be expressed as

P
(
Y[s:n] ≤ v ≤ Y[t:n]

)
=

2α (t− s)
(n+ 1)

FY (v) [1− FY (v)] . (2.6)

Now for s < t, and using the conditioning arguments, we can write

P
(
Y[s:n] ≤ Yr:m ≤ Y[t:n]

)
=

∞∫
−∞

P
(
Y[s:n] ≤ Yr:m ≤ Y[t:n]|Yr:m = v

)
fr:m (v) dv

=

∞∫
−∞

P
(
Y[s:n] ≤ v ≤ Y[t:n]

)
fr:m (v) dv

=
2α (t− s)
(n+ 1)

∞∫
−∞

FY (v) [1− FY (v)] fr:m (v) dv

=
2αr (t− s) (m− r + 1)

(n+ 1) (m+ 1) (m+ 2)
. (2.7)

Thus for 0 < α < 1 and Y[s:n] < Y[t:n] , we have

η1 (s, t, r;α,m, n) = P
(
Y[s:n] ≤ Y ≤ Y[s:n]

)
=

2αr (t− s) (m− r + 1)

(n+ 1) (m+ 1) (m+ 2)
.

By a similar arguments, the result follows for the case when−1 < α < 0 and Y[t:n] < Y[s:n]. Hence
the proof.

We have evaluated the coverage probabilities η1 (s, t, r;α,m, n) for different values of s − t,
r and α for n = 20, 30 and m = 15, 25. The values are presented in Table 1. It can be observed
that coverage probabilities improve with the increase of α. When −1 < α < 0, we can write
η2 (s, t, r;α,m, n) = η1 (s, t, r;−α,m, n) , hence one can use Table 1 for evaluating (2.4).
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Remark 2.1. When the parameters are presented in the coverage probabilities of the prediction
intervals of future event, Escobar and Meeker (1999), suggests different calibration methods for
computing the probabilities of the prediction intervals. In this approach, maximum likelihood esti-
mate (MLE) for α can be used to predict a future independent observation from the observed data.
They have discussed in detail about the problem of prediction in case of log-location-scale distribu-
tions such as Weibull or lognormal distributions. Cox (1975) suggested a large sample approximate
method based on MLEs, that can be used to calibrate or correct a naive prediction coefficient. Ac-
cording to this approach, to calibrate the prediction coefficient by evaluating the value 1 − ηc such
that

1− ηc = P (T1 ≤ T ≤ T2|α̂) = P
(
t̂ ηc

2
≤ T ≤ t̂1− ηc2 |α̂

)
,

where t̂p is the MLE of the pth quantile of T .

3 Prediction Interval of Future Order Statistics Based on Con-
comitants of k -Record Values

In this section, we find the prediction intervals for future order statistics and obtain the corresponding
coverage probabilities based on the observed sequence of concomitants of k -record values.

By Chacko and Mary (2013), the cdf of nth concomitant of upper k -record value U[n(k)] arising
from MFD is given by

F[n(k)] (y) = FY (y)

{
1 + α

[
1− 2

(
k

1 + k

)n]
[FY (y)− 1]

}
. (3.1)

The pdf corresponds to the cdf (3.1) is obtained as

f[n(k)] (y) = fY (y)

{
1 + α

[
1− 2

(
k

1 + k

)n]
[2FY (y)− 1]

}
. (3.2)

The cdf and pdf of the concomitant of nth lower k -record value L[n(k)] arising from MFD are
respectively given by

F ∗[n(k)] (y) = FY (y)

{
1 + α

[
2

(
k

1 + k

)n
− 1

]
[FY (y)− 1]

}
(3.3)

and

f∗[n(k)] (y) = fY (y)

{
1 + α

[
2

(
k

1 + k

)n
− 1

]
[2FY (y)− 1]

}
. (3.4)

The following theorem provides the interval prediction and exact expression for the coverage proba-
bilities of future order statistics based on the observed sequence of concomitants of upper k - record
values.

Theorem 3.1. Let
{
U[n(k)], n ≥ 1

}
be a sequence of observed concomitants of upper k -record

values arising from a MFD with cdf given in (1.8). Let Y1:m ≤ Y2:m ≤ · · · ≤ Ym:m be the order
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Table 1: Values of η1 (s, t, r;α,m, n) for some selected values of t− s, r, n,m and α.

n m r t− s α

0.30 0.50 0.75 0.90 0.95 1.00

20 15

8

6 0.04034 0.06723 0.10084 0.12101 0.12773 0.13445

8 0.05378 0.08964 0.13445 0.16134 0.17031 0.17927

10 0.06723 0.11204 0.16807 0.20168 0.21289 0.22410

12 0.08067 0.13445 0.20168 0.24202 0.25546 0.26891

15 0.10084 0.16807 0.25210 0.30252 0.31933 0.33614

18 0.12101 0.20168 0.30252 0.36303 0.38319 0.40336

12

6 0.03025 0.05042 0.07563 0.09076 0.09580 0.10084

8 0.04034 0.06723 0.10084 0.12101 0.12773 0.13445

10 0.05042 0.08403 0.12605 0.15126 0.15966 0.16807

12 0.06050 0.10084 0.15126 0.18151 0.19160 0.20168

15 0.07563 0.12605 0.18908 0.22689 0.23950 0.25210

18 0.09076 0.15126 0.22689 0.27227 0.28739 0.30252

30 25

12

6 0.02779 0.04632 0.06948 0.08337 0.08801 0.09264

8 0.03706 0.06176 0.09264 0.11117 0.11734 0.12352

10 0.04632 0.07720 0.11580 0.13896 0.14668 0.15440

12 0.05558 0.09264 0.13896 0.16675 0.17601 0.18528

15 0.06948 0.11580 0.17370 0.20844 0.22002 0.23160

18 0.08337 0.13896 0.20844 0.25012 0.26402 0.27792

20 0.09264 0.15440 0.23160 0.27792 0.29336 0.30880

25 0.11580 0.19300 0.28950 0.34739 0.36669 0.38599

15

6 0.02730 0.04549 0.06824 0.08189 0.08644 0.09098

8 0.03639 0.06066 0.09098 0.10918 0.11525 0.12131

10 0.04549 0.07582 0.11373 0.13648 0.14406 0.15164

12 0.05459 0.09098 0.13648 0.16377 0.17287 0.18197

15 0.06824 0.11373 0.17060 0.20471 0.21609 0.22746

18 0.08189 0.13648 0.20471 0.24566 0.25931 0.27295

20 0.09098 0.15164 0.22746 0.27295 0.28812 0.30328

25 0.11373 0.18955 0.28433 0.34119 0.36015 0.37910

20

6 0.01985 0.03309 0.04963 0.05955 0.06286 0.06617

8 0.02647 0.04411 0.06617 0.07940 0.08382 0.08823

10 0.03309 0.05514 0.08271 0.09926 0.10477 0.11028

12 0.03970 0.06617 0.09926 0.11911 0.12572 0.13234

15 0.04963 0.08271 0.12407 0.14888 0.15715 0.16543

18 0.05955 0.09926 0.14888 0.17866 0.18859 0.19851

20 0.06617 0.11028 0.16543 0.19851 0.20954 0.22057

25 0.08271 0.13785 0.20678 0.24814 0.26192 0.27571
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statistics from a future random sample of size m arising from the same cdf FY . Then for 1 ≤ s < t,
the prediction interval for the rth future order statistic Yr:m, for 1 ≤ r ≤ m, and the corresponding
prediction coefficient, being free of FY , are given below.

1. If U[s(k)] < U[t(k)] and 0 < α < 1, then the prediction interval is
(
U[s(k)], U[t(k)]

)
with

corresponding prediction coefficient

η3(k) (s, t, r;α,m) = 2α

{(
k

1 + k

)s
−
(

k

1 + k

)t}
r (m− r + 1)

(m+ 1) (m+ 2)
. (3.5)

2. If U[t(k)] < U[s(k)] and −1 < α < 0, then the prediction interval is
(
U[t(k)], U[s(k)]

)
with

corresponding prediction coefficient

η4(k) (s, t, r;α,m) = 2α

{(
k

1 + k

)t
−
(

k

1 + k

)s}
r (m− r + 1)

(m+ 1) (m+ 2)
. (3.6)

Proof. For any fixed real number v, suppose U[s(k)] < U[t(k)] for 1 ≤ s < t and 0 < α < 1, then
we have

P
(
U[s(k)] ≤ v

)
= P

(
U[s(k)] ≤ v, U[t(k)] < v

)
+ P

(
U[s(k)] ≤ v, U[t(k)] ≥ v

)
= P

(
U[t(k)] < v

)
+ P

(
U[s(k)] ≤ v ≤ U[t(k)]

)
.

Hence
P
(
U[s(k)] ≤ v ≤ U[t(k)]

)
= P

(
U[s(k)] ≤ v

)
− P

(
U[t(k)] ≤ v

)
. (3.7)

Using (3.1), (3.7) can be expressed as

P
(
U[s(k)] ≤ v ≤ U[t(k)]

)
= 2α

{(
k

1 + k

)t
−
(

k

1 + k

)s}
FY (v) [FY (v)− 1] . (3.8)

Now for s < t, and using the conditioning arguments, we can write

P
(
U[s(k)] ≤ Yr:m ≤ U[t(k)]

)
=

∞∫
−∞

P
(
U[s(k)] ≤ Yr:m ≤ U[t(k)]|Yr:m = v

)
fY (v) dv

=

∞∫
−∞

P
(
R[s(k)] ≤ v ≤ R[t(k)]

)
fr:m (v) dv

= 2α

{(
k

1 + k

)t
−
(

k

1 + k

)s} ∞∫
−∞

FY (v) [FY (v)− 1] fr:m (v) dv

= 2α

{(
k

1 + k

)s
−
(

k

1 + k

)t}
r (m− r + 1)

(m+ 1) (m+ 2)
.
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Thus for 0 < α < 1 and U[s(k)] < U[t(k)] , we have

η3(k) (s, t, r;α,m) = P
(
U[s(k)] ≤ Y ≤ U[t(k)]

)
= 2α

{(
k

1 + k

)s
−
(

k

1 + k

)t}
r (m− r + 1)

(m+ 1) (m+ 2)
.

By a similar arguments, the result follows for the case when −1 < α < 0 and U[t(k)] < U[s(k)].
Hence the proof.

We have evaluated the coverage probabilities η3(k) (s, t, r;α,m) under m = 20, k = 1, 2, 3 and
α = 0.5, 0.75, 0.9, 0.95 for r = 5, 8, 10 and 15. The values are presented in Table 2. It can be
observed that coverage probabilities improve with the increase of α and k. When −1 < α < 0,
we can write η4(k) (s, t, r;α,m) = η3(k) (s, t, r;−α,m), hence one can use Table 2 for evaluating
η4(k) (s, t, r;α,m).

Now we consider the following theorem which establishes the prediction intervals and corre-
sponding prediction coefficients of order statistics from a future sample based on the observed se-
quence of concomitants of lower k -record values.

Theorem 3.2. Let
{
L[n(k)], n ≥ 1

}
be a sequence of observed concomitants of lower k -record

values arising from a MFD with cdf given in (1.8). Let Y1:m ≤ Y2:m ≤ · · · ≤ Ym:m be the
order statistics from a future random sample of size m arising from the same cdf FY . Then for
1 ≤ s < t, the prediction interval for future rth order statistics Yr:m, for 1 ≤ r ≤ m, and the
corresponding prediction coefficient, being free of FY , are given below

1. If L[s(k)] < L[t(k)] and −1 < α < 0 then the prediction interval is
(
L[s(k)], L[t(k)]

)
with

corresponding prediction coefficient

η5(k) (s, t, r;α,m) = 2α

{(
k

1 + k

)t
−
(

k

1 + k

)s}
r (m− r + 1)

(m+ 1) (m+ 2)
. (3.9)

2. If L[t(k)] < L[s(k)] and 0 < α < 1 and then the prediction interval is
(
L[t(k)], L[s(k)]

)
with

corresponding prediction coefficient

η6(k) (s, t, r;α,m) = 2α

{(
k

1 + k

)s
−
(

k

1 + k

)t}
r (m− r + 1)

(m+ 1) (m+ 2)
. (3.10)

Proof. The proof of the theorem directly follows from Theorem 3.1 and thus omitted.

Remark 3.1. In the light of Theorem 3.1 and Theorem 3.2, we can observe the following two
identities.

1. η5(k) (s, t, r;α,m) = η4(k) (s, t, r;α,m) .

2. η6(k) (s, t, r;α,m) = η3(k) (s, t, r;α,m) .

Thus one can evaluate η5(k) (s, t, r;α,m) and η6(k) (s, t, r;α,m) by using Table 2.
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4 Prediction Interval of Future k -Record Values Based on Con-
comitants of Order Statistics

In this section, we find the prediction intervals for the future k -record values and derive the corre-
sponding coverage probabilities based on the observed sequence of concomitants of order statistics.
The following theorem establishes the interval prediction and the corresponding prediction coeffi-
cient of rth future (upper or lower) k-record values.

Theorem 4.1. Let
{
Y[i:n], i = 1, 2, . . . , n

}
be n observed concomitants of order statistics arising

from a MFD with cdf given in (1.8). Then for 1 ≤ s < t ≤ n, the prediction interval for rth future
k -record valueRr(k) and the corresponding prediction coefficient, being free of FY , are given below.

1. If 0 < α < 1 and Y[s:n] < Y[t:n] , then
(
Y[s:n], Y[t:n]

)
is a prediction interval with the

corresponding prediction coefficient given by

η7(k) (s, t, r;α, n) =
2α (t− s)
(n+ 1)

[(
k

k + 1

)r
−
(

k

k + 2

)r]
. (4.1)

2. If −1 < α < 0 and Y[t:n] < Y[s:n], then
(
Y[t:n], Y[s:n]

)
is a prediction interval with the

corresponding prediction coefficient given by

η8(k) (s, t, r;α, n) =
2α (s− t)
(n+ 1)

[(
k

k + 1

)r
−
(

k

k + 2

)r]
. (4.2)

Proof. Let Rr(k) be the rth future upper k -record value with pdf given in (1.5).
First we consider the case when Y[s:n] < Y[t:n]. Then for any fixed real number v and 1 ≤ s < t ≤ n,

P
(
Y[s:n] ≤ v ≤ Y[t:n]

)
=

2α (t− s)
(n+ 1)

FY (v) [1− FY (v)] . (4.3)

Now for s < t, and using the conditioning arguments, we can write

P
(
Y[s:n] ≤ Rr(k) ≤ Y[t:n]

)
=

∞∫
−∞

P
(
Y[s:n] ≤ Rr(k) ≤ Y[t:n]|Rr(k) = v

)
fY (v) dv

=

∞∫
−∞

P
(
Y[s:n] ≤ v ≤ Y[t:n]

)
fr(k) (v) dv

=
2α (t− s)
(n+ 1)

∞∫
−∞

FY (v) [1− FY (v)] fr(k) (v) dv. (4.4)



66 Muraleedharan and Chacko

Ta
bl

e
2:

V
al

ue
s

of
η 3

(k
)
(s
,t
,r

;α
,m

)
fo

rs
om

e
se

le
ct

ed
va

lu
es

of
s,
t,
r,
m

an
d
α

m
α

r

k
=

1
k
=

2
k
=

3

(s
,t
)

(s
,t
)

(s
,t
)

(1
,8
)

(2
,1
0
)

(1
,1
2
)

(2
,1
5
)

(2
,1
8
)

(1
,8
)

(2
,1
0
)

(1
,1
2
)

(2
,1
5
)

(2
,1
8
)

(1
,8
)

(2
,1
0
)

(1
,1
2
)

(2
,1
5
)

(2
,1
8
)

20

0.
50

5

0.
08

59
0

0.
08

64
1

0.
08

65
4

0.
08

65
7

0.
08

65
8

0.
10

86
8

0.
11

24
4

0.
11

41
1

0.
11

50
4

0.
11

53
2

0.
11

25
3

0.
12

01
2

0.
12

43
9

0.
12

75
6

0.
12

88
9

0.
75

0.
12

88
6

0.
12

96
2

0.
12

98
1

0.
12

98
6

0.
12

98
7

0.
16

30
3

0.
16

86
6

0.
17

11
6

0.
17

25
7

0.
17

29
8

0.
16

88
0

0.
18

01
8

0.
18

65
8

0.
19

13
3

0.
19

33
4

0.
90

0.
15

46
3

0.
15

55
4

0.
15

57
7

0.
15

58
3

0.
15

58
4

0.
19

56
3

0.
20

23
9

0.
20

53
9

0.
20

70
8

0.
20

75
8

0.
20

25
6

0.
21

62
1

0.
22

38
9

0.
22

96
0

0.
23

20
1

0.
95

0.
16

32
2

0.
16

41
8

0.
16

44
2

0.
16

44
9

0.
16

45
0

0.
20

65
0

0.
21

36
3

0.
21

68
0

0.
21

85
8

0.
21

91
1

0.
21

38
2

0.
22

82
3

0.
23

63
3

0.
24

23
6

0.
24

49
0

1.
00

0.
17

18
1

0.
17

28
2

0.
17

30
8

0.
17

31
5

0.
17

31
6

0.
21

73
7

0.
22

48
7

0.
22

82
1

0.
23

00
9

0.
23

06
5

0.
22

50
7

0.
24

02
4

0.
24

87
7

0.
25

51
1

0.
25

77
9

0.
50

8

0.
11

16
7

0.
11

23
3

0.
11

25
0

0.
11

25
5

0.
11

25
5

0.
14

12
9

0.
14

61
7

0.
14

83
4

0.
14

95
6

0.
14

99
2

0.
14

62
9

0.
15

61
5

0.
16

17
0

0.
16

58
2

0.
16

75
6

0.
75

0.
16

75
1

0.
16

85
0

0.
16

87
5

0.
16

88
2

0.
16

88
3

0.
21

19
3

0.
21

92
5

0.
22

25
1

0.
22

43
4

0.
22

48
8

0.
21

94
4

0.
23

42
3

0.
24

25
5

0.
24

87
3

0.
25

13
4

0.
90

0.
20

10
1

0.
20

22
0

0.
20

25
0

0.
20

25
9

0.
20

26
0

0.
25

43
2

0.
26

31
0

0.
26

70
1

0.
26

92
0

0.
26

98
6

0.
26

33
3

0.
28

10
8

0.
29

10
6

0.
29

84
8

0.
30

16
1

0.
95

0.
21

21
8

0.
21

34
4

0.
21

37
5

0.
21

38
4

0.
21

38
5

0.
26

84
5

0.
27

77
2

0.
28

18
4

0.
28

41
6

0.
28

48
5

0.
27

79
6

0.
29

66
9

0.
30

72
3

0.
31

50
6

0.
31

83
7

1.
00

0.
22

33
5

0.
22

46
7

0.
22

50
0

0.
22

50
9

0.
22

51
1

0.
28

25
8

0.
29

23
4

0.
29

66
7

0.
29

91
2

0.
29

98
4

0.
29

25
9

0.
31

23
1

0.
32

34
0

0.
33

16
5

0.
33

51
2

0.
50

10

0.
11

81
2

0.
11

88
2

0.
11

89
9

0.
11

90
4

0.
11

90
5

0.
14

94
4

0.
15

46
0

0.
15

69
0

0.
15

81
9

0.
15

85
7

0.
15

47
4

0.
16

51
6

0.
17

10
3

0.
17

53
9

0.
17

72
3

0.
75

0.
17

71
8

0.
17

82
2

0.
17

84
8

0.
17

85
6

0.
17

85
7

0.
22

41
6

0.
23

19
0

0.
23

53
4

0.
23

72
8

0.
23

78
5

0.
23

21
0

0.
24

77
5

0.
25

65
4

0.
26

30
8

0.
26

58
4

0.
90

0.
21

26
1

0.
21

38
7

0.
21

41
8

0.
21

42
7

0.
21

42
8

0.
26

89
9

0.
27

82
8

0.
28

24
1

0.
28

47
4

0.
28

54
2

0.
27

85
2

0.
29

72
9

0.
30

78
5

0.
31

57
0

0.
31

90
1

0.
95

0.
22

44
2

0.
22

57
5

0.
22

60
8

0.
22

61
8

0.
22

61
9

0.
28

39
4

0.
29

37
4

0.
29

81
0

0.
30

05
5

0.
30

12
8

0.
29

40
0

0.
31

38
1

0.
32

49
6

0.
33

32
4

0.
33

67
4

1.
00

0.
23

62
4

0.
23

76
3

0.
23

79
8

0.
23

80
8

0.
23

80
9

0.
30

00
0

0.
30

92
0

0.
31

37
9

0.
31

63
7

0.
31

71
4

0.
30

94
7

0.
33

03
3

0.
34

20
6

0.
35

07
8

0.
35

44
6

0.
50

15

0.
09

66
4

0.
09

72
1

0.
09

73
6

0.
09

74
0

0.
09

74
0

0.
12

22
7

0.
12

64
9

0.
12

83
7

0.
12

94
3

0.
12

97
4

0.
12

66
0

0.
13

51
3

0.
13

99
3

0.
14

35
0

0.
14

50
1

0.
75

0.
14

49
6

0.
14

58
2

0.
14

60
3

0.
14

61
0

0.
14

61
0

0.
18

34
0

0.
18

97
4

0.
19

25
5

0.
19

41
4

0.
19

46
1

0.
18

99
0

0.
20

27
0

0.
20

99
0

0.
21

52
5

0.
21

75
1

0.
90

0.
17

39
6

0.
17

49
8

0.
17

52
4

0.
17

53
1

0.
17

53
2

0.
22

00
8

0.
22

76
9

0.
23

10
6

0.
23

29
7

0.
23

35
3

0.
22

78
8

0.
24

32
4

0.
25

18
8

0.
25

83
0

0.
26

10
1

0.
95

0.
18

36
2

0.
18

47
0

0.
18

49
7

0.
18

50
5

0.
18

50
6

0.
23

23
1

0.
24

03
3

0.
24

39
0

0.
24

59
1

0.
24

65
0

0.
24

05
4

0.
25

67
5

0.
26

58
7

0.
27

26
5

0.
27

55
1

1.
00

0.
19

32
8

0.
19

44
2

0.
19

47
1

0.
19

47
9

0.
19

48
0

0.
24

45
4

0.
25

29
8

0.
25

67
4

0.
25

88
5

0.
25

94
8

0.
25

32
0

0.
27

02
7

0.
27

98
7

0.
28

70
0

0.
29

00
1



Interval Prediction of Order Statistics . . . 67

By using (1.5) in (4.4), we obtain the following

P
(
Y[s:n] ≤ Rr(k) ≤ Y[t:n]

)
=

2αkr (t− s)
Γ(r) (n+ 1)

×
∞∫
−∞

[− log (1− FY (v))]
r−1

[1− FY (v)]
k
FY (v)fY (v)dv (4.5)

Taking − log (1− FY (v)) = u and evaluating the integral of (4.5), we finally arrive at

η7(k) (s, t, r;α, n) =
2α (t− s)
(n+ 1)

[(
k

k + 1

)r
−
(

k

k + 2

)r]
. (4.6)

By a similar arguments, the result follows for the case when Y[t:n] < Y[s:n] and−1 < α < 0. Hence
the proof.

We have evaluated the coverage probabilities η7(k) (s, t, r;α, n) under n = 10, 12, various val-
ues of α , t− s and r. The values are presented in Table 3. It can be observed that coverage proba-
bilities improve with the increase of α and k. Notice that when −1 < α < 0, η8(k) (s, t, r;α, n) =

η7(k) (s, t, r;−α, n). Thus one can use Table 3 for evaluating η8(k) (s, t, r;α, n).

5 Prediction Interval of Future Record Values Based on the Con-
comitants of k -Record Values

In this section, we find the prediction intervals for the future record values and obtain the correspond-
ing coverage probabilities based on the observed sequence of concomitants of k - record values. The
following theorem establishes the interval prediction and the corresponding coverage probabilities
of upper record values from a future sample based on the observed sequence of concomitants of
upper k -record values. One can observe that the same results follow the interval prediction and
the corresponding coverage probabilities of lower record values from a future sample based on the
observed sequence of concomitants of lower k -record values.
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Theorem 5.1. Let
{
U[n(k)], n ≥ 1

}
be a sequence of observed concomitants of upper k -record

values arising from a MFD with cdf given in (1.8). Then for 1 ≤ s < t, the prediction interval for
rth future upper record value Ur and the corresponding prediction coefficient, being free of FY , are
given below

1. If 0 < α < 1 and U[s(k)] < U[t(k)], then the prediction interval is
(
U[s(k)], U[t(k)]

)
and the

corresponding prediction coefficient is given by

η9(k) (s, t, r;α) = 2α

[(
k

1 + k

)s
−
(

k

1 + k

)t](
1

2r
− 1

3r

)
. (5.1)

2. If −1 < α < 0 and U[t(k)] < U[s(k)] then the prediction interval is
(
U[t(k)], U[s(k)]

)
and the

corresponding prediction coefficient is given by

η10(k) (s, t, r;α) = 2α

[(
k

1 + k

)t
−
(

k

1 + k

)s](
1

2r
− 1

3r

)
. (5.2)

Proof. For any fixed real number v, suppose U[s(k)] < U[t(k)] for 1 ≤ s < t, we have obtained

P
(
U[s(k)] ≤ v ≤ U[t(k)]

)
= 2α

{(
k

1 + k

)s
−
(

k

1 + k

)t}
FY (v) [FY (v)− 1] . (5.3)

Now for s < t, and using the conditioning arguments, we can write

P
(
U[s(k)] ≤ Ur ≤ U[t(k)]

)
=

∞∫
−∞

P
(
U[s(k)] ≤ Ur ≤ U[t(k)]|Ur = v

)
fY (v) dv

=

∞∫
−∞

P
(
U[s(k)] ≤ v ≤ U[t(k)]

)
fr (v) dv

= 2α

[(
k

1 + k

)s
−
(

k

1 + k

)t] ∞∫
−∞

FY (v) [1− FY (v)] fr (v) dv

= 2α

[(
k

1 + k

)s
−
(

k

1 + k

)t](
1

2r
− 1

3r

)
.

Thus for U[s(k)] < U[t(k)] and 0 < α < 1 , we have

η9(k) (s, t, r;α) = 2α

[(
k

1 + k

)s
−
(

k

1 + k

)t](
1

2r
− 1

3r

)
.

By a similar argument, the result follows for the case when −1 < α < 0 and U[t(k)] < U[s(k)].
Hence the proof.
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We have evaluated the coverage probabilities η9(k) (s, t, r;α) under different combinations of
(s, t), various values of α and r for k = 1, 2, 3. The values are presented in Table 4. It can
be observed that coverage probabilities improve with the increase of α and k. Notice that when
−1 < α < 0, η10(k) (s, t, r;α) = η9(k) (s, t, r;−α). Thus one can use Table 4 for evaluating
η10(k) (s, t, r;α).

Table 4: Values of η9(k) (s, t, r;α) for some selected values of s, t, r and α

α r

k = 1 k = 2 k = 3

(s, t) (s, t) (s, t)

(1, 4) (1, 5) (1, 6) (1, 4) (1, 5) (1, 6) (1, 4) (1, 5) (1, 6)

0.60

2

0.07292 0.07813 0.08073 0.07819 0.08916 0.09648 0.07227 0.08545 0.09534

0.75 0.09115 0.09766 0.10091 0.09774 0.11145 0.12060 0.09033 0.10681 0.11917

0.90 0.10938 0.11719 0.12109 0.11728 0.13374 0.14472 0.10840 0.12817 0.14301

0.95 0.11545 0.12370 0.12782 0.12380 0.14118 0.15276 0.11442 0.13529 0.15095

1.00 0.12153 0.13021 0.13455 0.13032 0.14861 0.16080 0.12045 0.14242 0.15890

6 Illustration Using Real Data

We consider a bivariate data set given in Platt et al. (1969) relating to 396 conifer (Pinus Palustris)
trees. Chen et al. (2004) reproduced the data set as the first componentX for a bivariate observation
represents the diameter in centimeters of the conifer tree at breast height and the second component
Y represents height in feet of the tree. Clearly X can be measured easily but it is somewhat difficult
to measure Y . Also observations, such as girth (function of diameter) or height follows normal
distribution. It is well known that logistic distribution is having more or less similar properties of
a normal distribution(see, Malik, 1985) and hence it is known as an alternative model to normal
distribution. We assume that (X,Y ) follows Morgenstern type bivariate logistic distribution. By
using the estimator of α given in Chacko and Thomas (2009), we take the estimator of α as α̂ = 1.
We have drawn a simple random sample of size 20 from the 396 conifer trees. Then the concomitants
of order statistics arising from the sample are obtained as given below.

r 1 2 3 4 5 6 7 8 9 10

Y[r:n] 5 3 3 5 8 14 15 20 22 17

r 11 12 13 14 15 16 17 18 19 20

Y[r:n] 33 21 31 30 34 32 58 33 49 67

The concomitants of upper k -record values (k = 1, 2, 3) extracted from the data set are obtained
as given below. Based on the observed concomitants of order statistics and by using Table 1, we
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n 1 2 3 4 5 6 7 8 9 10 11

U[n(1)] 28 119 192 223 131 244 - - - - -

U[n(2)] 28 26 43 119 192 222 223 208 131 - -

U[n(3)] 28 26 43 203 162 119 192 222 223 223 228

obtain the prediction intervals of future order statistics with prediction coefficient at least 30% are
presented in the following.

n r (s, t)
(
Y[s:n], Y[t:n]

)
η1 (s, t, r;α,m, n)

15
8 (4, 19) (5, 49) 0.33614

8 (1, 19) (5, 49) 0.40336

12 (1, 19) (5, 49) 0.30252

Based on the observed concomitant upper k -record values and by using Table 2, the predic-
tion intervals of future order statistics with prediction coefficient at least 30% are presented in the
following.

k m r (s, t)
(
U[s(k)], U[t(k)]

)
η3(k) (s, t, r;α,m)

2 20 10 (1, 8) (28, 208) 0.3000

3 20 10 (2, 10) (26, 223) 0.33033

On the basis of the coverage probability, it can be observed that the predictive intervals are
improved with the increase of k.

7 Conclusion
In this paper, we developed distribution-free prediction intervals for the future order statistics and k -
record values from an X sequence based on observed concomitants of order statistics and based on
the observed concomitants of k -record values as Y sequence. These interval coverage probabilities
obtained are accurate and independent of the parent distribution function. It can be observed that
the coverage probabilities corresponds to order statistics improve with the increase of α and that of
k -record values improve with the increase of α and k.
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