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SUMMARY

In clinical trials, efficient statistical inference is critical to the well-being of future patients.
We therefore construct Wald-type tests for the hypothesis of treatment-by-covariate interac-
tion when treatments are assigned to patients by an adaptive design and the true model is a
generalized linear model. Our measure of efficiency is the power of the test while ethics of
a trial or well-being of participating patients is measured by the success rate of treatments.
We demonstrate that the power of the test depends on the target allocation proportion, the
bias of the randomization procedure from the target, and the variability induced by the ran-
domization process (design variability) for adaptive designs. We prove that these quantities
influence the power when the trial involves two treatments and a single covariate. We also
show that, in this case, as design variability decreases the power increases. Due to the com-
plexity of the problem, we demonstrate by simulation that this result still holds when more
than one covariate is present in the model. In simulation studies, we compare the mea-
sures of efficiency and ethics under response-adaptive (RA), covariate-adjusted response-
adaptive (CARA), and completely randomized (CR) designs. The methods are applied to
data from a clinical trial on stroke prevention in atrial fibrillation (SPAF).
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1 Introduction
In clinical trials, researchers are often interested in comparing the effectiveness of treatments. They
are also interested in adopting treatment assignment procedures which take into account the ethics of
a trial or the well-being of participating patients. As a result, various adaptive designs for treatment
assignments which satisfy the ethical principles of clinical trials have been developed and found to
be useful alternatives to completely randomized designs. See for instance, Selvaratnam, Oyet, Yi
and Gadag (2017) for a recent discussion of examples of adaptive designs such as response adaptive
(RA), covariate adaptive (CA) and covariate-adjusted response adaptive (CARA) designs. Since
patients react differently to a given treatment, it has become increasingly important to also account
for the effect of certain characteristics or covariates of individual patients as well as treatment-
by-covariate interaction on the response of patients during treatment comparisons. Ma, Hu and
Zhang (2015) had established a theoretical foundation for hypothesis testing of parameters in linear
models under a large class of covariate adaptive (CA) designs, which includes marginal methods and
stratified permuted block design (Pocock and Simon, 1975). Although Ma, Hu and Zhang (2015)
used all the important covariates at the design stage, they dropped some covariate information in
the final stage of statistical inference. This will however lead to estimators of parameters that are
generally inconsistent and biased. This will also affect the derivation of the distribution of the test
statistic. In §2 of this paper, we will develop a theoretical foundation for hypotheses testing for a
general class of adaptive designs when responses are binary.

Furthermore, we extend the results of Ma, Hu and Zhang (2015) and Selvaratnam, Yi and Oyet
(2019) by constructing Wald-type test statistics for, (a) examining whether the effect of treatment-by-
covariate interaction on the response is significant; and (b) comparing two treatments, say treatment
A (new treatment) and treatment B (existing treatment), under a general class of adaptive designs
when the true model is a GLM with treatment-by-covariate interaction. Let βA0 be the true effect
of treatment A compared to treatment B. An experimenter may test the significance of the overall
effect of treatment A compared to treatment B through the hypotheses

H0 : βA0 = 0 vs HA : βA0 > 0, (1.1)

where H0 and HA are the null and alternative hypothesis, respectively. Suppose the experimenter
decides to reject H0, when in fact H0 is true. The experimenter may decide to recommend the new
treatment, though the new treatment does not lead to any improvement in the responses of patients
compared to the existing treatment. This decision error is commonly referred to as Type 1 error. For
the test we have constructed to be reliable in practice, it is important for it to be able to control the
size of the test or the chance of committing this error. Thus, we will examine the size of the test
through extensive simulation studies in §4 of this paper.

Concerning the power of a test, there are three main approaches, in the literature for power anal-
ysis. Exact methods use formulas which directly express power in terms of model parameters for
power analysis. When exact formulas cannot be found due to the complicated nature of a problem,
it may be possible to derive approximate or large sample approximations for power analysis. An
approximation method for power analysis computation in multiple logistic regression was first in-
troduced by Whittemore (1981). However, this approach is only suitable for binary responses with
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rare events such as disease or death with single or multivariate covariates whose joint probability
distribution must belong to the exponential family. Later, Self and Mauritsen (1988) developed an
approximation procedure for power analysis based on the noncentrality parameter of the asymptotic
χ2 distribution of a score test statistic for testing the parameters in a GLM. They implemented their
approach to categorical covariates with a finite number of distinct covariate configurations. They
noted two potential problems with their approximation but observed that the problems are not likely
to be serious for alternatives that are close to the null hypothesis. The problem with this scenario
is that it may be difficult for a test to identify any significant differences between the null and alter-
native if they are close. Instead of power analysis for GLMs based on a score test, Self, Mauritsen
and Ohara (1992) established a tool for power computation based on a likelihood ratio test statistic.
Through simulation studies, they found that the analysis based on the likelihood ratio test was much
easier to implement and also to be more accurate over a wider range of parameter values, than the
approach based on the score test. Shieh (2000) carried out a simulation study to compare the method
of Whittemore (1981) and Self, Mauritsen and Ohara (1992) with various combination of response
probabilities and covariate distribution in logistic regression models. They found that the method
of Self, Mauritsen and Ohara (1992) outperformed the Whittemore (1981) approach in a variety of
situations. Later, Shieh (2005) developed an approach for power and sample size calculations based
on the discrepancy between the noncentral and central χ2 approximation of the distribution of a
Wald-type statistic in GLMs. They discussed examples in logistic and Poisson regression. In their
simulation studies they found that their method maintained a close agreement with the method of
Shieh (2000).

In this paper, we have derived expressions for the power of the tests for interaction and main
effects in §3.1 and §3.2, respectively, based on the noncentrality parameters of the asymptotic distri-
butions of the Wald-type test statistics we have proposed. We observe that the design criteria used
in data collection influence the power of tests through the noncentrality parameter (Hu and Rosen-
berger, 2003). Hu and Rosenberger (2003) identified three major influence factors: (i) the target
allocation proportion, (ii) the randomization bias from target proportion, and (iii) the variance of
randomization from target proportion. However, they derived an expression for the noncentrality
parameter under the assumption of a simple homogeneous parametric structure. In this paper, we
relax this assumption in deriving the expression for the noncentrality parameter. We also derive a
concave relationship between the noncentrality parameter and target allocation proportion when a
covariate is present in the logit model in §3.3.

2 Wald-type Tests and Asymptotic Distributions for Adaptive
Designs

In this section, we assume that when a new patient enters a clinical trial, they are assigned to one of
two possible treatments denoted by A or B based on their covariate profile and the outcome, treat-
ment assignments, and covariate profile of previous patients. Suppose that following this process,
binary responses and the treatment assignments for n patients have been observed and the (n+ 1)th
patient is ready to enter the trial. Suppose further that K categorical covariates, say u1, u2, . . . , uK ,
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associated with the responses were also collected for each patient in the clinical trial. Let the number
of levels for each covariate, uk be Lk+1, say uk0, uk1, . . . , uk,Lk

, for k = 1, 2, . . . ,K. Then, based
on the reference category, say uk0, k = 1, 2, . . . ,K one can define a set of Lk dummy variables for
each covariate. Without loss of generality, let z′i = (zi1, . . . , zip) be the p =

∑K
k=1 Lk dimensional

vector of dummy variables corresponding to the covariates of the ith patient, i = 1, 2, . . . , n. Clearly,
the covariate information z′i = (zi1, . . . , zip) of the ith patient is then known and also a binary vector
variable. We assume that if uk is continuous, the possible values of uk can be grouped into a user de-
fined categories by the experimenter. Let Yi be the binary response of the ith, i = 1, 2, . . . , n patient,
where Yi = 1, if the treatment was a success and Yi = 0, otherwise. Let XiA = 1, if the ith patient
received treatment A and XiA = 0, if the patient received treatment B. Now, define {v1, . . . , vm},
m = 2p, as the mutually exclusive configuration levels or strata of z. For example, if p = 2, with
zi1 = 0, 1 and zi2 = 0, 1, then m = 4 with {v1, v2, v3, v4} = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let
πiA(vh), be the probability that the ith patient in stratum h was assigned to treatment A, nh, be the
number of patients with covariate configuration vh and NAh(n), the number of patients in stratum
h assigned to treatment A. Then, p̂Ah = NAh(n)/nh is the sample proportion of patients in stratum
h assigned to treatment A.

Suppose that the ideal model for the responses is the logit model with treatment-by-covariate
interaction given by

logit
[
P (Yi = 1|xiA, zi)

]
= xiAβA + γ0 + z′iγ + xiAz′iδ

= w′iθ, for i = 1, 2, . . . , n, (2.1)

where γ0 is an intercept, γ is a p × 1 vector of the main effects of covariates and δ is a p × 1

vector of the effects of treatment by covariate interaction. In (2.1), wi = (xiA, 1, z′i, xiAz′i)′ and
θ = (βA, γ0,γ

′, δ′)′ ∈ Ω(θ0) ⊆ <q , where Ω(θ0) is open and convex in <q and q = 2(p + 1).
Let θ̂n be the maximum likelihood estimator of the vector of true parameters θ0, where θ0 =

(βA0, γ00,γ
′
0, δ
′
0)′. Readers may refer to Selvaratnam, Yi and Oyet (2019) for detailed discussion

and implementation of the maximum likelihood (ML) estimation of θ0 with examples. We note that
the non-random Fisher information matrix I(θ) associated with the model (2.1) can be partitioned,
such that

I(θ) =


I11(θ) I12(θ) I13(θ) I14(θ)

I ′12(θ) I22(θ) I23(θ) I24(θ)

I′13(θ) I′23(θ) I33(θ) I34(θ)

I′14(θ) I′24(θ) I′34(θ) I44(θ)

 ,
where I12(θ) = I11(θ), I14(θ) = I24(θ) = I13(θ), and I44(θ) = I34(θ) (see Lemma 3.2(a)

of Selva, Yi and Oyet, 2019). In what follows, we will outline in Theorem 1, some results that
are required for establishing the asymptotic properties of the Wald-type test we have proposed in
Theorem 2. First, we state the following assumptions.

Assumption 2.1. Let πA(vh) be the target proportion of patients assigned to treatmentA in stratum
h and J (h)

n = {i : zi = vh; i = 1, 2, . . . , n} be the set of all indices of patients with covariate
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configuration vh (h = 1, 2, . . . ,m). For each h = 1, 2, . . . ,m, we assume that

(a) (1/nh)
∑
i∈J(h)

n
πiA(vh)

a.s.−−→ πA(vh) as nh →∞, where 0 < πA(vh) < 1.

(b) (nh/n)
a.s−−→ ρh as n→∞, where P (Z = vh) = ρh,

∑m
h=1 ρh = 1, m <∞.

Theorem 1. Let I(θ) be a positive definite non-random Fisher information matrix associated with
the model (2.1). Define g(w′iθ) = exp(−w′iθ)[1+exp(−w′iθ)]−2 and Fn(θ) =

∑n
i=1 g(w′iθ)wiw′i.

Then, under Assumption 2.1, we have

(a) θ̂n
a.s−−→ θ0 as n→∞, where θ̂n is the MLE of the true vector of parameters θ0,

(b)
√
n(θ̂n−θ0) is asymptotically multivariate normal in distribution with mean 0 and variance-

covariance matrix I(θ0)−1,

(c) (1/n)Fn(θ)→ I(θ), for any θ ∈ Ω(θ0) ⊆ <q .

The proof of Theorem 1 follows directly from Lemma 3.2 and Theorem 3 of Selvaratnam, Yi
and Oyet (2019). Now, in general, the hypotheses for testing the significance of any of the effects in
the model (2.1) can be written as

H0 : Dθ0 = d0 vs HA : Dθ0 6= d0, (2.2)

where D is a d×q matrix of full row rank and d0 is a d×1 constant vector. In a series of theorems that
follow, we will outline our main results on the Wald-type test statistics for testing the significance of
interaction and main effects in the model (2.1). The asymptotic distributions of the test statistics and
expressions for the noncentrality parameters we need for analyzing the powers of the tests are also
established in the theorems. We begin by summarizing our results on the Wald-type test statistic for
the general hypotheses (2.2) in Theorem 2. The asymptotic distributions of the test statistics under
the null and alternative hypothesis are also established in this theorem. The proofs of all theorems
in this paper can be found in the Appendix.

Theorem 2. Let θ̂n be the unrestricted MLE of θ0. Define

φ(a) = n[Dθ0 − d0]′[DI(θ0)−1D′]−1[Dθ0 − d0],

and the Wald-type test statistic

TW = [Dθ̂n − d0]′[DFn(θ̂n)−1D′]−1[Dθ̂n − d0],

where Fn(θ̂n) is the observed Fisher information matrix evaluated at θ̂n. Then, under Assumption
(2.1),

(a) TW converges to the central chi-square distribution, χ2
d, with d degrees of freedom, if H0 is

true,

(b) TW is asymptotically distributed as a noncentral chi-square distribution, χ2
d(φ

(a)) with d

degrees of freedom, and noncentrality parameter φ(a), if HA is true.
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2.1 Testing for the interaction effect

Let d0 and D in the hypotheses (2.2) be given by D =
(

0p×(q−p) Ip×p
)

and d0 = 0p×1,
respectively, where Ip×p is an identity matrix of dimension p. Then, the hypothesis (2.2) reduces to

H0I : δ0 = 0p×1 vs HAI : δ0 6= 0p×1. (2.3)

It is clear that (2.3) is a hypotheses for testing for the significance of the effect of interaction in
model (2.1). Now, partition Fn(θ), such that

(1/n)Fn(θ) =

 ∆
[n]
11 (θ) ∆

[n]
12 (θ)

∆
[n]
21 (θ) ∆

[n]
22 (θ)

 ,

where

∆
[n]
11 (θ) = (1/n)

n∑
i=1

g(w′iθ)

 xiA xiA xiAz′i
xiA 1 z′i
xiAzi zi ziz′i

 , ∆
[n]
21 (θ) = ∆

[n]
12 (θ)′,

∆
[n]
12 (θ) = (1/n)

n∑
i=1

g(w′iθ)xiA

(
zi zi ziz′i

)′
, ∆

[n]
22 (θ) = (1/n)

n∑
i=1

g(w′iθ)xiAziz′i

g(w′iθ) =
[
1 + exp(−w′iθ)

]−2
exp(−w′iθ).

Then, it follows from Theorem 2 that the Wald-type statistic, TWI given by

TWI = n[Dθ̂n − d0]′{D[(1/n)Fn(θ̂n)]−1D′}−1[Dθ̂n − d0] = nδ̂′n[S
∆

[n]
11

(θ̂n)]δ̂n,

asymptotically follows a central χ2
p distribution, when H0I is true, where

S
∆

[n]
11

(θ̂n) = ∆
[n]
22 (θ̂n)−∆

[n]
21 (θ̂n)[∆

[n]
11 (θ̂n)]−1∆

[n]
12 (θ̂n). (2.4)

2.2 Testing for the main effect of treatments

Following our approach in §2.1, we let d0 = 0 and D =
(
1 01×(q−1)

)
in (2.2). Hypotheses (2.2)

then reduces to
H0T : βA0 = 0 HAT : βA0 6= 0, (2.5)

which is the hypotheses for testing the significance of the main effect of treatments. Now, define

1

n
Fn(θ) =

 ∆
[n]
11t(θ) ∆

[n]
12t(θ)

∆
[n]
21t(θ) ∆

[n]
22t(θ)

,
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where

∆
[n]
11t(θ) = (1/n)

n∑
i=1

g(w′iθ)xiA,

∆
[n]
12t(θ) = ∆

[n]
21t(θ)′ = (1/n)

n∑
i=1

g(w′iθ) (xiA, xiAz′i, xiAz′i) ,

∆
[n]
22t(θ) =

1

n

n∑
i=1

g(w′iθ)

 1 z′i xiAz′i
zi ziz′i xiAziz′i

xiAz′i xiAziz′i xiAziz′i

 , and

g(w′iθ) = exp(−w′iθ)[1 + exp(−w′iθ)]−2.

It then follows, from Theorem 2 that under H0T , the test statistic

TW = n[Dθ̂n]′{D[(1/n)Fn(θ̂n)]−1D′}−1[Dθ̂n] = n[β̂An]2[S
∆

[n]
22t

(θ̂n)],

follows the chi-square distribution with 1 degree of freedom, χ2
1 asymptotically, where

S
∆

[n]
22t

(θ̂n) = ∆
[n]
11t(θ̂n)−∆

[n]
12t(θ̂n)[∆

[n]
22t(θ̂n)]−1∆

[n]
21t(θ̂n). (2.6)

3 Statistical Power Computation

We mentioned earlier that there are three main approaches in the literature for computing the power
of a test. In this section, we discuss the noncentrality parameters of the asymptotic distributions of
the test statistics we developed in §2.

3.1 Power of the test for the interaction effect

Following Theorem 2, it can be shown that when HAI is true, the asymptotic distribution of the
Wald-type statistic TWI , is the noncentral chi-square distribution with p degrees of freedom and
noncentrality parameter φ(a), given by

φ(a) = n
[
Dθ0 − d0

]′{D[(1/n)Fn(θ0)]−1D′
}−1[

Dθ0 − d0

]
= nδ′0[S

∆
[n]
11

(θ0)]δ0, (3.1)

where S
∆

[n]
11

(θ0) is given by (2.4) and θ̂n is replaced by θ0. When the test for interaction effect in
(2.3) is performed, the vector of unknown true parameters, θ0I = (βA0, γ00,γ

′
0)′, in model (2.1)

is typically considered a vector of nuisance parameters. In practice, the values of these nuisance
parameters needed to compute the noncentrality parameter, hence the power of the test, for a real
data, will be unknown to an experimenter. Thus, the value of the noncentrality parameter φ(a) in
(3.1), is commonly approximated by replacing Fn(θ0) with Fn(θ̂n). This is the approach adopted
by Demidenko (2007).
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3.2 Power of the test for the main effect

When testing for main effects underHAT in (2.5), the asymptotic distribution of the statistic TW be-
comes the noncentral chi-square distribution, with 1 degree of freedom and noncentrality parameter
φ(a), given by

φ(a) = n
[
Dθ0 − d0

]′{D[(1/n)Fn(θ0)]−1D′
}−1

[Dθ0 − d0]

= n[βA0]2[S
∆

[n]
22t

(θ0)],

where S
∆

[n]
22t

(θ0) is given by (2.6), and θ̂n is replaced by θ0. Here, the true treatment effect βA0,
is the main parameter of interest. The other parameters, θ0N = (γ00,γ

′
0, δ
′
0)′, in the model (2.1)

are then considered to be nuisance parameters. The nuisance parameters, θ0N are however required
when computing the power of the test (2.5) for treatment effect. Following Demidenko (2007), we
will replace Fn(θ0) by Fn(θ̂n) in our computation of the value of the noncentrality parameter φ(a)

in (3.2).
Recall that the sample proportion of patients assigned to treatment A in stratum h, is p̂Ah =

NAh(n)/nh, h = 1, 2, . . . ,m. Define the sample proportion vector p̂A = (p̂A1, p̂A2, . . . , p̂Am)′

and target proportion vector πA = (πA(v1), πA(v2), . . . , πA(vm))′. In Theorem 3 that follows, we
establish the result that the noncentrality parameter defined in (3.2) can be expressed in terms of the
design variability induced by the randomization process, the bias, p̂A−πA and the target allocation
proportions, πA. The proof of Theorem 3 can be found in the Appendix of this paper.

Theorem 3. Let m = 2p and consider the noncentrality parameter φ(a) defined in (3.2). Following
the notations introduced in this section, we have that

(a) φ(a) is a function of p̂A, where p̂A = (p̂A1, p̂A2, . . . , p̂Am)′ is the vector of sample proportions
of patients assigned to treatment A for given n. Let this function be φ(p̂A).

(b) φ(p̂A) can be expressed in terms of the target allocation proportion, the bias of the random-
ization procedure from the target, and the variability induced by the randomization process,
in the following way

n−1φ(p̂A) = n−1φ(πA) + n−1φ(1)(πA)[p̂A − πA] + 2−1[p̂A − πA]′

n−1φ(2)(πA)[p̂A − πA] + o(‖ p̂A − πA ‖m),

where

φ(1)(πA) =
(
∂φ(p̂A)/∂p̂A

)
p̂A=πA

and φ(2)(πA) =
(
∂2φ(p̂A)/∂p̂2A

)
p̂A=πA

.

We remark that if it can be shown that the matrix of second order derivatives, φ(2)(p̂A) is a
negative definite matrix, then φ(p̂A) is a concave down function. This will then lead to the significant
result that the power of the tests increases as design variability decreases. Now, due to the complexity
of the function φ(2)(p̂A) (see proof of Theorem 4), we will begin with the theoretical proof of the
concavity of the noncentrality parameter φ(p̂A) for a simple logit model with p = 1. We will then
demonstrate, by simulation, that the result also holds for p > 1.
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3.2.1 Concaveness of the noncentrality narameter

In this section, we consider a special case of the model (2.1) given by

logit
[
P (Yi = 1|xiA, zi)

]
= xiAβA + γ0 + ziγ1,

= w′iθ, for i = 1, 2, . . . , n,

where γ1 is the main effect of the covariate, βA is the effect of treatment A compared to treatment
B, γ0 is the intercept term, wi = (xiA, 1, zi)

′, and θ = (βA, γ0, γ1)′. In this case, the design matrix
X becomes X = (w1,w2, . . . ,wn)

′ and the vector of true parameters is θ0 = (βA0, γ00, γ10)′.
We note that the third term in the expression (3.2), for the noncentrality parameter φ(p̂A), is the
design variability induced by the randomization process. However, the term φ(2)(πA) depends on
the unknown model parameters. So, for the purpose of our simulation studies and for practical
computations, we now introduce an expression for estimating the design variability. Let S be the
number of simulations and define p̂Ai = (p̂A1i, p̂A2i, . . . , p̂Ami)

′ as the proportions from the ith
simulation. The design variability Dv, is defined by Dv = (S − 1)−1

∑S
i=1[p̂Ai −πA]′[p̂Ai −πA].

It can be estimated by D̂v = (S − 1)−1
∑S
i=1[p̂Ai − π̂A]′[p̂Ai − π̂A], where π̂A = S−1

∑S
i=1 p̂Ai.

In what follows, we shall prove theoretically, that when only a single covariate (p = 1) is
involved in a clinical trial, the noncentrality parameter (3.2) is a concave down function. We will
also show that the power of the test for main effect increases as the design variability decreases.
The proof of these results outlined in Theorem 4 can be found in the Appendix. Through our
simulation studies, we have also demonstrated that these results hold even when p > 1. It is clear
that when p = 1, the vector of sample proportion of patients assigned to treatment A becomes
p̂A = (p̂A1, p̂A2)′, and πA = (πA(v1), πA(v2))′.

Theorem 4. Let p = 1 be the number of covariates in a clinical trial and consider the noncentrality
parameter defined by (3.2). Then, we have that

(a) φ(2)(p̂A) is a negative definite matrix, hence φ(p̂A) is a concave down function,

(b) the power of the hypothesis test increases as the design variability decreases.

In Figure 1, we display a three dimensional graph of n−1φ(πA) versus πA = (πA(v1), πA(v2))′

for the purpose of illustration. The graph was constructed with the following combination of model
parameters: βA = 1.5, γ0 = 0.6, and γ1 = −0.4 and n1 = 300 and n2 = 200. Figure 1 confirms the
concaveness of the noncentrality parameter as a function of the proportion of treatment assignment.

4 Simulation Studies
In order to secure approval for a new drug at the end of a clinical trial, scientific evidence from
the trial has to be provided to the approval agency. The evidence will include the statistical power
for treatment effectiveness as well as the p-values from results of statistical tests. In our extensive
simulation studies, we will first examine the performance of the Wald-type tests in estimating the
true size of the test. We will also examine the power of the test by comparing the simulated power
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Figure 1: A plot of (1/n)φ(πA) as a function of πA = (πA(v1), πA(v2))′.

obtained by computing the proportion of rejections of the null hypothesis when the alternative hy-
pothesis is true, with the conventional power computed directly based on the methods discussed in
§3.

Suppose it is of interest to control for the covariates, gender, age and chronic conditions, in a
clinical trial for comparing two treatments, denoted byA andB, involving 500 or 1000 participating
patients. Let the covariates be defined by

Zi1 =

 1 Male (55%),

0 Female.
and Zi2 =

 1 at least one chronic condition (60%),

0 otherwise.

Zi3 =

 1 20 ≤ Age ≤ 50 (30%),

0 otherwise.
and Zi4 =

 1 50 < Age ≤ 65 (30%),

0 otherwise.

Though, the results in this paper apply to a general class of designs, we will assume that treatments
were assigned to the 500 or 1000 patients based on RA or CARA or CR design. To generate the
data for our simulation studies based on these 3 designs, we have followed the detailed process
for treatment assignment and data generation discussed by Selvaratnam, Yi and Oyet (2019). The
combination of true parameter values we have used for data generation in this paper were:

Scenarios without treatment-by-covariate interaction:

(a) βA0 = 1.50, γ00 = 0.50, γ10 = −0.60, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 =

0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.
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(b) βA0 = 0.50, γ00 = 0.25, γ10 = −0.20, γ20 = −0.40, γ30 = 0.35, γ40 = 0.20, δ10 =

0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Scenario with treatment-by-covariate interaction:

(c) βA0 = 0.50, γ00 = 0.25, γ10 = −0.20, γ20 = −0.40, γ30 = 0.35, γ40 = 0.20, δ =

(δ10, δ20, δ30, δ40), with

(i) (δ10, δ20, δ30, δ40) = (0.10,−1.50, 0.00, 0.00).

(ii) (δ10, δ20, δ30, δ40) = (0.10,−1.50, 0.35, 0.00).

(iii) (δ10, δ20, δ30, δ40) = (0.30,−1.20, 0.35, 0.20).

(iv) (δ10, δ20, δ30, δ40) = (0.20,−2.00, 0.07, 0.05).

Once data was generated based on a given design, we computed a value of the Wald-test statistic we
proposed in §2.1,

TWI = nδ̂′n[S
∆

[n]
11

(θ̂n)]δ̂n,

for testing the hypotheses (2.3) of covariate-by-treatment interaction. For a fixed value α∗, of the
significance level α, we then made a decision to reject H0 in (2.3) if the computed value of TWI

was within the rejection region{
TWI : TWI < χ2

4,α∗/2 or TWI > χ2
4,(1−α∗/2)

}
, (4.1)

where P
(
TWI < χ2

4,α∗/2

)
= α∗/2 and P

(
TWI < χ2

4,1−α∗/2

)
= 1−α∗/2. For each simulation,

we also noted the treatment assigned to each patient and the outcome of the treatment which is
the response Y . This process was repeated 3000 times under the null hypothesis to obtain the size
estimates α̂∗ shown in Tables 1, 2 and 3. Similarly, the simulated power shown in Tables 4 and
5 were obtained by generating the data under the alternative hypothesis and repeating the process
3000 times.

4.1 Discussion of results
Size of the test

In Tables 1, 2 and 3, we display the overall success rate, the proportion of patients assigned to
treatment A, the proportion of rejections α̂∗ in 3000 simulations and the average design variability.

The results clearly show that under CARA, RA and CR designs the true value of the significance
level was correctly estimated by the test in all the cases we considered. Thus, the statistic was able
to control the size of the test. For instance, under CARA design, when α∗ = 0.1, we obtained
α̂∗ = 0.1053 (Table 1), α̂∗ = 0.1017 (Table 2) and α̂∗ = 0.0937 (Table 3). Also, when α∗ = 0.05,
we obtained α̂∗ = 0.0507 (Table 1), α̂∗ = 0.0507 (Table 2) and α̂∗ = 0.0537 (Table 3). The results
obtained under RA, CARA and CR designs were similar. Tables 1, 2 and 3 also show that both
the overall success rate and the proportion of patients that were assigned the better treatment were
significantly higher under CARA and RA designs. This result further confirms that using CARA
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Table 1: Estimated size, α̂∗ of test for interaction, overall success rate of treatmentA (OSR), propor-
tion of treatment A assigned (AP) and design variability (DV) under CARA, RA, and CR designs
obtained from 3000 simulations involving 500 patients with βA0 = 1.50, γ00 = 0.50, γ10 = −0.60,
γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 = 0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Design α∗ α̂∗ OSR AP DV

CARA 0.10 0.1053 0.7535 0.7587 0.0458

0.05 0.0507 0.7535 0.7587 0.0458

0.01 0.0083 0.7535 0.7587 0.0458

RA 0.10 0.0947 0.7695 0.8124 0.0403

0.05 0.0453 0.7695 0.8124 0.0403

0.01 0.0103 0.7695 0.8124 0.0403

CR 0.10 0.0927 0.6742 0.4996 0.0224

0.05 0.0443 0.6742 0.4996 0.0224

0.01 0.0080 0.6742 0.4996 0.0224

Table 2: Column headings are as in Table 1. Results were obtained under CARA, RA, and CR
designs from 3000 simulations involving 1000 patients with βA0 = 1.50, γ00 = 0.50, γ10 = −0.60,
γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 = 0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Design α∗ α̂∗ OSR AP DV

CARA 0.10 0.1017 0.7630 0.7923 0.0348

0.05 0.0507 0.7630 0.7923 0.0348

0.01 0.0067 0.7630 0.7923 0.0348

RA 0.10 0.0927 0.7691 0.8131 0.0283

0.05 0.0463 0.7691 0.8131 0.0283

0.01 0.0103 0.7691 0.8131 0.0283

CR 0.10 0.0957 0.6741 0.4996 0.0157

0.05 0.0457 0.6741 0.4996 0.0157

0.01 0.0087 0.6741 0.4996 0.0157
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Table 3: Column headings are as in Table 1. Results were obtained under CARA, RA, and CR
designs from 3000 simulations involving 500 patients with βA0 = 0.50, γ00 = 0.25, γ10 = −0.20,
γ20 = −0.40, γ30 = 0.35, γ40 = 0.20, δ10 = 0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Design α∗ α̂∗ OSR AP DV

CARA 0.10 0.0937 0.5890 0.6103 0.0599

0.05 0.0537 0.5890 0.6103 0.0599

0.01 0.0113 0.5890 0.6103 0.0599

RA 0.10 0.1073 0.5901 0.6227 0.0477

0.05 0.0507 0.5901 0.6227 0.0477

0.01 0.0100 0.5901 0.6227 0.0477

CR 0.10 0.1013 0.5756 0.4996 0.0223

0.05 0.0527 0.5756 0.4996 0.0223

0.01 0.0113 0.5756 0.4996 0.0223

or RA design will ensure that the trial achieves the ethically desirable outcome of maintaining the
well-being of participating patients. Furthermore, the maximum value of the design variability was
approximately 0.06, which is quite reasonable.

Power of the test

Concerning the power of the test, we generated data under the alternative hypothesis and com-
puted both the simulated power and the conventional power. The conventional power under each
simulation, was computed using the asymptotic noncentral χ2 distribution discussed in §3.1 with
non-centrality parameter (3.1). Since this is an approximate method, we also computed the devia-
tion between the simulated power and the average conventional power. The maximum and minimum
values of the deviations, shown in Tables 4 and 5, were 0.097 and 0.000 respectively. The devia-
tion between the average conventional power and the simulated power become smaller in magnitude
as the number of participating patients increases. This clearly shows that the conventional power
we proposed in this paper, can be used to closely approximate the power of the test. In Theorem
4, we had established a theoretical inverse relationship between the power of the test and the de-
sign variability when controlling for only p = 1 covariate. In our simulation studies, we examined
whether this relationship is also valid if the ideal model contains more than a single covariate. The
results, reported in Tables 4 and 5 for the four scenarios we considered, show that even when p > 1,
the average conventional power of the tests were generally higher for smaller values of the design
variability. For instance, when the RA design was implemented under scenario (c)(i), the design
variability was 0.0480 in Table 4 and the average conventional power was 78.57%. However, the
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Table 4: Simulated power (SP) and average conventional power (ACP) of test for interaction, overall
success rate of treatment A (OSR), average proportion of treatment A assigned (AP) and design
variability (DV) under CARA, RA, and CR designs obtained from 3000 simulations involving 500
patients with α∗ = 0.05, βA0 = 0.50, γ00 = 0.25, γ10 = −0.20, γ20 = −0.40, γ30 = 0.35,
γ40 = 0.20, δ0 = (δ10, δ20, δ30, δ40)′.

δ0 Design SP ACP Error OSR AP DV

(0.10,−1.50, 0.00, 0.00)′
CARA 0.8163 0.7195 0.0968 0.5086 0.4256 0.0596

RA 0.8050 0.7857 0.0193 0.4825 0.4233 0.0480

CR 0.8303 0.8111 0.0192 0.4770 0.4996 0.0224

(0.10,−1.50, 0.35, 0.00)′
CARA 0.8183 0.7320 0.0863 0.5172 0.4462 0.0601

RA 0.8140 0.7963 0.0177 0.4904 0.4446 0.0485

CR 0.8353 0.8140 0.0213 0.4878 0.4996 0.0223

(0.30,−1.20, 0.35, 0.20)′
CARA 0.6273 0.5595 0.0678 0.5436 0.5194 0.0605

RA 0.6510 0.6135 0.0375 0.5252 0.5200 0.0484

CR 0.6463 0.6148 0.0315 0.5253 0.4996 0.0223

(0.20,−2.00, 0.07, 0.05)′
CARA 0.9677 0.8707 0.0970 0.5125 0.3936 0.0541

RA 0.9687 0.9494 0.0193 0.4718 0.3891 0.0479

CR 0.9783 0.9713 0.0070 0.4595 0.4996 0.0224

design variability reduces to 0.0224 under the CR design and the average conventional power in-
creases to 81.11%. This pattern can be seen throughout Tables 4 and 5. In general, we found that
design variability was smallest under CR designs and largest under CARA designs. Thus, the aver-
age conventional power for CR designs was higher than that of RA and CARA designs and smallest
for CARA designs. The difference in magnitude were however not very large. The maximum dif-
ference computed from values of the average conventional power with 500 participating patients, in
Table 4 was 0.1006. The maximum difference reduces to 0.0326 when the number of participating
patients was increased to 1000 in Table 5. This shows that the efficiency of the designs will be about
the same if a sufficiently large number of patients participate in the trial. We also note that as the
number of participating patients increased from 500 in Table 4 to 1000 in Table 5, the simulated and
average conventional power of the Wald-type test increased. For instance, the simulated power for
scenario (c)(iii) were 62.73%, 65.10% and 64.63% under CARA, RA and CR designs respectively,
while the average conventional power were 55.95%, 61.35% and 61.48% (see Table 4) respectively,
when 500 patients participated in the clinical trial. However, when the number of patients increased
to 1000, the simulated powers increased significantly to 94.10%, 94.87%, and 94.80%, respectively
and the average conventional power increased to 90.80%, 94.06% and 94.06% respectively (see Ta-
ble 5). These results demonstrate that the efficiency of the Wald-type test we proposed increases as
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the number of participating patients increases.

Table 5: Column headings are as in Table 4. Results were obtained under CARA, RA, and CR
designs from 3000 simulations involving 1000 patients with α∗ = 0.05, βA0 = 0.50, γ00 = 0.25,
γ10 = −0.20, γ20 = −0.40, γ30 = 0.35, γ40 = 0.20, δ0 = (δ10, δ20, δ30, δ40)′.

δ0 Design SP ACP Error OSR AP DV

(0.10,−1.50, 0.00, 0.00)′
CARA 0.9887 0.9734 0.0153 0.5108 0.4239 0.0455

RA 0.9913 0.9894 0.0019 0.4831 0.4226 0.0339

CR 0.9953 0.9924 0.0029 0.4772 0.4996 0.0157

(0.10,−1.50, 0.35, 0.00)′
CARA 0.9913 0.9768 0.0145 0.5191 0.4461 0.0450

RA 0.9940 0.9907 0.0033 0.4909 0.4440 0.0340

CR 0.9960 0.9927 0.0033 0.4879 0.4996 0.0157

(0.30,−1.20, 0.35, 0.20)′
CARA 0.9410 0.9080 0.0330 0.5447 0.5236 0.0453

RA 0.9487 0.9406 0.0081 0.5253 0.5188 0.0348

CR 0.9480 0.9406 0.0074 0.5252 0.4996 0.0157

(0.20,−2.00, 0.07, 0.05)′
CARA 1.0000 0.9888 0.0112 0.5167 0.3877 0.0430

RA 1.0000 0.9998 0.0002 0.4722 0.3878 0.0338

CR 1.0000 1.0000 0.0000 0.4598 0.4996 0.0157

Furthermore, the results in Tables 4 and 5 show that the overall success rates for CARA design
were higher (i.e. more ethical) than that of RA design and that of RA design higher than that of
CR design, when the effect of treatment-by-covariate interaction is significant. However, when the
effect of treatment-by-covariate interaction is not significant as in Tables 1, 2, and 3, the RA design
was more ethical than CARA design and CARA design more ethical than CR design. Previously,
many clinical trials have been conducted using CR and covariate-adjusted (CA) designs for treatment
assignments and data collection with the expectation that it will lead to a more efficient statistical
inference. Our results have shown that if the number of participating patients is sufficiently large,
CARA and RA designs can be as equally efficient as CR designs and also more ethical than CR
designs. We will therefore recommend implementing RA or CARA designs in a clinical trial if a
researcher wishes to achieve a balance between ethics and efficiency.

4.2 Application

Selvaratnam, Yi and Oyet (2019) noted that increasing discoveries of biomarkers, which can be used
as covariates in a GLM, and observed diversity among responses of patients to treatments has led
to a growing interest in the development of personalized medicine. Since patients in a clinical trial
participate voluntarily and magnanimously in order to assist in identifying a better treatment for
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future generations, it is highly important to consider their well-being at the planning stage and also
during the trial. Previous authors have used only simulation studies to document the advantages RA
and CARA designs have over CR designs in achieving this important ethical objective of any clinical
trial. Recently, however, Selvaratnam, Yi and Oyet (2019) introduced a new approach for using data
from an actual clinical trial to mimick the trial under a different design in order to obtain real data
which can be used to compare the performance of designs. They implemented their approach on
data obtained from a clinical trial on Stroke Prevention in Atrial Fibrillation (SPAF) (Hart et al.,
2003), which was obtained based on a CR design. The data from the clinical trial is summarized in
Table 6.

Table 6: Data obtained from 1120 patients in a CR clinical trial on Stroke Prevention in Atrial
Fibrillation (SPAF).

Treatment Covariate Response Total

xA z1 Success Failure

1 1 205 1 206

1 0 321 25 346

0 1 193 18 211

0 0 329 28 357

Using the approach they introduced, they mimicked the clinical trial while maintaining the true
covariate information of patients in the trial to obtain responses based on RA and CARA designs.
In this section, we follow their approach to obtain responses from the SPAF clinical trial under CR,
RA and CARA designs for the purpose of comparing the efficiencies of the Wald-type tests we
have constructed under these designs. The average number of patients assigned to treatments in 100
simulations mimicking the SPAF clinical trial are shown in Table 7. We also investigated the overall
success rates of the treatments which is a measure of the ability of the designs to achieve the ethical
objective of the trial.

In this paper, we have considered anticoagulation status from the SPAF study as a covariate.
Now, let Zi1 = 1, if the ith patient received anticoagulation therapy, and Zi1 = 0, otherwise. Also,
let v1 and v2 be the stratum of patients with covariate Z1 = 1 and Z1 = 0, respectively. We will
also consider two treatments from the study namely, aspirin, we shall refer to as treatment A and
placebo we shall refer to as treatment B. We have assumed that the ideal model for the data is the
logit model,

logit
[
P (Yi = 1|xiA)

]
= xiAβA + γ0 + γ1zi1 + δ1xiAzi1

= w′iθ for i = 1, 2, . . . , n,

where θ = (βA, γ0, γ1, δ1)′ and wi = (xiA, 1, zi1, xiAzi1)′. Thus, the hypotheses for treatment-by-
covariate interaction can be written as

H0 : δ10 = 0 vs HA : δ10 6= 0, (4.2)
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Table 7: Average number of patients assigned to treatments obtained from 100 simulations mimick-
ing the SPAF study under CR, RA and CARA designs.

Treatment Covariate The number of patients

xA z1 CR RA CARA

1 1 209 253 302

1 0 352 430 512

0 1 208 164 115

0 0 351 273 191

where δ10 is the true interaction effect between treatment and covaraiate.

Table 8: The headings of columns 2, 3, and 4 are as in Table 1. The results were obtained from 100
simulations mimicking the SPAF study under CARA, RA, and CR designs.

Design AP OSR DV πA(v1) πA(v2)

CARA 0.72695 0.94548 0.00707 0.72458 0.72835

RA 0.60920 0.95859 0.00301 0.60597 0.61111

CR 0.50074 0.93646 0.00098 0.50010 0.50112

Following our approach in §4.1, we computed the simulated average of conventional power
for various values of δ10. A graph of the simulated averages for values of δ10 between 0 and 10
is displayed in Figure 2(a). We note that our results in this case study agree with the results of our
simulation study in §4.1, in the sense that the conventional power under CARA and RA designs were
smaller than the power for CR design. The conventional power was computed using the estimate
of the noncentrality parameter φ̂(p̂A). In Figure 2(b), we display graphs of the simulated average
of the estimates of the noncentrality parameters φ̂(p̂A) for various values of δ10 under the three
designs. Taken together, Figures 2(a),(b) demonstrates that the conventional power increases as
the noncentrality parameter increases. Similar to the pattern in Table 8, where design variabilities
under RA design can be seen to be smaller than design variabilities for CARA design, the values of
φ(π̂A) under RA design were also smaller than the values of φ(π̂A) for CARA design in Figure 2(c).
Concerning success rates which we used as a measure of ethics, our results in Table 8 show that the
success rate was also higher for CARA and RA designs than for CR design. These results clearly
support our previous conclusion that applying RA and CARA designs in clinical trials will yield
data that will lead to efficient statistical inference and also account for the well-being of patients.
In fact, based on the overall success rates, the results indicate that if CARA or RA design had been
applied in the SPAF study, the well-being of eight, under CARA or five, under RA, more patients
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(a) (b) (c)

Figure 2: A plot of (a) Simulated average of conventional powers of the test in (4.2) against values of
δ10, (b) simulated average of the estimates of the noncentrality parameters against δ10, (c) value of
φ(π̂A) obtained from 100 simulations mimicking the SPAF clinical trial under CR, RA and CARA
designs against δ10.

could have being improved in the clinical trial.

5 Conclusion

In this paper, we discussed the importance of examining the effect of interaction between treatments
and covariates, such as the personal characteristics of patients, in a clinical trial and developed a
Wald-type test for testing for the significance of this effect. We also developed an approximate
method for computing the statistical power of the test and found that as the number of participating
patients increases, the power of the test also increases. We proved that our method depends on a
general class of adaptive designs through the noncentrality parameter of the non-null asymptotic
distribution of the test statistic. Furthermore, we found that the noncentrality parameter can be ex-
pressed as a function of the target allocation proportion, the bias of the randomization procedure
from the target, and the variability induced by the randomization process. This finding is an exten-
sion of the work of Hu and Rosenberger (2003). For the purpose of illustration, we applied three
designs, namely RA, CARA and CR, in intensive simulation studies, and found that the values of
statistical power computed based on our approximate method were very close to values obtained by
simulation under the three designs we considered. In terms of efficiency of the test, the power of the
tests under all three designs were very close when a large number of patients participated in clinical
trials. Thus, RA and CARA designs are useful alternatives to CR design that takes into account the
well-being of patients in clinical trials.

We note that the well-being of participating patients is usually a top priority, in clinical trials,
which cannot be traded for gain in power of the test. Results from our simulation studies and
application to real data have shown that the twin objectives of ethics and achieving over 90% power
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can be met by assigning treatments based on CARA or RA designs to a large number of participating
patients in a trial. Thus, it is clear that a minimum sample size or number of participating patients
will be required as proposed by Austin and Steyerberg (2017), Bujang et al. (2018), Smeden et al.
(2019), among others. Consequently, when using our proposed method for power computation, one
may proceed as follows.

Step 1: Following Bujang et al. (2018), start with the number of patients, n = 100 + 50(q− 1),
where (q − 1) is the number of predictor variables in the model.

Step 2: Compute the conventional power of the test.

Step 3: Add 50 new patients to the clinical trial and obtain responses.

Step 4: Compute the conventional power of the test.

Step 5: Calculate the absolute deviation between the two recent successive powers.

Step 6: End the trial if the deviation is less than 1%. Otherwise, go to Step 3.

Furthermore, we derived a theoretical relationship between the power of the test for the main
effect and the design variability when only a single binary covariate is in the logit model for the
data. We found that as the design variability decreases, the conventional power increases. Through
simulation studies, we confirmed that this inverse relationship is also true in the presence of more
than one binary covariate. This empirical result creates the open problem of extending the results
of Theorem 4 to more than one categorical covariates. However, the complicated structure of the
noncentrality parameter makes this a challenging problem. The results of our case study further
confirmed our theoretical and simulation results that RA and CARA designs are more ethical and
can be equally efficient as CR designs if sufficiently large number of patients participate in a clinical
trial.

Appendix

A Proof of Therem 2.2

Proof. Using Theorem 1(a) and the continuous mapping theorem, we obtain,

n−1Fn(θ̂n)
a.s.−−→ n−1Fn(θ0). (A.1)

Next, applying (A.1) and Theorem 1(c), we obtain

n−1Fn(θ̂n)
a.s.−−→ I(θ0). (A.2)

(a) Under H0, TW can be written as

TW = [Dθ̂n − Dθ0]′[DFn(θ̂n)−1D′]−1[Dθ̂n − Dθ0]

= [
√
nD(θ̂n − θ0)]′{D[(1/n)Fn(θ̂n)]−1D′}−1[

√
nD(θ̂n − θ0)].
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By applying (A.2), we now have,

{D[(1/n)Fn(θ̂n)]−1D′}−1 a.s.−−→ {DI(θ0)−1D′}−1

= D∗(θ0)−1/2D∗(θ0)−1/2, (A.3)

where D∗(θ0) = DI(θ0)−1D′. Since D is a (d × q) matrix of full row rank and I(θ0)−1 is
a positive definite matrix, we have that D∗(θ0) is a positive definite matrix (Seber and Lee,
2003). Therefore, there exists a unique square root matrix D∗(θ0)1/2 of D∗(θ0).

Now, D is a (d× q) matrix and
√
n(θ̂n−θ0)

d−→ Nq[0, I(θ0)−1], by Theorem 1(b).Therefore,

D∗(θ0)−1/2
√
nD(θ̂n − θ0)

d−→ Nd[0, I∗d] (Srivastava, 2002), where I∗d is an identity matrix of
dimension d. Therefore,

T ∗W = {
√
n[Dθ̂n − Dθ0]′}[DI(θ0)−1D′]−1{

√
n[Dθ̂n − Dθ0]}

= {
√
n[Dθ̂n − Dθ0]′D∗(θ0)−1/2}{

√
nD∗(θ0)−1/2[Dθ̂n − Dθ0]}

d−→ χ2
d (A.4)

where χ2
d is the central chi-square distribution with d degrees of freedom. It follows from

(A.3) and (A.4), that TW asymptotically follows the central chi-square distribution with d
degrees of freedom.

(b) Under HA

TW = [Dθ̂n − d0]′[DFn(θ̂n)−1D′]−1[Dθ̂n − d0]

=
√
n[Dθ̂n − d0]′[D{(1/n)Fn(θ̂n)}−1D′]−1

√
n[Dθ̂n − d0].

Considering the fact that,
√
n[Dθ̂n − d0] =

√
n[D(θ̂n − θ0) + (Dθ0 − d0)]

d−→ Nd[
√
n(Dθ0 − d0),D∗(θ0)].

It follows that,
√
nD∗(θ0)−1/2[Dθ̂n − d0]

d−→ Nd[
√
nD∗(θ0)−1/2(Dθ0 − d0), I∗d].

Therefore, following Anderson (1966),

T ∗W = {
√
n[Dθ̂n − d0]′}[DI(θ0)−1D′]−1{

√
n[Dθ̂n − d0]}

= {
√
n[Dθ̂n − d0]′D∗(θ0)−1/2}{

√
nD∗(θ0)−1/2[Dθ̂n − d0]}

d−→ χ2
d(φ

(a)), (A.5)

where φ(a) = n[Dθ0 − d0]′[DI(θ0)−1D′]−1[Dθ0 − d0]. From (A.3) and (A.5), we have that
TW asymptotically follows the noncentral chi-square distribution with d degrees of freedom
and noncentrality parameter φ(a). �
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B Proof of Theorem 3:
Proof. From (3.2), we have n−1φ(a) = [βA0]2[S

∆
[n]
22t

(θ0)]. First, we express the components

of n−1φ(a), namely, ∆
[n]
11t(θ0), ∆

[n]
12t(θ0), ∆

[n]
21t(θ0), and ∆

[n]
22t(θ0) as functions of p̂Ah for

h = 1, 2, . . . ,m as follows:

∆
[n]
12t(θ0) = n−1

m∑
h=1

λAh(θ0)nhp̂Ah

(
1 v′h v′h

)
;

∆
[n]
21t(θ0) = ∆

[n]
12t(θ0)′;

∆
[n]
11t(θ0) = n−1

∑m
h=1 λAh(θ0)nhp̂Ah; ∆

[n]
22t(θ0) = n−1

∑m
h=1 λAhnhP̂Ah 1 v′h v′h

vh vhv′h vhv′h
vh vhv′h vhv′h

 + n−1
∑m
h=1 λBhnh

(
1− P̂Ah

) 1 v′h 0

vh vhv′h 0

0 0 0

,

where λAh(θ) = exp(−βA − γ0 − v′h(γ + δ))[1 + exp(−βA − γ0 − v′h(γ + δ)]−2, and
λBh(θ) = exp(−γ0 − v′hγ)[1 + exp(−γ0 − v′hγ)]−2. Therefore, the noncentrality parameter φ(a)

is a function of p̂A.

Next, we apply the multivariate version of Taylor’s expansion to φ(p̂A) in a neighborhood centered
around πA to obtain

n−1φ(p̂A) = n−1φ(πA) + n−1φ(1)(πA)[p̂A − πA] + 2−1n−1[p̂A − πA]′

φ(2)(πA)[p̂A − πA] + o(‖ p̂A − πA ‖m), where (B.1)

n−1φ(1)(πA) = n−1
(
∂φ(p̂A)/∂p̂A

)
p̂A=πA

= n−1
(
∂φ(p̂A)/∂p̂Ah

)
p̂A=πA

for h = 1, 2, . . . ,m. (B.2)

The partial derivatives in (B.2) are given by
n−1(∂φ(p̂A)/∂p̂Ah) = β2

A0{[∂∆
[n]
11t(θ0, p̂A)/∂p̂Ah]− [∂∆

[n]
12t(θ0, p̂A)/∂p̂Ah]

∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A)−∆

[n]
12t(θ0, p̂A)[∂∆

[n]
22t(θ0, p̂A)−1/∂p̂Ah]∆

[n]
21t(θ0, p̂A)

−∆
[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1[∂∆

[n]
21t(θ0, p̂A)/∂p̂Ah]}, where

[∂∆
[n]
12t(θ0, p̂A)/∂p̂Ah] = n−1λAh(θ0)nh

(
1 v′h v′h

)
, [∂∆

[n]
21t(θ0, p̂A)/∂p̂Ah] =

[∂∆
[n]
12t(θ0, p̂A)/∂p̂Ah]′, [∂∆

[n]
11t(θ0, p̂A)/∂p̂Ah] = n−1λAh(θ0)nh, and

[∂∆
[n]
22t(θ0, p̂A)−1/∂p̂Ah] = −∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1, with

MDh =
nh
n

λAh(θ0)

 1 v′h v′h
vh vhv′h vhv′h
vh vhv′h vhv′h

− λBh(θ0)

 1 v′h 0

vh vhv′h 0

0 0 0


.

To evaluate the term n−1φ(2)(πA) in (B.1), we require the following second derivatives,
[∂2∆

[n]
12t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ] = [∂2∆

[n]
21t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ]′ =
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01×(2p+1), and [∂2∆
[n]
11t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ] = 0 for h∗ = h or h∗ 6= h and

[∂2∆
[n]
22t(θ0, p̂A)−1/∂p̂Ah∂p̂Ah] = 2∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1MDh

∆
[n]
22t(θ0, p̂A)−1, and [∂2∆

[n]
22t(θ0, p̂A)−1/∂p̂Ah∂p̂Ah∗ ] = ∆

[n]
22t(θ0, p̂A)−1MDh∗

∆
[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1 + ∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1MDh∗

∆
[n]
22t(θ0, p̂A)−1.

Thus, we have n−1[∂2φ(p̂A)/∂p̂Ah∂p̂Ah] = 4β2
A0phλAh(θ0)

(
1 v′h v′h

)
∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) − 2β2

A0[phλAh(θ0)]2
(

1 v′h v′h

)
∆

[n]
22t(θ0, p̂A)−1

(
1 v′h v′h

)′
− 2β2

A0∆
[n]
12t(θ0, p̂A)[∆

[n]
22t(θ0, p̂A)]−1MDh

∆
[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) for h = 1, 2, . . .m, where ph = nh/n.

Also, we have n−1[∂2φ(p̂A)/∂p̂Ah∂p̂Ah∗ ] = 2β2
A0phλAh(θ0)

(
1 v′h v′h

)
∆

[n]
22t(θ0, p̂A)−1MDh∗∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) − 2β2

A0phλAh(θ0)ph∗λAh∗(θ0)(
1 v′h v′h

)
∆

[n]
22t(θ0, p̂A)−1

(
1 v′h∗ v′h∗

)′
+ 2β2

A0ph∗λAh∗(θ0)
(

1 v′h∗ v′h∗

)
∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) − 2β2

A0∆
[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1

MDh∆
[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) for h, h∗ = 1, 2, . . .m and h 6= h∗. So

n−1φ(2)(πA) can be evaluated by

1

n
φ(2)(πA) =

1

n

(
∂2φ(p̂A)

∂p̂A∂p̂′A

)
p̂A=πA

. (B.3)

Hence the theorem holds. �

C Proof of Theorem 4

Proof. (a) Using the proof of Theorem 3, we have,

∆
[n]
12t(θ0, p̂A) = ∆

[n]
21t(θ0, p̂A)′ = n−1

2∑
h=1

λAh(θ0)nhp̂Ah

(
1 vh

)
, ∆

[n]
22t(θ0, p̂A)

=

2∑
h=1

Υh(θ0)

 1 vh

vh vh

 , and

∆
[n]
11t(θ0, p̂A) = n−1

2∑
h=1

λAh(θ0)nhp̂Ah,

where Υh(θ0) = n−1nh {λAh(θ0)p̂Ah + λBh(θ0) [1− p̂Ah]} , λAh(θ0) = exp(−βA0 −
γ00 − vhγ10)[1 + exp(−βA0 − γ00 − vhγ10)]−2, and λBh(θ0) = exp(−γ00 − vhγ10)[1 +

exp(−γ00 − vhγ10)]−2 for h = 1, 2; v1 = 1 and v2 = 0.
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Again, applying the multivariate version of Taylor’s expansion to φ(p̂A) in a neighborhood
centered around πA we obtain,
n−1φ(p̂A) = n−1φ(πA)+n−1φ(1)(πA)[p̂A−πA]−2−1n−1[p̂A−πA]′[−φ(2)(πA)][p̂A−
πA].

Now, we consider, n−1φ(1)(πA) = n−1
(
∂φ(p̂A)/∂p̂A

)
p̂A=πA

, with,

n−1[∂φ(p̂A)/∂p̂Ah] = β2
A0{[∂∆

[n]
11t(θ0, p̂A)/∂p̂Ah] −

[∂∆
[n]
12t(θ0, p̂A)/∂p̂Ah]∆

[n]
22t(θ0, p̂A)−1

∆
[n]
21t(θ0, p̂A) − ∆

[n]
12t(θ0, p̂A)[∂∆

[n]
22t(θ0, p̂A)−1/∂p̂Ah]∆

[n]
21t(θ0, p̂A) −

∆
[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1

[∂∆
[n]
21t(θ0, p̂A)/∂p̂Ah]}, where [∂∆

[n]
11t(θ0, p̂A)/∂p̂Ah] = n−1λAh(θ0)nh,

[∂∆
[n]
12t(θ0, p̂A)/∂p̂Ah] = [∂∆

[n]
21t(θ0, p̂A)/∂p̂Ah]′ = n−1λAh(θ0)nh

(
1 vh

)
,

[∂∆
[n]
22t(θ0, p̂A)−1/∂p̂Ah] = −∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1, and,

MDh =

nhn−1 {λAh(θ0)− λBh(θ0)}

 1 vh

vh vh

. We note that here, h = 1, 2, and

v1 = 1, v2 = 0. Also, we have

1

n
φ(2)(πA) =

1

n

(
∂2φ(p̂A)

∂p̂A∂p̂′A

)
p̂A=πA

. (C.1)

To evaluate the term n−1φ(2)(πA) in (C.1), we require the following,
[∂2∆

[n]
12t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ] = [∂2∆

[n]
21t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ] = 01×2, and

[∂2∆
[n]
11t(θ0, p̂A)/∂p̂Ah∂p̂Ah∗ ] = 0 for h∗ = h or h∗ 6= h and

[∂2∆
[n]
22t(θ0, p̂A)−1/∂p̂Ah∂p̂Ah∗ ] = 2∆

[n]
22t(θ0, p̂A)−1MDh∗∆

[n]
22t(θ0, p̂A)−1MDh

∆
[n]
22t(θ0, p̂A)−1.

The second derivatives in the matrix (C.1) are then given by
n−1[∂2φ(p̂A)/∂p̂Ah∂p̂Ah∗ ] = 2β2

A0{n−1λAh(θ0)nh

(
1 vh

)
∆

[n]
22t(θ0, p̂A)−1MDh∗

∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) − n−2λAh(θ0)nh

(
1 vh

)
∆

[n]
22t(θ0, p̂A)−1λAh∗(θ0)

nh∗

(
1 vh∗

)′
+ n−1λAh∗(θ0)nh∗

(
1 vh∗

)
∆

[n]
22t(θ0, p̂A)−1MDh∆

[n]
22t(θ0, p̂A)−1

∆
[n]
21t(θ0, p̂A) − ∆

[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1MDh∗∆

[n]
22t(θ0, p̂A)−1MDh

∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A)}, for h, h∗ = 1, 2.

Using the fact that v1 = 1 and v2 = 0, we obtain the following results

∆
[n]
22t(θ0, p̂A) =

 Υ1(θ0) + Υ2(θ0) Υ1(θ0)

Υ1(θ0) Υ1(θ0)

 with

∆
[n]
22t(θ0, p̂A)−1 = Υ1(θ0)−1Υ2(θ0)−1

 Υ1(θ0) −Υ1(θ0)

−Υ1(θ0) Υ1(θ0) + Υ2(θ0)

. Recall that,
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MDh = n−1nh {λAh(θ0)− λBh(θ0)}

 1 vh

vh vh

 = µh(θ0)

 1 vh

vh vh

, where

µh(θ0) = n−1nh {λAh(θ0)− λBh(θ0)} and ∆
[n]
12t(θ0, p̂A) = n−1

∑2
h=1 λAh(θ0)

nhp̂Ah

(
1 vh

)
=
(
C1(θ0) + C2(θ0) C1(θ0)

)
1×2

, with Ch(θ0) = Dh(θ0)p̂Ah, and

Dh(θ0) = n−1λAh(θ0)nh. It follows that,

∆
[n]
22t(θ0, p̂A)−1MD1∆

[n]
22t(θ0, p̂A)−1 = {µ1(θ0)/Υ1(θ0)2}

 0 0

0 1

; ∆
[n]
22t(θ0, p̂A)−1

MD2∆
[n]
22t(θ0, p̂A)−1 = [µ2(θ0)/Υ2(θ0)2]

 1 −1

−1 1

; ∆
[n]
22t(θ0, p̂A)−1MD1

∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) = [µ1(θ0)C1(θ0)/Υ1(θ0)2]

(
0 1

)′
; ∆

[n]
22t(θ0, p̂A)−1

MD2∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) = [µ2(θ0)C2(θ0)/Υ2(θ0)2]

(
1 −1

)′
;

∆
[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1MD1∆

[n]
22t(θ0, p̂A)−1MD1∆

[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) =

[µ1(θ0)C1(θ0)]2/Υ1(θ0)3; ∆
[n]
12t(θ0, p̂A)∆

[n]
22t(θ0, p̂A)−1MD2∆

[n]
22t(θ0, p̂A)−1MD2

∆
[n]
22t(θ0, p̂A)−1∆

[n]
21t(θ0, p̂A) = [µ2(θ0)C2(θ0)]2/Υ2(θ0)3 and MD2∆

[n]
22t(θ0, p̂A)−1

MD1 =

 0 0

0 0

. The elements of (C.1) can be further simplified as follows,

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1
= −2[βA0]2

Υ1(θ0)

{
D1(θ0)− µ1(θ0)

Υ1(θ0)
C1(θ0)

}2

< 0,

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2
= −2[βA0]2

Υ2(θ0)

{
D2(θ0)− µ2(θ0)

Υ2(θ0)
C2(θ0)

}2

< 0,

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A2
=

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A1
= 0.

So, the determinant of n−1φ(2)(πA) in (C.1) is positive and n−1[∂2φ(p̂A)/∂p̂A1∂p̂A1] is
negative. That is, n−1φ(2)(p̂A) is a negative definite matrix. Therefore, φ(p̂A) is a concave
down function.

(b) We consider the variability induced by the randomization process

(p̂A − πA)
′
n−1φ(2)(πA) (p̂A − πA)

=

 p̂A1 − πA(v1)

p̂A2 − πA(v2)

′


1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1
0

0
1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2


 p̂A1 − πA(v1)

p̂A2 − πA(v2)


=

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1
(p̂A1 − πA(v1))2 +

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2
(p̂A2 − πA(v2))2. (C.2)



Three Influential Design Quantities . . . 35

Also, we have

(p̂A − πA)
′
(p̂A − πA) = (p̂A1 − πA(v1))2 + (p̂A2 − πA(v2))2. (C.3)

For i = 1, 2,
1

n

∂2φ(p̂A)

∂p̂Ai∂p̂Ai
, is negative and does not depend on p̂Ai. Therefore, from (C.2)

and (C.3), we have that (p̂A − πA)
′
(
−n−1φ(2)(πA)

)
(p̂A − πA) decreases if and only if

(p̂A − πA)
′
(p̂A − πA) decreases. Thus, the noncentrality parameter in (3.2) increases as

the design variability decreases. As a result, the power of the hypothesis test increases as the
design variability decreases. �
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