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SUMMARY

The partially linear single index model has greater flexibility than linear regression models
in facilitating the relationship between a continuous response and a set of covariates. This
model allows not only linear dependence but also nonlinear dependence of the response
variable on the covariates. Such a flexibility is, however, achieved at the price of losing the
closed-form estimators of linear regression models. In this paper, we describe an estima-
tion procedure using the spline approach to handle the nonlinear unknown function in the
partially linear single index model. To explore the robustness of the partially linear single
index model, we establish consistency results for the model parameters in the linear form
under certain model misspecification. We identify several important settings with model
misspecification where consistent results for the model parameters in the linear form are
still retained. Those settings include cases with spurious covariates, covariates omission,
covariate measurement error, and misspecfying the distribution of the noise term in the
model. Further, we stress the importance of the independence assumption imposed for the
noise term and the regressors, the assumption that is often overlooked in the literature. We
illustrate, using an example of measurement error models, that the negligence of this in-
dependence assumption can yield biases results which would not be the case otherwise.
Numerical studies confirm the satisfactory performance of the proposed method under a
variety of settings.

Keywords and phrases:Covariate measurement error, covariate omission, model misspeci-
fication, partially linear single index model, spline approach, spurious covarites.

AMS Classification: 62F10, 62J10.

⋆ Corresponding author
© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



60 Yi and He

1 Introduction

Linear regression models have been widely used in applications to characterize the relationship be-
tween a continuous response and its associated covariates. Under such models, the least squares
estimation method is commonly employed to estimate the model parameters, and the resulting esti-
mators are of an analytical form.

Although linear regression models are convenient to use, they can be restrictive in that it only
facilitates covariate effects in the linear form. When more sophisticated covariate effects arise from
applications, the linear structure is inadequate to reflect the complex dependence of the response on
the covariates. To allow for flexible dependence structures in modeling, various extensions of linear
regression models were proposed by including a nonlinear function of covariates in modeling. To
name a few, Härdle and Stoker (1989) and Powell et al. (1989) investigated single index models.
Carroll et al (1997) and Xia and Härdle (2006) studied generalized partially linear single index
models. Lu et al. (2006) considered the partially linear single index model for survival data. Cai et
al. (2007) investigated partially linear regression structures for multivariate survival data. He and Yi
(2020) examined partially linear single index accelerated failure time (AFT) models.

Including a nonlinear function of covariates in the modeling offers more flexibility to delineate
the relationship between the response and covariates. This flexibility, however, comes at the price
of the complications of developing inferential procedures. Usual estimation procedures for linear
regression models cannot be directly applied and the resulting estimators usually do not have a
closed-form like the least squares estimators for linear regression models. In this paper, we consider
the partially linear single index model and describe an estimation procedure using the spline method
to approximate the nonlinear function in the model. The asymptotic distribution of the resulting
estimators is studied. To further understand the performance of the estimation procedure, we explore
the robustness of the proposed method to model misspecification both analytically and numerically.

This paper contains several contributions. First, we describe an easily implemented procedure
for estimating the parameters in the partially linear single index model. Secondly, we examine model
misspecification effects and establish consistency of the resulting estimators for the parameters in
the linear form under certain scenarios. Thirdly, we identify useful scenarios of model misspeci-
fication, and our explorations offer new insights into settings with spurious covariates, covariates
omission, covariate measurement error, and misspecfying the distribution of the noise term in the
model. Finally, we stress the importance of the independence assumption between the noise term
and the regressors, an assumption that is critical but often overlooked in the literature. We demon-
strate that biased results would be produced if this assumption were to be ignored, which would not
be the case otherwise.

The remainder of the paper is organized as follows. Basic notation and the partially linear single
index model are introduced in Section 2. In Section 3, we describe an estimation procedure using the
spline approach to handle the nonlinear function in the model, and study the asymptotic distribution
of the resulting estimators. In Section 4, we explore robustness of the proposed estimation method
under model misspecification. Numerical studies are reported in Section 5, and concluding remarks
are given in the last section.
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2 Notation and Model Setup

For i = 1, 2, . . . , n, let Yi denote the response variable for subject i, and let xi and zi denote
the covariates of subject i, where the xi are linearly related with Yi, and the zi are non-linearly
associated with Yi. Consider that the relationship between the response variable Yi and the covariates
is characterized by the partially linear single index model

Yi = βTxi + θ(αTzi) + σei, (2.1)

where ei is the noise term with a given probability density function f(ei), σ > 0 is a scale parameter,
β and α are unknown regression parameters, and θ(·) is an unknown smooth function.

The model form (2.1) covers commonly used regression models as special cases (e.g., Xia and
Härdle 2006). Setting the θ(·) function to be the identity function gives the linear regression model
where all the covariates are linked with Yi via the linear form. If β is constrained to be zero and the
θ(·) function is left unspecified, then model (2.1) recovers the single index model (e.g., Xia 2006).

While model (2.1) delineates various types of covariate structures, parameter α is unidentifiable
unless certain constraints are imposed on α. By convention, we assume ||α|| = 1 and α1 > 0,
where α1 is the first coordinate of α (e.g., Carroll et al. 1997; Yi, He and Liang 2009). Since θ(·)
is assumed unknown, an intercept can be accommodated in this function, therefore, no intercept
appears in (2.1) explicitly.

Finally, we emphasize that an implicit but critical assumption is often required in specifying
model (2.1). When {xi, zi} are fixed by the design, no independence assumption between the noise
term ei and the regressors {xi, zi} is needed. But when {xi, zi} are treated as random variables, the
noise term ei needs to be assumed to be independent of the covariates {xi, zi}; if this independence
assumption is not perceived feasible, then the marginal probability density function f(ei) in (2.1)
needs to be replaced by the conditional probability density function of ei, given {xi, zi}. This
assumption becomes quite subtle in the presence of model misspecification, as illustrated in Section
4.

3 Inference Procedure

Let η = (βT,αT, σ)T. Write mi = βTxi + θ(αTzi) and ei = (yi − mi)/σ. Then the model form
(2.1), together with the comment in the last paragraph of Section 2, gives that the probability density
function for Yi, given {xi, zi}, is

fy|(x,z)(yi|xi, zi) =
1

σ
f(ei).

Suppose a random sample consists of the observed data {{yi,xi, zi} : i = 1, . . . , n}. Then the
likelihood contributed from subject i is Li(η) = σ−1f(ei), leading to the log-likelihood ℓi(η) =
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log f(ei)− log σ. Therefore, the score functions contributed from subject i are given by

∂ℓi(η)

∂β
= −f ′(ei)

f(ei)
× xi

σ
,

∂ℓi(η)

∂α
= −f ′(ei)

f(ei)
× θ′(αTzi)zi

σ
,

∂ℓi(η)

∂σ
= −f ′(ei)

f(ei)
× ei

σ
− 1

σ
, (3.1)

where f ′(·) and θ′(·) denote the derivatives of f(·) and θ(·), respectively. Define

∂ℓi(η)

∂η
=

(
∂ℓi(η)

∂βT ,
∂ℓi(η)

∂αT
,
∂ℓi(η)

∂σ

)T

.

If θ(·) were known, estimation of the parameters η would proceed directly by solving the equa-
tions

n∑
i=1

∂ℓi(η)

∂η
= 0 (3.2)

for η. Here and elsewhere, 0 represents a zero vector, a zero matrix , or the real number zero whose
meaning is clear from the context. Function θ(·) is, however, unknown, so directly working with
(3.2) is impossible to obtain an estimate of parameter η.

To handle the unknown function θ(·), we use the spline approach to specify function θ(·) as a
linear combination of a finite number of basis spline functions:

θ(u) =

r∑
k=1

νkMk(u; ζ, J), (3.3)

where the Mk(u; ζ, J) are piecewise polynomial functions with order J , defined on the knot se-
quence ζ with K interior knots; the νk are the parameters to be estimated; and r is the number of
basis functions, determined by the knot sequence ζ and the order J (e.g., He and Yi 2020).

With expression (3.3), we employ the likelihood method to estimate the associated model pa-
rameters. Let ν = (ν1, . . . , νr)

T, γ = (αT,νT,βT, σ)T, and miP = βTxi+
∑r

k=1 νkMk(α
Tzi; ζ, J).

The log-likelihood of the sample data is then given by

ℓ(γ) =

n∑
i=1

ℓi(γ),

where

ℓi(γ) = f

(
yi −miP

σ

)
− log σ.

Maximizing ℓ(γ) with respect to parameter γ gives an estimate of γ. Let γ̂ = (α̂T, ν̂T, β̂
T
, σ̂)T

denote the resulting estimator of γ.
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Adapting the derivations of He and Yi (2020), we readily show that under regularity condi-
tions,

√
n(γ̂ − γ) has the asymptotical normal distribution with mean zero and a covariance matrix

(ΓΣ)−1(ΓΣΓT)(ΓΣ)−1T, where

Σ = E

{
−∂2ℓi(γ)

∂γ∂γT

}
and Γ =

(
Iq −ααT 0

0 Ip

)
.

Here q and p are the dimension of α and of (νT,βT, σ)T, respectively; and Ia stands for the a × a

identity matrix for a positive integer a.
Finally, we comment that this estimation method hinges on the choice of basis spline functions

and the knot sequence. While variation due to the selection of knots and basis spline functions is not
built into the estimation, this method has been broadly used in the literature because of the appeal
of easy implementation. One may view this inference procedure as conditional analysis, given the
specified basis spline functions and the knot sequence. Quadratic or cubic spline functions with
J = 3 or 4 are usually a viable choice for many applications. The number of interior knots is often
set on the scale of O(n1/5) for a quadratic spline approach, and the knot positions are determined
so that the data fall in each interval with roughly equally probabilities. Discussions on these aspects
can be found in Wang et al. (2014) and He and Yi (2020), among others.

4 Model Misspecification

4.1 Analytic development

The validity of the estimation method described in Section 3 relies on the correct specification of the
distribution form for the noise term ei. It is thereby important to understand how the method may
be affected when the distribution of ei is misspecified.

For the technical reason, here we treat xi as centered random variables with E(xi) = 0 (the
zi are treated as random variables as well), in the same lines as Gould and Lawless (1998) and He
and Lawless (2005). Assume that the true model generating the data is given by (2.1) where the
probability density function of the noise term ei is f(ei). When fitting the data, a working model is
specified as

Yi = β∗Txi + θ∗(α∗Tzi) + σ∗e∗i , (4.1)

where the asterisk is added to the symbols to show their possible difference from the corresponding
quantities in the true model (2.1). Here the noise term e∗i is independent of {xi, zi}, the distribution
of e∗i is misspeicified as f∗(e∗i ), and θ∗(·) is a user-specified function.

Let η∗ = (β∗T,α∗T, σ∗)T. Write e∗i =
(
yi − β

∗Txi − θ∗(α∗Tzi)
)
/σ∗ and ϕ(e∗i ) = log f∗(e∗i ).

With the independence assumption between the noise term e∗i and {xi, zi} in the working model
(4.1) and using the result of Yi (2017, Problem 5.6(a)), we obtain that the log-likelihood contributed
from subject i from the working model (4.1) is

ℓ∗i (η
∗) = − log σ∗ + ϕ(e∗i ).
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Maximizing
∑n

i=1 ℓ
∗
i (η

∗) with respect to the parameter η∗ yields the estimate η̂∗ = (β̂
∗T
, α̂∗T, σ̂∗)T.

Adapting the arguments of White (1982), He and Lawless (2005) and Yi and Reid (2010), we can
show that under the assumptions A1 - A3 of White (1982), the estimator η̂∗ converges in probability
to a unique limit η = (βT,αT, σ)T which is the solution to the equation

ET

{
∂ℓ∗i (η

∗)

∂η∗

}
= 0, (4.2)

where the expectation ET is taken with respect to the distribution under the true model (2.1). Specif-
ically,

ET

{
∂ℓ∗i (η

∗)

∂β∗

}
= − 1

σ∗ET {xiϕ
′(e∗i )} = 0, (4.3)

ET

{
∂ℓ∗i (η

∗)

∂α∗

}
= − 1

σ∗ET {ziθ∗′(α∗Tzi)ϕ
′(e∗i )} = 0,

ET

{
∂ℓ∗i
∂σ∗

}
= − 1

σ∗ET {e∗iϕ′(e∗i ) + 1} = 0.

Now we examine what parameter value would be a solution of (4.3). Subtracting β∗Txi +

θ∗(α∗Tzi) from both sides of the true model (2.1), we obtain that

Yi − β∗Txi − θ∗(α∗Tzi) = (β − β∗)Txi + {θ∗(αTzi)− θ(α∗Tzi)}+ σei.

Combining this with (4.1) gives

e∗i =
(β − β∗)Txi + {θ(αTzi)− θ∗(α∗Tzi)}+ σei

σ∗ . (4.4)

Next, we examine that

ET

{
∂ℓ∗i (η

∗)

∂β∗

}
= Exi

{
Ezi|xi

(
EYi|(xi,zi)

[
− 1

σ∗ {xiϕ
′(e∗i )}

])}
= Exi

(
Ezi|xi

[
xiEYi|(xi,zi)

{
− 1

σ∗ϕ
′(e∗i )

}])
, (4.5)

where the expectations EYi|xi,zi
, Ezi|xi

and Exi are evaluated with respect to the conditional distri-
bution of Yi given {xi, zi}, the conditional distribution of zi given xi, and the marginal distribution
of xi, respectively.

If β∗ = β, then (4.4) shows that e∗i is free of xi, and thus, (4.5) becomes

Exi

(
xiEzi|xi

[
EYi|(xi,zi)

{
− 1

σ∗ϕ
′(e∗i )

}])
= Exi

(xi) · Ezi

[
EYi|zi

{
− 1

σ∗ϕ
′(e∗i )

}]
= 0,
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where the last step comes from that xi is centralized to have zero expectation; the expectations EYi|zi

and Ezi are evaluated with respect to the conditional distribution of Yi given zi and the marginal
distribution of zi, respectively.

Since β is a solution to Equation 4.3 and the solution to Equation 4.3 is unique (White, 1982),
we conclude that

β∗ = β,

which implies that the estimator β̂
∗

obtained from the working model (4.1) is still a consistent
estimator of β.

Theorem 1. Suppose that E(xi) = 0 and that there is a unique solution to (4.3), then the estimator
produced by the misspecified working model (4.1) is still a consistent estimator for the parameter β
of the true model (2.1).

Model misspecification is generally expected to yield inconsistent estimation results, especially
when using likelihood-based methods. But Theorem 1 uncovers a situation where consistency of
estimating some model parameters is not affected when the distribution of the noise term ei in the
true model (2.1) is misspecfified. While the consistency is retained for estimation of the linear
parameter β under the working model (4.1), this property does not necessarily hold for estimation
of the nonlinear parameter α or the scale parameter σ. It is key to retain the linearity in xi and the
additivity of the terms when specifying a working model to ensure consistent results for estimation
of β. Furthermore, the independence assumption for the noise term in a working model is also
critical, as demonstrated at the end of the next subsection.

4.2 Useful settings of model misspecification

Theorem 1 enables us to use model (2.1) in a broader scope. If the primary interest is in inference
about the linear parameter β, one may take a working model to fit the data as long as it retains
the additive structure of model (2.1) with xi centered and appearing in linearity, together with the
independence requirement for the noise term and the covaraites; the nonlinear function θ(·) and the
distribution of the noise term in the working model can be misspecified. We now examine several
scenarios which are pertinent to misspecifying the nonlinear structure and/or the distribution of the
noise term, spurious covariates, covariates omission, and covariates with measurement error.

Scenario 1: Misspecifying the partially linear single index model as an usual linear regression
model

If the true model is (2.1), but we use the ordinary linear regression model (i.e., setting θ(·) to be
an identity function) as a working model to fit the data with xi centered, then the resulting estimator
of β is still consistent. This is because no matter what forms of θ(·) and θ∗(·) are, e∗i in (4.5) is free
of xi when taking β∗ = β; and this ensures a zero value of (4.5) in combination of E(xi) = 0.
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Scenario 2: Omitting covariates zi in the partially linear single index model
When applying model (2.1) to analyze data, we may neglect some important covariates and do

not include them in the model. For example, consider a situation where all the zi covariates are
ignored, i.e., the working model is taken as

Yi = β∗Txi + σ∗e∗i ,

with covariates zi omitted, then the estimator β̂
∗

for the effects of covariate xi is still consistent.
This result complements to that obtained by Struthers and Kalbfleisch (1986) who considered mis-
speficiation under the proportional hazard model for censored data.

Scenario 3: Including additionally unimportant covariates in the partially linear single index model
Opposite to Scenario 2, we may fit the data by blindly including additionally unimportant covari-

ates when using (2.1). A close examination of the derivations in Section 4.1 shows that the resulting
estimator for β is still consistent, as long as the term βTxi is in an additive relationship with other
covariates and the noise term in the working model is assumed to be independent of the regressors.

Scenario 4: Impact of Berkson measurement error on the partially linear single index model
Consider a setting where xi is subject to measurement error, and the zi covariates may or may

not contain measurement error. Suppose x∗
i is an observed measurement of xi which is delineated

by the relationship
xi = x∗

i + ϵi, (4.6)

where error term ϵi is independent of {Yi,x
∗
i , zi} and has mean zero; this is the so-called Berkson

error model used in the literature of measurement error problems (e.g, Carroll et al. 2006; Yi 2017).
If we disregard the difference between the observed measurement x∗

i and the true covariate value
xi, and conduct a naive analysis by using model (2.1), then we essentially use a working model

Yi = β∗Tx∗
i + θ∗(α∗Tzi) + σ∗e∗i , (4.7)

where the asterisk is added to the symbols to show their possible differences from the corresponding
parameters in the true model (2.1), and e∗i is assumed to be independent of the regressors {x∗

i , zi}.
In contrast, substituting (4.6) into the true model (2.1) gives

Yi = βTx∗
i + θ(αTzi) + σẽ∗i , (4.8)

where ẽ∗i = βTϵi/σ + ei, which is independent of the regressors {x∗
i , zi}. Comparing (4.8) to the

working model (4.7) shows that β∗ = β, suggesting that using the working model (4.7) to the sur-
rogate data {{Yi,x

∗
i , zi} : i = 1, . . . , n} still yields a consistent estimator for β. This result offers

a new angle to view inference about data with measurement error from the perspective of model
misspecification. It generalizes the discussion of the Berkson error effects under linear regression
models (e.g., Carroll et al. 2006; Yi 2017) to partially linear single index models.
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Caution: We emphasize the importance of the independence assumption between ei and {xi, zi}
required in the working model (4.1). This condition is often implicitly imposed but not explic-
itly stated by many authors when discussing model misspecification. Here we illustrate that this
assumption cannot be ignored; otherwise, incorrect conclusions would arise.

To be specific, we consider Scenario 4 with the Berkson model (4.6) replaced by the classical
additive measurement error model (e.g., Carroll et al. 2006; Yi 2017):

x∗
i = xi + ϵ∗i , (4.9)

where the error term ϵ∗i is independent of {Yi,xi, zi} and has mean zero.
Suppose that disregarding the difference between the observed measurement x∗

i and the true
covariate value xi, we conduct a naive analysis by applying model (2.1) to the error-prone data
{(Yi,x

∗
i , zi) : i = 1, . . . , n}:

Yi = β∗∗Tx∗
i + θ∗∗(α∗∗Tzi) + σ∗∗e∗∗i , (4.10)

where the double asterisk is added to the symbols to show their possible differences from the corre-
sponding parameters in the true model (2.1), and e∗∗i is assumed to be independent of the regressors
{x∗

i , zi}.
Substituting (4.9) into (4.10) gives a working model

Yi = β∗∗Txi + θ∗∗(α∗∗Tzi) + σ∗∗ẽ∗∗i , (4.11)

where ẽ∗∗i = β∗∗Tϵ∗i /σ
∗∗ + e∗∗i .

If we regarded model (4.11) as a working model of the form (4.1) by neglecting the requirement
of the independence between the noise term and the regressors, then applying the derivations in
Section 4.1 would yield that β∗∗ = β, saying that fitting error-prone data {{Yi,x

∗
i , zi} : i =

1, . . . , n} with the model (4.10) would still yield a consistent estimator of β in the true model (2.1).
This seemingly rational claim is, however, incorrect. The reason is that the term ẽ∗∗i in (4.11)

is not ensured to be independent of the regressors {xi, zi}, a condition required by the working
model (4.1). In the next section, we conduct numerical studies to demonstrate that fitting error-
prone data {{Yi,x

∗
i , zi} : i = 1, . . . , n} with the model (4.10) would output biased estimates of β.

This discussion and the numerical results to be reported for Scenario V in Section 5.2 align with the
well known fact that ignoring classical additive error in covariates under the linear regression model
produces biased estimates of the model parameters (e.g., Carroll et al. 2006; Yi 2017), and they
further extend the development from the usual linear regression model to the partially linear single
index model. The discussion here also gives us a new angle to view the independence assumption
between the noise term and covariates, required when specifying a working model for inference, by
rephrasing it in the framework of covariates subject to classical additive measurement error.

5 Numerical Studies
We conduct simulation studies to numerically evaluate the performance of the estimation method
in Section 3 as well as the impact of model misspecification discussed in Section 4. Five hundred
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simulations are run for each of the following parameter configurations, and the sample sizes n = 100

and n = 500 are considered.

Table 1: Simulation Results for Assessing the Performance of the Estimation Method

θ(u) = sin(·) θ(u) = u

n = 100 n = 500 n = 100 n = 500

Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

β 0.004 0.085 0.007 -0.001 0.036 0.001 0.004 0.082 0.007 0.001 0.035 0.001

α1 -0.055 0.239 0.060 -0.018 0.133 0.018 -0.046 0.187 0.037 -0.032 0.151 0.024

α2 -0.055 0.237 0.059 -0.007 0.126 0.016 -0.039 0.197 0.040 -0.035 0.159 0.026

α3 -0.039 0.230 0.054 -0.018 0.127 0.017 -0.019 0.209 0.044 -0.007 0.193 0.037

5.1 Performance of the proposed estimator

For i = 1, . . . , n, covariate xi is generated from the standard normal distribution N(0, 1), and
covariates zij are independently generated from the uniform distribution U [0, 1] for j = 1, 2, 3. The
response measurements are generated from the model

Yi = βxi + θ(α1zi1 + α2zi2 + α3zi3) + σei, (5.1)

where the error distribution of ei is taken as the standard extreme value with the cumulative dis-
tribution function F (ei) = 1 − exp{− exp(ei)}, and σ is set as 1.5. We set β = 0.3 and α1 =

α2 = α3 = 1/
√
3, and consider two function forms for the θ(·) function: θ(u) = u, or θ(u) =

sin[π(u− 1.355
√
3/6)/(1.645

√
3/3)], as in Carroll et al. (1997).

We fit the simulated data to model (2.1) and apply the estimation method described in Section
3 to estimate the model parameters, where the Mk(u; ζ, J) in (3.3) are taken as M-spline basis
functions. Specifically, setting the order J = 3 and the number of interior knots K to be 4 gives
r = K + J piecewise quadratic polynomial basis functions Mk(u; ζ, J) for (3.3). The four interior
knots are determined by examining the numerical range of αT

izi to yield roughly the equal number
of observations in each interval. To facilitate the constraints of ∥α∥ = 1 and α1 > 0 in the estima-
tion procedure, we reparameterize the components of α using the polar coordinate transformation
described by He and Yi (2020), where α = (α1, α2, α3)

T. In all the simulations, initial values of β
and α are taken as the estimates obtained from the linear model with θ(·) set as the identity function,
and initial values for the parameters pertaining to estimation of θ(u) in (3.3) are set as zero.

Table 1 reports the simulation results for estimation of the parameters β and α, including the
average difference between the estimates and the true values (Bias), the empirical standard deviation
(SE) of the estimates, and the mean squared error (MSE). Estimation of β incurs very small finite
sample biases regardless of the form of the θ(·) function or the sample size, though a large sample
size further reduces the finite sample biases slightly; as the sample size increases, both SE and MSE
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decrease. Estimation of the α parameters incurs larger finite sample biases than that of β, but the
magnitudes of those biases still appear to fall in reasonable ranges. The form of the θ(·) function
and the sample size have noticeable effects on both Bias and SE (and hence, on MSE as well)
for estimation of the α parameters. As the sample size increases, the estimation results of the α

parameters improve.
In summary, the estimation method described in Section 3 performs well, regardless of the linear

or nonlinear form of the smooth function θ(·). As expected, the performance gets better as the
sample size increases.

5.2 Evaluation with model misspecification

To confirm the consistency results of estimating the β parameter in the presence of model misspec-
ification discussed in Section 4, we conduct simulation studies for five scenarios corresponding to
those discussed in Section 4.2.

In each scenario we consider the combinations of different specification of the distribution for
the noise term and the form of the single index function θ(·). In the data generation step, we set
the scale parameter σ to be 0.83 and 1.50, respectively, when using the standard logistic and the
standard extreme value distributions for the noise term. The single index function θ(·) is set to be
either the sine or the identity function, as described in Section 5.1. The values of α and β and the
sample size are set as those in Section 5.1.

In Scenario I, we generate covariates xi and the zij in the same way as in Section 5.1. Then
we generate response measurements from the model (5.1) by letting the noise term ei follow the
standard logistic distribution. But we fit the simulated data using the model (5.1) with the noise term
ei assumed to follow the standard extreme value distribution.

In Scenario II, we consider the possibility of omitting some covariates when fitting the model.
Specifically, we generate covariates xi and the zij in the same way as in Section 5.1. Next, we
independently generate a new covariate, denoted wi, from the standard normal distribution N(0, 1)

for i = 1, . . . , n. Then we generate response measurements from the model

Yi = βxi + θ(α1zi1 + α2zi2 + α3zi3) + βwwi + σei,

where βw = 0.25; the function θ(·), σ, and the distribution of the noise term ei are specified as in
the aforementioned descriptions. We fit the simulated data using the model (5.1) with the noise term
ei assumed to follow the standard extreme value distribution.

In Scenario III, we generate covariates xi in the same way as in Section 5.1. Then we simulate
response measurements from the model (5.1) with θ(·) = 0, where σ and the distribution of the
noise term ei are specified as in the aforementioned descriptions. But we fit the simulated data using
the model (5.1) with the noise term ei assumed to follow the standard extreme value distribution.

In Scenario IV, we first generate x∗
i from N(0, 1) for i = 1, . . . , n, and then generate xi from

the Berkson model xi = x∗
i + u∗

i , where u∗
i is independent of x∗

i and other variables, and u∗
i ∼

N(0, σ∗2
e ) with σ∗

e = 0.25, 0.50 or 1.00 to reflect an increasing degree of measurement error. The
covariates zij are independently generated in the same way as in Section 5.1. Then we simulate
response measurements in the same way as in Scenario 1 with the aforementioned specification of
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the function θ(·), the distribution of noise term ei, and the σ value. But we fit the model (5.1) with
the noise term ei assumed to follow the standard extreme value distribution to the data {{Yi, x

∗
i , zi} :

i = 1, . . . , n}. This reflects a case where the covariate xi is subject to measurement error which
follows a Berkson model, but such an error is ignored when fitting the model.

In Scenario V, we generate covariates xi and zij in the same way as in Section 5.1. Then we
generate a surrogate measurement x∗

i of xi using the model x∗
i = xi + ui, where ui is independent

of xi and other variables, and ui ∼ N(0, σ2
u) with σu = 0.25, 0.50 or 1.00 to reflect an increasing

degree of measurement error. Response measurements are generated in the same way as in Scenario
IV. But we fit the model (5.1) with ei assumed to follow the standard extreme value distribution to
the data {{Yi, x

∗
i , zi} : i = 1, . . . , n}. This scenario reflects a case considered at the end of Section

4.2, where we illustrate the importance of imposing the independence assumption between the noise
term and the regressors when using the working model (4.1).

Table 2 reports the simulation results for estimation of the β parameter, including the average
difference between the estimates and the true values (Bias), the empirical standard deviation (SE)
of the estimates, and the mean squared error (MSE). As discussed in Section 4.2, under model
misspecification considered in Scenarios I-IV, using the working model (4.1) still yields a consistent
estimator of β, and this is confirmed by the very small finite sample biases of the estimates of β. As
expected, when the sample size increases, biases of estimating β tends to decrease, together with
decreasing empirical standard errors and mean squared errors. Regarding the results for Scenario
V, finite sample biases are reasonably small when the measurement error degree is minor (e.g.,
σu = 0.25). But when the magnitude of measurement error becomes moderate or large, considerable
finite sample biases are observed, which clearly demonstrates the point emphasized at the end of
Section 4.2.

6 Discussion

While the linear regression model is widely used in applications to facilitate the dependence of the
response on associated covariates, such a model is inadequate to accommodating nonlinear depen-
dence structures. Consequently, partially linear single index models become useful due to its ability
of incorporating both linear and nonlinear relationship between the response and covariates. In this
paper, we describe a method using the spline technique to estimate the model parameters and estab-
lish the asymptotic result of the induced estimators. The validity and performance of the method
are further assessed for model misspecification. We identify a number of scenarios for obtaining a
consistent estimator of the linear model parameter β even in the presence of model misspecification.
The findings have important implications which enlarge the usage scope of the partially linear single
index model.

It is interesting to note that the discussion in Section 4 applies to the partially single index AFT
models considered by He and Yi (2020) if the censoring percentage is zero. When the censoring
proportion is nonzero, using model (2.1) to handle survival data is generally vulnerable to model
misspecification (where the response variable is set as the logarithm of a survival time); misspecifi-
cation for the distribution of the noise term ei usually yields inconsistent estimation of β. It may be
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Table 2: Simulation Results for Estimation of β with Misspecification of Models

Data Generation n = 100 n = 500

Scenarios θ(u) Distribution Bias SE MSE Bias SE MSE

I sin(·) Logistic 0.008 0.204 0.042 0.002 0.115 0.013

u Logistic -0.012 0.208 0.043 0.004 0.113 0.013

II sin(·) Logistic -0.004 0.208 0.043 0.005 0.110 0.012

u Ext Val -0.002 0.083 0.007 -0.001 0.038 0.001

u Logistic -0.003 0.211 0.045 0.005 0.115 0.013

III 0 Ext Val 0.000 0.072 0.005 0.001 0.030 0.001

0 Logistic 0.020 0.203 0.041 0.008 0.110 0.012

IV(σe = 0.25) sin(·) Logistic 0.009 0.204 0.042 0.007 0.110 0.012

u Ext Val 0.005 0.081 0.007 0.001 0.035 0.001

u Logistic 0.011 0.204 0.042 0.008 0.110 0.012

IV(σe = 0.50) sin(·) Logistic 0.005 0.222 0.049 0.002 0.116 0.013

u Ext Val 0.007 0.083 0.007 0.002 0.038 0.001

u Logistic 0.010 0.203 0.041 0.004 0.114 0.013

IV(σe = 1.00) sin(·) Logistic 0.005 0.226 0.051 0.001 0.111 0.012

u Ext Val 0.003 0.095 0.009 0.000 0.035 0.001

u Logistic 0.007 0.218 0.047 0.002 0.109 0.012

V(σu = 0.25) sin(·) Logistic -0.011 0.198 0.039 -0.017 0.107 0.012

u Ext Val -0.002 0.077 0.006 -0.019 0.034 0.001

u Logistic -0.010 0.194 0.038 -0.017 0.104 0.011

V(σu = 0.50) sin(·) Logistic -0.055 0.184 0.037 -0.058 0.101 0.014

u Ext Val -0.057 0.072 0.008 -0.059 0.034 0.005

u Logistic -0.053 0.179 0.035 -0.057 0.100 0.013

V(σu = 1.00) sin(·) Logistic -0.155 0.155 0.048 -0.149 0.078 0.028

u Ext Val -0.151 0.061 0.027 -0.149 0.027 0.023

u Logistic -0.145 0.147 0.043 -0.148 0.079 0.028
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interesting to create pseudo-responses by synthesizing censored observations (e.g., using the discus-
sion by Lu and Cheng 2007), and then investigate how censoring and model misspecification may
interplay.
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