

Impact of Exogenous Application of Indole-3-Acetic Acid on Growth, Yield and Nutritional Quality of Tomato

Md. Rezaul Karim*, Mst. Ayesha Siddika, Afrin Sultana and Tamanna Haque

Department of Horticulture, Bangladesh Agricultural University, Mymensingh-2202

Abstract

Four distinct dosages of indole-3-acetic acid (IAA) were used in a single-factor experiment to examine the effects of exogenous IAA administration on tomato growth, yield, and quality. The dosages of IAA were as follows: (i) Control (no IAA), (ii) 50 ppm IAA, (iii) 100 ppm IAA, and (iv) 150 ppm of IAA. Three replications of the experiment were set up using a randomized complete block design. The BARI Tomato-15 had was utilized as the test material. Fruit yield and growth, as well as its nutritional value were significantly impacted by IAA. The 150 ppm of IAA treatment generated the tallest plant (85.49 cm), the maximum number of leaves (26.00), the minimum number of days (29.34 days) needed for the first flowering, the maximum number of flower clusters per plant (15.17), the number of flowers per plant (37.50), and the number of fruits per plant (32.17). The fruit length, weight and yield (96.44 t/ha) were the highest in 100 ppm of IAA. 86.29% (96.44 t/ha) more yield was obtained when treated with 100 ppm of IAA than control (51.77 t/ha). On the other hand, 12.98% (45.05 t/ha) yield reduction occurred in BARI Tomato-15 when treated with 150 ppm of IAA as compared to control (51.77 t/ha). Results revealed that 29.03% TSS, 35.71% TA of fruit increased in 150 ppm of IAA than control and 8.16% pH value decreased in 150 ppm of IAA than control.

Received: 03/01/2024

Revised: 02/06/2025

Accepted: 18/06/2025

Keywords: *Phytohormone, IAA, Yield and Yield Contributing Characters, Nutritional Quality, Tomato.*

Introduction

The tomato, the second most produced and consumed vegetable in the world, is a key vegetable in Bangladesh (Willcox *et al.*, 2003). According to the BBS, Bangladesh produced 442 thousand metric tons of tomato during 2021-2022 (BBS, 2023). Given that they are high in antioxidants and bioactive compounds, tomatoes are one of the primary sources of food that human beings consume to obtain vitamins and minerals. Among the beneficial substances present in tomatoes are phenolic compounds, ascorbic acid, and lycopene (Rocha and Silva, 2011). Numerous epidemiological studies have demonstrated the protective effects of tomato consumption against long-term conditions like cancer and heart diseases (Giovannucci *et al.*,

2002). Therefore, it is pivotal to consume high nutritious food to main good health.

Crop nutritional quality has been found to be significantly influenced by agronomic techniques (Barrett *et al.*, 2007). Numerous pre- and postharvest factors, including cultivar, harvest ripening stage, and agricultural practices, might influence the amount of bioactive chemicals in tomatoes (Dumas *et al.*, 2003). According to Slimestad and Verheul (2009), tomato cultivars have a considerable impact on the amounts of carotenoid and phenolic compounds as well as a partial impact on ascorbic acid. The ripening stage at harvest influences the concentration of phenolic compounds in particular and has a beneficial effect on the carotenoid content (Gautier *et al.*, 2008). Similarly, the addition of

nitrogen (N) fertiliser raised the tomato's levels of phenolic compounds and vitamin C (Benard et al., 2009). According to Ilahy *et al.* (2011), tomato antioxidant components are influenced by the cultivar, growth conditions, growing season, postharvest and production maturity stages, and mineral nutrition.

Plant physiological functions are regulated by mineral nutrition, which also affects the concentration of certain organic and inorganic substances (Hassan *et al.*, 2012).

To increase tomato growth and yield, plant growth regulators (PGRs) are extensively used to tackle different biotic and abiotic stresses, such as extremely high or low temperatures, low soil fertility, water deficiency, inadequate cultivation techniques, pest and disease attacks (Roy *et al.*, 2018; Karim *et al.*, 2015). Research has indicated that varying nitrogen fertilizer dosages have a substantial impact on tomato's levels of ascorbic acid, carotenoid, and phenolic compounds (Handrian *et al.*, 2013; Adli *et al.*, 2019). Information on the effects of PGRs on nutritive value of tomato in Bangladesh is insufficient in scientific literature. Therefore, the current study was taken to examine the effects of exogenous IAA treatment on tomato growth, yield, and nutritional quality.

Materials and Methods

Plant materials and growth conditions

Seeds of BARI Tomato-15 were collected from BARI, Gazipur. The Horticulture Farm, Department of Horticulture, Bangladesh Agricultural University, Mymensingh, was the site of the field experiment. Seedlings were raised in seed bed and transfer to experimental plot at 35-day-old.

Treatments of the experiment

The experiment consisted of four dosages of IAA was used such as I0: 0 ppm IAA (control,), I1: 50 ppm IAA, I2: 100 ppm IAA, and I3: 150 ppm IAA.

Design and layout of the experiment

Three replications and a randomized complete block design were used to set up the single-factor experiment. The unit plot size was 10 m × 10 m and the plants were spaced 60 cm × 60 cm on beds.

Application of IAA

Indole-3-acetic acid was dissolved in 5% ethanol and 0.1% Tween 20 was applied according to treatments. First application of IAA was applied at 15 days after transplanting (DAT) at 7 days interval and continued until 65 DAT.

Parameters studied

Flower and fruit settings, number of flowers and fruits per plant, fruit parameters (average height and average diameter), fruit weight and yield per plant and per plot.

Analysis of nutritional quality

Tomato fruits from the first and second trusses were collected for nutritional analysis. Each plant's tomatoes were collected at the red ripening stage of the experiment.

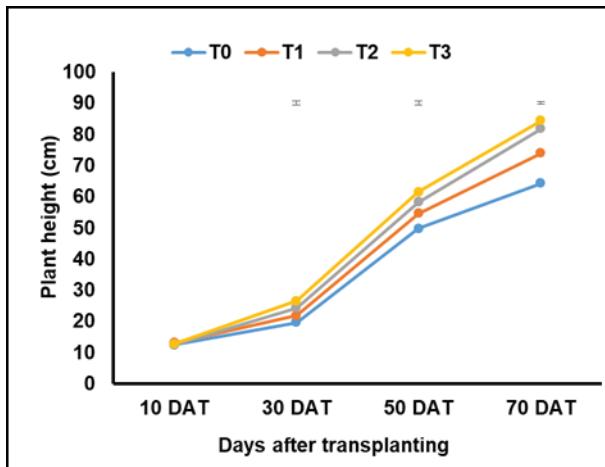
Total soluble solids (TSS): A handheld refractometer was used to measure the total soluble solids (TSS) in the juice obtained from pressing the flesh of tomato fruits (Astuti *et al.*, 2015).

Titratable acidity (TA): For a titratable acidity assay, five grams of flesh tissue and five milliliters of distilled water were combined, centrifuged for ten minutes at 10,000 g, and the resulting supernatant was titrated with 0.01 M NaOH (Majidi *et al.*, 2011).

pH content: A digital pH meter was used to record the pH after 10 g of pulp was added to 10 mL of distilled water and homogenised.

Statistical analysis

Data were analyzed with Minitab 17.0 statistical software. The effect of the treatments on tomato plants under salinity stress was analyzed by analysis of variance (ANOVA) for each parameter either at 5 or 1% level of probability. The differences among the treatment means were compared using Fisher's LSD test (Steel *et al.*, 1997).

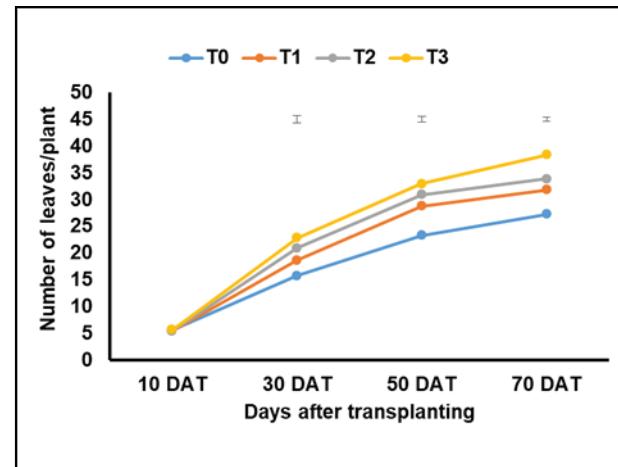

Results and Discussion

Plant height

No significant difference was found on plant height at 10 DAT as it was measured before the application of any treatment. At 30 DAT the maximum and the minimum plant height (26.42 cm and 19.56 cm, respectively) were recorded at T3 and T0,

respectively. Similarly, at 50 DAT the maximum plant height (61.52 cm) was recorded at T3, while the minimum (49.76 cm) was recorded at T0. At 70 DAT the maximum plant height (84.32 cm) was recorded at T3 followed by T2 (81.77 cm), T1 (73.89 cm), respectively, and the minimum plant height

(64.18 cm) was recorded from T0 (Figure 1). The increment in the morphological parameters due to the application of IAA may be because of its effects on respiration, cell growth, elongation, and nucleic acid metabolism. The current study's findings concur with the studied by Singh *et al.* (2019).


Figure 1. Effect of plant growth regulators on plant height at different days after transplanting of tomato. Vertical bars indicate LSD at 5% level of significance. Here, T₀ = 0 ppm, T₁ = 50 ppm IAA, T₂ = 150 ppm IAA and T₃ = 150 ppm of IAA

Number of leaves per plant

There was no significant difference on the number of leaves per plant at 10 DAT as it was measured before any other treatment application. But significant difference was found at different days after the application of treatment. At 30 DAT the highest number of leaves (22.87) was recorded in T3 followed by T2 (20.97), and T1 (18.71), respectively, and the lowest number of leaves per plant (15.75) was recorded from T0. Similarly at 70 DAT the highest number of leaves per plant (38.33) was recorded in T3 while the lowest number of leaves (27.29) was recorded from T0 (Figure 2).

Number of flowers clusters per plant

The total number of flower clusters was significantly impacted the application of IAA at varying DAT. At 40 and 50 DAT, the maximum number of flower clusters per plant was recorded in T3 (5.54 and 9.04, respectively) and the minimum number (2.41 and 4.20, respectively) was recorded in T0. At 60 DAT maximum number of flower clusters per plant

Figure 2. Effect of plant growth regulators on number of leaves at different days after transplanting of tomato. Vertical bars indicate LSD at 5% level of significance. Here, T₀ = 0 ppm, T₁ = 50 ppm IAA, T₂ = 150 ppm IAA and T₃ = 150 ppm of IAA

(14.71) was recorded in T3 followed by T1 (13.30), T2 (12.29), respectively, and the minimum number (8.37) was recorded in T0 (Table 1).

Number of flowers per plant

At 40, 50, and 60 DAT, a significant difference in the number of flowers per plant was noted among the treatments. T3 had the highest number of flowers per plant (17.28) at 50 DAT, whereas T0 had the lowest number of flowers (4.96). T3 produced the most flowers per plant (37.12) at 60 DAT, followed by T1 (35.79) and T2 (34.59), in that order, whereas T0 produced the fewest flowers per plant (24.54) (Table 1).

Number of fruits per plant

The number of fruits per plant significantly influenced by IAA treatments at various DAT. At 80 DAT the maximum number of fruits per plant (30.75) was obtained from T3 followed by T1 (28.71), T2 (25.58), respectively, and the minimum number (19.41) was recorded from T (Table 1).

Table 1. Effect of IAA on number of flower clusters plant-1, number of flowers plant-1 and number of fruits plant-1 at different days after transplanting

Treatment	No. of flower clusters per plant at DAT			No. of flowers per plant at DAT			No. of fruits per plant at DAT		
	40	50	60	40	50	60	60	70	80
T ₀	2.41	4.20	8.37	5.10	10.96	24.54	6.54	11.62	19.41
T ₁	4.66	8.33	13.30	9.91	15.41	35.79	10.45	19.45	28.71
T ₂	4.08	6.66	12.29	8.94	14.25	34.59	9.32	16.87	25.58
T ₃	5.54	9.04	14.71	10.98	17.28	37.12	11.78	21.44	30.75
LSD _{0.01}	0.95	1.34	0.82	1.69	1.40	0.84	1.02	1.28	2.88
Level of Significance	**	**	**	**	**	**	**	**	**

** = Significant at 1% level of probability; T₀ = 0 ppm, T₁ = 50 ppm IAA, T₂ = 100 ppm IAA and T₃ = 150 ppm of IAA

Fruit length and diameter

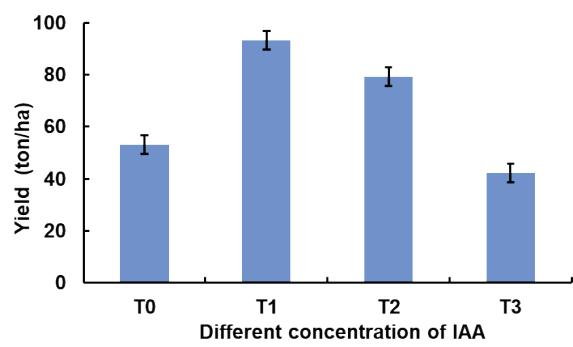
The fruit length varied significantly due to IAA treatments. The maximum fruit length (5.28 cm) was observed at T₁, and the lowest (4.42 cm) was recorded from T₃ (Table 2). The analysis of variance highlighted that there was significant variation among the IAA treatments in respect of fruit diameter. The maximum fruit diameter (5.09 cm) was observed in T₁, and the lowest (3.99 cm) was recorded in T₃ (Table 2).

Weight of individual fruit and fruits plant-1

The impact of IAA caused significant variations in the weight of individual fruits. According to Table 2, the highest weight of individual fruit (81.04 g) was found in T₁, while the lowest weight (62.87 g) was found in T₃. Significant differences were found among the IAA treatments with regard to the weight of fruits produced per plant, according to the analysis of variance. T₁ had the highest weight of fruits plant-1 (2.35 kg), whereas T₃ had the lowest (1.06 kg) (Table 2).

Significant differences were observed amongst the IAA treatments with regard to the weight of fruits produced per plant, according to the analysis of variance. T₁ had the highest weight of fruits plant-1 (2.35 kg), whereas T₃ had the lowest (1.06 kg) (Table 2).

Fruit yield plot-1 and ha-1


Significant difference in fruit yield plot-1 among the plant growth regulators was recorded. The maximum fruit yield plot-1 (37.25 kg) was observed in T₁ and the minimum (16.93 kg) was recorded in T₃ (Table 2). The analysis of variance highlighted that there was significant variation among the plant growth regulators in respect of fruit yield per ha. T₁ had the highest fruit output per hectare (93.19 tons), while T₃ had the lowest (42.32 tons) (Figure 3).

According to Kumar et al. (2018), plant growth regulators that stimulate vegetative development and increase the number of leaves may be the cause of early anthesis. Fruit production per plant increased dramatically with increasing amounts of plant growth ingredient (Ali et al., 2012; Mukati et al., 2019). In contrast, 50 ppm IAA was used to measure fruit length, fruit diameter, weight of individual fruits, weight of fruits per plant, fruit yield per plot, and fruit output per hectare. Auxin is carried to the roots via the stem, where it promotes the roots' general growth. The yield can be increased by the longer, branching roots' ability to absorb more nutrients from the soil that have accumulated in the plant sink (Wang et al., 2005). According to Verma et al. (2014), using NAA to tomatoes successfully increased fruit set. Mukharji and Roy (1966) discovered that the tomato plant's length of fruit size had increased and that the use of IAA had protected the blossom and prevented premature fruit drop.

Table 2. Effect of IAA on fruit length, fruit diameter, weight of individual fruit, weight of fruits plant-1 and fruit yield plot-1

Treatment	FL (cm)	FD (cm)	IFW (g)	FYP (kg)	FYP/plot (kg)
T ₀	4.85	4.52	67.82	1.32	21.09
T ₁	5.28	5.09	81.04	2.35	37.25
T ₂	5.22	4.95	79.57	2.04	32.67
T ₃	4.42	3.99	62.87	1.06	16.93
LSD _{0.05}	0.35	0.33	2.06	0.24	3.76
LSD _{0.01}	0.48	0.47	2.86	0.34	5.21
Level of Significance	**	**	**	**	**

** = Significant at 1% level of probability; T0 = 0 ppm, T1 = 50 ppm IAA, T2 = 100 ppm IAA and T3 = 150 ppm of IAA, FL; fruit length, FD; fruit diameter, IFW; individual fruit weight, FYP, fruit yield/plant

Figure 3. Effect of IAA on fruit yield per ha. Vertical bar indicates LSD at 5% level of significance. Here, T0 = 0 ppm, T1 = 50 ppm IAA, T2 = 100 ppm IAA and T3 = 150 ppm of IAA

Total soluble solids

The effect of IAA on total soluble solids (TSS) content of fruit was statistically significant. The

highest TSS content of fruit (3.00 °Brix) was observed at T3 and the lowest TSS content of fruit (1.95 °Brix) was observed at T0 (Table 3).

Titratable acidity

The IAA exerted significant influence on titratable acidity (TA) percentage of fruit at 1% level of significance. The highest percentage of TA of fruit (0.67 %) was recorded at T3 (150 ppm of IAA) while the lowest percentage of TA of fruit (0.53 %) was recorded at T0 (Table 3).

pH of tomato fruit

Plant growth regulators influenced the pH significantly at 1% level of probability. The maximum pH content of fruit (4.42) was recorded at T0 (0 ppm) and the minimum (4.09) was recorded at T3 (Table 3).

Table 3. Effect of IAA on TSS, TA and, pH of tomato fruits

Treatment	TSS (°Brix)	TA (%)	pH
T0	1.95	0.53	4.42
T1	2.10	0.60	4.27
T2	2.65	0.64	4.20
T3	3.00	0.67	4.09
LSD _{0.05}	0.13	0.02	0.08
LSD _{0.01}	0.18	0.030	0.11
Level of Significance	**	**	**

** = Significant at 1% level of probability; T0 = 0 ppm, T1 = 50 ppm IAA, T2 = 100 ppm IAA and T3 = 150 ppm of IAA, FL; fruit length, FD; fruit diameter, IFW; individual fruit weight, FYP, fruit yield/plant

Conclusions

Applying IAA to tomatoes was found to have positive impacts on their growth, yield, and nutritional quality. Results revealed that 50 ppm of IAA had the maximum (93.19 t/ha) yield than control (42.32 t/ha). Besides, TSS and TA contents were increased in highest doses of IAA. The study concluded that a judicious IAA produced the maximum crop yield with advanced nutritional quality of fruits.

Acknowledgements

The authors thank to the Ministry of Science and Technology, Government of the People's Republic of Bangladesh for providing financial support through the Special Allocation for Science and Technology (Project ID: SRG-231124; Group: BS).

References

Adli M, Hayati R, Aisyah Y 2019. Evaluation of nutrition content of tomatoes (*Lycopersicon esculentum* Mill.) due to the treatment of plant growth regulators and fertilizers. *International Journal of Biology* **14**(2): 134–145.

Astuti DS, Salengke S, Laga A, Mariyati Bilangd M, Mochtar H, Waris A 2018. Characteristics of pH, total acid, total soluble solid on tomato juice by ohmic heating technology. *International Journal of Sciences: Basic and Applied Research* **39**(2): 21–28.

Barrett DM, Weakley C, Diazand JV, Watnik M 2007. Qualitative and nutritional differences in processing tomatoes grown under commercial organic and conventional production system. *Journal of Food Science* **72**: 441–451.

BBS 2023. Bangladesh Bureau of statistics Statistical Year Book of Bangladesh nineteenth edition, Statistics Division, Ministry of Planning, Government of People's Republic of Bangladesh, Dhaka, Bangladesh.

Dumas Y, Dadomo M, Di Lucca G, Grolier P 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. *Journal of Food Science and Agriculture* **83**: 369–382.

Gautier H, Diakou-Verdin V, Benard C, Reich M, Buret M, Bourgaud F, Poessel JL, Caris-Veyrat C, Genard M 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? *Journal of Agricultural and Food Chemistry* **56**(4): 1241–1250.

Giovannucci E, EB Rimm EB, YLiu Y, Stampfer MJ, Willett WC 2002. A prospective study of tomato products, lycopene, and prostate cancer risk. *Journal of the National Cancer Institute* **94**(5): 391–398.

Handrian RG, Meirianiand M, Haryati H 2013. Increased level of vitamin C tomato fruit (*Lycopersicon esculentum* Mill.) Lowland with Hormone Giving GA3. *Jurnal Agroekoteknologi Universitas Sumatera Utara* **2**(1): 333–339.

Kumar S, Singh R, Singh V, Singh MK, Singh AK 2018. Effect of plant growth regulators on growth, flowering, yield and quality of tomato (*Solanum lycopersicum* L.). *Journal of Pharmacognosy and Phytochemistry* **7**(1): 41–44.

Wahab PEM 2012. Nitrate, ascorbic acid, mineral and antioxidant activities of *Cosmos caudatus* in response to organic and mineral-based fertilizer rates. *Molecules* **17**(7): 7843–7853.

Ilahy R, Hdider C, Lenucci ML, I.Tlili I, Dalessandro G 2011. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. *Journal of Food Composition and Analysis* **24**(4–5): 588–595.

Karim MR., Nahar MA, Saharier MS 2015. Improvement of summer tomato (*Lycopersicon esculentum* Mill.) production using 4-chlorophenoxy acetic acid. *Journal of Bioscience and Agriculture Research* **4**(2): 86–91.

Majidi H, Minaei S, Almasi M, Mostofi Y 2011. Total soluble solids, titratable acidity and repining index of tomato in various storage conditions. *Australian Journal of Basic and Applied Sciences* **5**(12): 1723–1726.

Mukherji SK, Roy BK 1966. Reducing fruit drop in West Bengal. *World Crops* **18**(3): 34.

Mukati S, Raidas DK, Choudhary, B 2019. Effect of gibberellic acid on growth, quality and yield of tomato varieties (*Lycopersicon esculentum* Mill.). *Journal of Pharmacognosy and Phytochemistry* **2**: 737–740.

Rocha CB, & Silva J 2011. Total antioxidant content in tomatoes produced through organic vs. conventionally. *Brazilian Journal of Food Technology* **14**(1): 27–30.

Roy B, Nahar MA, Sultana R, Karim MR 2018. Effects of variety and application frequency of 4-chlorophenoxy acetic acid on growth and yield of summer tomato. *Journal of Bioscience and*

Agriculture Research **17**(1): 1410–1415.

Slimestad R, Verheul M 2009. Review of flavonoids and other phenolics from fruits of different tomato (*Lycopersicon esculentum* Mill.) cultivars. *Journal of the Science of Food and Agriculture* **89**: 1255–1270.

Verma PPS, Chaudhary, P 2014. Effect of plant growth regulators on growth, flowering quality of tomato. *Vegetable Science* **41**(1): 94–95.

Willcox JK, Catignani GL, Lazarus S 2003. Tomatoes and cardiovascular health. *Tomatoes and Cardiovascular Health* **43**: 1–18.

