
           Heat-Flux Effect on Fluid Flow and Convective Heat Transfer 
Through a Rotating Curved Micro-Channel

S. C. Adhikari, R. K. Chanda, R. Akter and R. N. Mondal*

Department of Mathematics, Jagannath University, Dhaka-1100, Bangladesh

Abstract
The present paper investigates heat-flux effect and the dissemination of energy in a rotating 
bent square micro-channel (MC) subject to a temperature gradient between the vertical 
sidewalls. The flow structure prevailing the problem is solved by applying a highly accurate 
spectral-based numerical scheme. The flow controlling parameters are the Dean number 
(0<Dn≤5000) and the Taylor number (-500 ≤ Tr ≤ 2000) for curvature 0.01 and the Grashof 
number, Gr=1000. After applying the arc-length path continuation technique to obtain 
steady solution (SS) curves, two branches of SS consisting of 2- to 8-vortex solutions are 
prevailed for the non-rotating case while a single branch with a symmetric 2-vortex 
solution is for positive rotation of the channel. Unsteady flow (UF) properties are simulated 
by the time-average of the solutions, and the transitional behavior is well predicted by 
contemplating the power spectrum and phase spaces of the solutions. Results manifest that 
the UF experiences a consequence ‘steady-state  multi-periodic  steady-state’ for no 
rotation of the channel as Dn is increased. For the rotating case, on the other hand, the flow 
advances in the scenario ‘steady-state  multi-periodic  steady-state’ for negative 
rotation and only a steady-state solution for rotation in the positive direction. Streamlines 
and isotherms of SS and UF for various values of the flow-controlling parameters are 
obtained. Centrifugal force impacts the fluid mixer, which then assists to turn the flow into 
chaos and prompts to intensify the convective heat transfer (CHT).
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Introduction

Flow characteristics especially rotating flows and heat transfer (HT) in a rotating system of different 
geometrical shapes has attracted a lot of attention from prodigious researchers due to plentiful applications 
in the engineering fields like heating and cooling system, rocket engine, electric generators, solar energy, 
and many more (Kockmann, 2005; Yi and Bau, 2003; Schonfeld and Hardt, 2004). The qualitative 
approach in micro-biochips, micro-fuel cells, micro-coolers, and micro-reactors has been increasing at a 
rapid cognition due to the quick advancements in nanoelectronics and bioengineering. Since the last 
couple of decades, research conducted in straight or curved MC has revealed that only a few scientific or 
numerical evaluations of the analysis of flow behavior in curved MC have been done. (Morini, 2004; Yang 
et al., 2005; Wang and Liu, 2007). Microfluidic systems typically feature laminar flows, as opposed to the 
conventional flow processes found in macroscopic devices.
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Bangladesh Secretariat, Dhaka. Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Fig. 1. Geometry of the problem.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.
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Navier-Stokes equation:

Introducing sectional stream functionψψ as follows
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The processing equations for axial flow, secondary flow, and energy equations are as follows  
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.
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Where, Dn, Gr, Tr, and Pr are the important dimensionless variables that appear in equations (6) to 
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Numerical calculation  

The spectral approach is employed as a fundamental tool since the current study is entirely focused on 

numerical computation. The expansion of the polynomial functions )(xnφ  and )(xnψ , entails the 

variables in a group of functions comprised of Chebyshev  polynomials  is   represented as 
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−= states the Chebyshev polynomial of thn  order. The flow representing 
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where M is the number of truncations in the x-direction and N is the number of truncations in the y-direction, 

and nmnmw ψ,  and nmT  are the coefficients of expansion. The collocation points ),( ji yx  are taken to be  
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where 1,,1 += Mi  and 1,,1 += Nj  .  
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Resistance coefficient  

The represented quantities of the resistance coefficient (λ) and the mean axial velocity *w are defined as 
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Nusselt number  
 
The Nusselt number (Nu) is indexed as horizontal heat transfer by 
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The heat transmission rate from the inner walls to the fluid is not uniform due to temperature differences 

across the vertical sidewalls. Hence Nu varies on both heating and cooling sidewalls. We define the 

Nusselt number for the cooled (
cNuτ ) and heated (

h
Nuτ ) sidewalls for the unstable solutions as follows. 
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where  is the time-average over a period.  
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Validation of numerical result  

This study's underlying algorithm's precision is guaranteed by grid accuracy. In light of this, it is crucial 

to evaluate the algorithm's effectiveness. We have shown the validation of numerical exactness by 

determining heat flux (Q) and axial flow (w). The following relationship is used to estimate the error 

percentage. 

 current value-previous value 100%
current valuepε = × .  

In this study, we consider five grid sizes,16 16,18 18, 20 20, 22 22, 24 24× × × × × i.e. N = M. The grid size of 

20×20 was good enough to guarantee the accuracy of the solution as represented in Table 1.  
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Table 1. Validation of grid resolution.

Taylor 

Numbers 
M N Q

 
% relative 

error of Q 

(0,0)w  % relative 

error of w 

 

Tr = 250 

 

16 16 263.625863 --- 350.003962 --- 

18 18 263.624128 0.0006583 350.304573 0.0858141 
 

20 20  263.623865 0.0000997 350.523230 0.0623801 
 

22 22 263.623901 0.0000137  350.688033 0.0469941 
 

24 24 263.623940 0.0000148 350.815378 0.0362997 
 

 

 

Tr =-250 

16 16 433.202226 --- 374.325551 --- 

18 18 433.202329 0.0000238 374.606876 0.0750987 
 

20 20 433.203314 0.0002273 374.825926 0.0584404 
 

22 22 433.202391 0.0002131 374.989494 0.0436193 
 

24 24 433.202270 0.0000279 375.116285 0.0338004 
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

  

Dn = 176.2       (a)     Dn = 415                                        Dn = 45.6      (b)      Dn = 476          

Fig. 2. Experimental vs. computational results for CSD flow (Left: Experimental and Right: computational result) (a) 
Positive rotation at Tr  = 150, (b) Negative rotation at Tr = -150.
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Fig. 4. Contours of primary flow (PF) (top), secondary 
flow (SF) (middle), and isotherm (bottom) for various 
Dn.

Fig. 3. Bifurcation structure of steady 
solutions.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

w 

ψ 

 

T 

 

time           5.998          7.028                8.0          9.4        10.2 
  

Dn           2000  3840   4000   4500 5000 
 5000   

Fig. 7. Contours of PF (top), SF (middle), and isotherm (bottom).
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points for non-rotating channel.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Fig. 9. Bifurcation structure of SS branch.
Fig. 10. Contours of PF (top), SF (middle),

and temperature profile (bottom).

Tr       500     1000   1500            2000 

w  

T  

ψ

Fig. 8. TGs (a) at the cooling side; (b) at the heating side.

(a) (b)



 Fluid Flow and convective heat transfer through a rotating curved Micro-Channel 04(1) 2022140

Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Fig. 11. Primary flow (axial flow) over grid points for rotating channel.

(a) (b)

Fig. 12. Time advancement flow for
various Tr at β = 0.01

Fig. 13. Contours of PF (top), SF (middle) and temperature
(bottom) profile for various Tr.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Here, we studied the transient flow behavior for negative rotation of the curved MC for -500≤Tr<0, Dn = 
2000, Gr= 1000, and β = 0.01. Fig. 15(a) and 15(b) show that the UF is a steady-state with a 2-vortex solu-
tion for Tr = -10. When Tr = -250 then we see that the UF is multi-periodic with a 2- to 4-vortex solution 
(see Fig. 16 and 18). Fig. 17(a) and 17(b) demonstrate the phase-space diagram and spectrum density analysis 
for conformation of the multi-periodicity flow. Next, we investigate the UF for Tr = -500 where it can be 

visible that the UF returned to the previous state i.e., the steady-state but the remarkable scenario is that 
the UF is composed of a 4-cell solution (Fig. 19). The interaction among centrifugal, Coriolis, and buoy-
ancy forces results in the formation of these vortices.

Vortex diagram in the plane

We demonstrate the structure fluctuation of secondary vortices for various parameters of Tr to observe the 
structure of SF in the light of vortices. Fig. 20 depicts how many vortices can the flow be formed for a 
specific value of curvature at a Taylor number and a two- to eight-vortex solution is discovered in the 
secondary flow pattern for distinct values of Tr. It has become possible to figure out maximum 8-vortex 
solutions for curvature β= 0.001, compared to 4- and 2-vortex solutions for β = 0.1 and β = 0.5 correspond-
ingly. It is revealed that when Tr rises, the vortices’ number falls. In this work, the steady-state solution 
has been discovered to have 2-vortex solutions, the periodic solution has 2- to 4-vortex solutions, and the 
chaotic solution has 2- to 6-vortex solutions. Due to the fact that chaotic solutions generate a large number 
of vortices in the surrounding concave wall, it is suggested that they be used instead of steady-state or peri-
odic solutions to enhance heat transmission.

Conclusions

In the present study, the heat-flux effect and the dissemination of energy through a bent MC are deter-
mined using a spectral-based computational scheme for rotating and non-rotating cases with a temperature 
gradient between the vertical lateral walls. From the present study, the following outcomes are listed:
• For non-rotating case, two asymmetric SS are revealed with 2- to 8-vortex solutions. The nonlinearity of 

the time-advancement flow demonstrates as ‘steady-state periodic chaotic’ which consists of a 2- to 
4-vortex solution.

• For positive rotation, an asymmetric SS branchis found with a 2-vortex solution.The nonlinearity of the 
time-advancement flow is ‘steady-state’ only and consists of a two-vortex solution.

• By analyzing non-linear behavior for negative rotation, the unsteady flow goes through-‘steady-state-
multi-periodic steady-state’ with a 2- to 4-vortex solution.

• CHT is increased significantly with the increase of Dn for non-rotating duct and imposing rotational 
speed i.e., raising Tr number. Higher Tr leads to the development of the extremely complicated 
secondary flow field.

• The research demonstrates that buoyancy force interacts with centrifugal and Coriolis forces hart impact 
the fluid mixing, which then assists to turn the flow into chaos and prompts the intensification of the 
convective heat transfer (CHT).
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Fig. 15. (a) Transient solution for Tr = -10, (b) contours of PF (top) SF (middle), and temperature
profile (bottom) for Tr = -10.
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Fig. 14. TG for the rotating channel. (a) at the heatingwall; (b) at the cooling wall
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Here, we studied the transient flow behavior for negative rotation of the curved MC for -500≤Tr<0, Dn = 
2000, Gr= 1000, and β = 0.01. Fig. 15(a) and 15(b) show that the UF is a steady-state with a 2-vortex solu-
tion for Tr = -10. When Tr = -250 then we see that the UF is multi-periodic with a 2- to 4-vortex solution 
(see Fig. 16 and 18). Fig. 17(a) and 17(b) demonstrate the phase-space diagram and spectrum density analysis 
for conformation of the multi-periodicity flow. Next, we investigate the UF for Tr = -500 where it can be 

visible that the UF returned to the previous state i.e., the steady-state but the remarkable scenario is that 
the UF is composed of a 4-cell solution (Fig. 19). The interaction among centrifugal, Coriolis, and buoy-
ancy forces results in the formation of these vortices.

Vortex diagram in the plane

We demonstrate the structure fluctuation of secondary vortices for various parameters of Tr to observe the 
structure of SF in the light of vortices. Fig. 20 depicts how many vortices can the flow be formed for a 
specific value of curvature at a Taylor number and a two- to eight-vortex solution is discovered in the 
secondary flow pattern for distinct values of Tr. It has become possible to figure out maximum 8-vortex 
solutions for curvature β= 0.001, compared to 4- and 2-vortex solutions for β = 0.1 and β = 0.5 correspond-
ingly. It is revealed that when Tr rises, the vortices’ number falls. In this work, the steady-state solution 
has been discovered to have 2-vortex solutions, the periodic solution has 2- to 4-vortex solutions, and the 
chaotic solution has 2- to 6-vortex solutions. Due to the fact that chaotic solutions generate a large number 
of vortices in the surrounding concave wall, it is suggested that they be used instead of steady-state or peri-
odic solutions to enhance heat transmission.

Conclusions

In the present study, the heat-flux effect and the dissemination of energy through a bent MC are deter-
mined using a spectral-based computational scheme for rotating and non-rotating cases with a temperature 
gradient between the vertical lateral walls. From the present study, the following outcomes are listed:
• For non-rotating case, two asymmetric SS are revealed with 2- to 8-vortex solutions. The nonlinearity of 

the time-advancement flow demonstrates as ‘steady-state periodic chaotic’ which consists of a 2- to 
4-vortex solution.

• For positive rotation, an asymmetric SS branchis found with a 2-vortex solution.The nonlinearity of the 
time-advancement flow is ‘steady-state’ only and consists of a two-vortex solution.

• By analyzing non-linear behavior for negative rotation, the unsteady flow goes through-‘steady-state-
multi-periodic steady-state’ with a 2- to 4-vortex solution.

• CHT is increased significantly with the increase of Dn for non-rotating duct and imposing rotational 
speed i.e., raising Tr number. Higher Tr leads to the development of the extremely complicated 
secondary flow field.

• The research demonstrates that buoyancy force interacts with centrifugal and Coriolis forces hart impact 
the fluid mixing, which then assists to turn the flow into chaos and prompts the intensification of the 
convective heat transfer (CHT).
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Fig. 16. Transient solution for
Tr = -250 and β = 0.01 at Dn = 2000.

Fig. 17(a). Phase space(b) Power spectrum
densityfor Tr = -250 and β = 0.01 at Dn = 2000.
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Fig. 18. Contours of PF (Up), SF (middle), and 
temperature profile (bottom) at  for Tr = 
-250.

Fig. 19. (a) Transient solution for Tr = -500, (b) Contours of PF 
(Up), SF (middle), and temperature profile (bottom) for 
Tr = -500 at t = 20.
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Here, we studied the transient flow behavior for negative rotation of the curved MC for -500≤Tr<0, Dn = 
2000, Gr= 1000, and β = 0.01. Fig. 15(a) and 15(b) show that the UF is a steady-state with a 2-vortex solu-
tion for Tr = -10. When Tr = -250 then we see that the UF is multi-periodic with a 2- to 4-vortex solution 
(see Fig. 16 and 18). Fig. 17(a) and 17(b) demonstrate the phase-space diagram and spectrum density analysis 
for conformation of the multi-periodicity flow. Next, we investigate the UF for Tr = -500 where it can be 

visible that the UF returned to the previous state i.e., the steady-state but the remarkable scenario is that 
the UF is composed of a 4-cell solution (Fig. 19). The interaction among centrifugal, Coriolis, and buoy-
ancy forces results in the formation of these vortices.

Vortex diagram in the plane

We demonstrate the structure fluctuation of secondary vortices for various parameters of Tr to observe the 
structure of SF in the light of vortices. Fig. 20 depicts how many vortices can the flow be formed for a 
specific value of curvature at a Taylor number and a two- to eight-vortex solution is discovered in the 
secondary flow pattern for distinct values of Tr. It has become possible to figure out maximum 8-vortex 
solutions for curvature β= 0.001, compared to 4- and 2-vortex solutions for β = 0.1 and β = 0.5 correspond-
ingly. It is revealed that when Tr rises, the vortices’ number falls. In this work, the steady-state solution 
has been discovered to have 2-vortex solutions, the periodic solution has 2- to 4-vortex solutions, and the 
chaotic solution has 2- to 6-vortex solutions. Due to the fact that chaotic solutions generate a large number 
of vortices in the surrounding concave wall, it is suggested that they be used instead of steady-state or peri-
odic solutions to enhance heat transmission.

Conclusions

In the present study, the heat-flux effect and the dissemination of energy through a bent MC are deter-
mined using a spectral-based computational scheme for rotating and non-rotating cases with a temperature 
gradient between the vertical lateral walls. From the present study, the following outcomes are listed:
• For non-rotating case, two asymmetric SS are revealed with 2- to 8-vortex solutions. The nonlinearity of 

the time-advancement flow demonstrates as ‘steady-state periodic chaotic’ which consists of a 2- to 
4-vortex solution.

• For positive rotation, an asymmetric SS branchis found with a 2-vortex solution.The nonlinearity of the 
time-advancement flow is ‘steady-state’ only and consists of a two-vortex solution.

• By analyzing non-linear behavior for negative rotation, the unsteady flow goes through-‘steady-state-
multi-periodic steady-state’ with a 2- to 4-vortex solution.

• CHT is increased significantly with the increase of Dn for non-rotating duct and imposing rotational 
speed i.e., raising Tr number. Higher Tr leads to the development of the extremely complicated 
secondary flow field.

• The research demonstrates that buoyancy force interacts with centrifugal and Coriolis forces hart impact 
the fluid mixing, which then assists to turn the flow into chaos and prompts the intensification of the 
convective heat transfer (CHT).
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Schönfeld and Hardt’s (2004) work on curved MC showed that the induced secondary flows generate a 
mixing effect in micro-devices. The simulated results on helical flows by Jiang et al. (2004) verify the 
predicted mixing results by a series of experimental evaluations.

Rotating flow features are analyzed in three topics which are the steady solution (SS), unsteady solution 
(US), and CHT. Curved channel with rotation produces two forces; Centrifugal force and Coriolis force, 
and these forces directly impact the fluid flow and produce spiraling flow which is also called second-
ary flow (SF). The first evidence was provided by Dean (1927) where the existence of such kind of 
problem was analyzed and discussed in detail for motion in a curved tube with a circular cross-section. 
The main result of this analysis was to introduce the SF which was characterized by the Dean vortices, 
initiated by Dean in 1927. Since then, several enthusiastic researchers have given deep attention to 
investigating such types of fluids through different geometric shapes for rotation and non-rotation. Sev-
eral landmark articles on curved duct flows are mentioned here, for example, Selmi et al. (1994), 
Alfredsson et al. (1989), Barua et al. (1954), Chengand Wu, (1970), Yamamoto et al. (1999), Yanase et 
al. (2002), Hasan et al. (2022a, 2022b).

Analyzing the bifurcation structure, which includes the SS and its linear stability, is one of the most 
important characteristics of fluid flow in a curved MC. Selmi et al. (1994) investigated the structure of 
bifurcation for an incompressible fluid in a rotating curved channel (CC). A 6-cell revolving flow phenom-
enon was discovered by Yamamoto et al. (1999) in their examination. Later, Mondal et al. (2007) and 
Adhikari et al. (2021) evaluated how the bifurcation diagram altered as the curvature of a non-rotating CC 
expanded or reduced and demonstrated the precise affinity to transient behavior and the bifurcation pattern 
among steady branches. Wang and Liu (2007) performed a computational analysis on a completely 
branching structure and stability in a bending MC with a square bend to inscribe the ramifications of 
curvature, initial circumstances, and disturbances. They showed thatregardless of duct curvature size, the 
spiraling flow is always produced in the channel. They observed multiple limiting points and asymmetric 
branching points in their ten branches of solutions. Other pertinent studies on fluid flow through different 
geometric circumstances include Chanda et al. (2020, 2021), Yamamoto et al. (2006), Mondal et al. 
(2014), and Hasan et al. (2019b).  

Examining the nonlinear characteristics is important to figure out the unsteady behavior of the flow. Chan-
dratilleke and Nursubyakto (2003) proposed a mathematical method for elucidating the flow characteris-
tics using a variety of geometrical shapes with various aspect ratios. Later, Wang and Yang (2005) investi-
gated the regular oscillations of an incompressible viscous fluid in a curved square channel (CSC) using 
both numerical and experimental methods, and a comparison of their findings revealed that they were 
completely consistent.  Mondal et al. (2013, 2014) demonstrated the relationship between the UF and the 
bifurcation structure through linear stability. Through analyzing the oscillating behavior computationally 
by Mondal et al. (2017), regular and irregular oscillating flows were observed under conditions of symme-
try and without symmetry, respectively. The majority of the important publications solely focused on weak 
rotational speed. Because of these questions to be answered, the current work focuses on how gyration and 
curvature affect the flow of unsteady fluid in a CRC.

Chandratilleke and Nursubyakto (2003) studied the role of Dean vortices in fostering HT and demon-
strated that CC is more capable than that in a straight duct to gain a better knowledge of thermo-fluid 
dynamics and CHT through CC. The published simulation results of Yanase et al. (2002) and Mondal 
et al. (2014) show that SFs increase HT in the flow. The numerical method of flow characteristics and 
HT via a rotating CSC for different curvatures was recently carried out by Hasan et al. (2019a, 
2019b). Recently, Roy et al. (2020) applied a method that used Hasan et al. (2019a) to prognosticate 
hydrodynamic unsteadiness and CHT in a rotating CRC of medium curvature. In this study, we pres-
ent the numerical analysis of the puzzling flow behavior and energy distribution of fluid flow in a 
tightly coiled square-shaped micro-channel in a rotating system. Flow pattern as well as US of the 
flow features with CHT with strong rotational speed is investigated for both co-rotating and counter- 
rotating cases of the micro-channel. 

Mathematical Model 

The geometric scheme that is taken into consideration in this present study is shown in Figure 1. We have 
into account a fully formed 2D viscous incompressible, and thermally active fluid that passes through 
CSC. The fixed revolving speed of the system is ΩT. The applied condition to the outside bend of geome-
try is at high temperature, on the other hand, the inner bend wall is kept at standard room temperature 
whereas both the upper surface and lower portion of the wall remain adiabatically isolated. It is presumed 
that a constant pressure gradient controls the fluid flow as shown in Fig. 1.

The working equations such as the mass conservation, momentum equation, and energy equation which 
describe the physical situation of the flow through a revolving duct can be referred to as Chanda et al. 
(2020, 2021). Those equations are non-dimensionalized by using the following variables,

where,                 is the uniform velocity. Here, d and υ are the representative length and the kinematic 

viscosity respectively. Since our study is a two-dimensional case, so we assumed             .  Thus, the trans-

form equations are as follows.

Mass conservation equation:

Results and Discussion

Here, the completely formed 2D viscous incompressible fluid through a curved micro-channel (CMC) is 
computationally evaluated with rotating and non-rotating cases for curvature β= 0.01. For the non-rotating  
case, the Dean number, 0<Dn≤5000, is the flow-controlling parameter while for the rotating case, the 
Taylor number, -500 ≤ Tr ≤ 2000, controls the flow. Two cases arise in the present study:

Case I: Non-Rotating channel

Case II: Rotating channel 

In the following, SS, time advancement, and HT are discussed, in detail, for the above-mentioned two 
cases.  

Case I: Non-Rotating channel

Structure for Steady Solutions

As investigated by Mondal et al. (2007, 2013) for finding the steady solutions, our study prevailed in two 
branches of SS for 0<Dn≤5000, Gr = 1000, β= 0.01 (see Fig. 3). These two branches are called Branch 1 
(solid red line) and Branch 2 (solid black line). According to Mondal et al. (2006) discussion, the path 
continuation approach is used to acquire the SS branches using a variety of initial hypotheses. The velocity 
of the non-isothermal flow and isotherm is shown in Fig. 4. It is clear that Branch 1 is made up of a sym-

metric 2- to 8-vortex solution, whereas Branch 2 is made up of a 4- to 8-vortex solution. Finally, the varia-
tion of velocity concerning grid points in the primary flow is depicted in Figure 5 which gives us the idea 
of CMC flows heating wall and cooling wall as shown in Figure 2.

Unsteady solutions

By investigating the time-advancement solution for CMC with the heating wall and cooling wall for 0<Dn
≤3840, as visualized in Fig. 6, the unsteady flow is discovered to have a steady-state solution. Steady-state 
flow in this region always possesses a 2-vortex solution.The nature of the flow quickly changes to regular 
oscillation i.e., periodic as Dn increases. For 3845 ≤ Dn ≤ 4700, the unsteady flow (UF) remains in regular 
oscillation and the pattern of the secondary flow fluctuate in a certain range. The irregularities of the flow 
arise as seen in Fig. 6 for Dn = 5000. Contours of PF, SF, and thermoprofile are shown in Figure 7 for  vari-
ous Dn at the mentioned time. A 2-vortex asymmetric solution is remained up to the periodic stage and in 
the chaotic state, a new vortex is produced from the channel's outer wall. This new vortex is called 
Dean-vortex which is due to a high-pressure gradient. As seen from Figure 7, the velocity increases in the 
axial direction as Dn increases, and the contours of the isotherms distribute from the center of the outer later-
al wall to the inner lateral wall because of the buoyancy force and curvature effect. Convective heat transfer (CHT)

To explore the CHT from the walls to fluid, we study temperature gradients (TG) which simply can explain 

the rate of heat at a particular location. The TGs are executed for some specific Dn values and presented for 

the cooled wall (CW) in Figure 8(a) and for the heated wall (HW) in Figure 8(b). It is noticed from Figure 

8(a) that on the CW the temperature difference is                   dropped down in the middle region of the duct 

as Dn increases which are taken place due to the advection of outward SF as well as the influence of centrifu-

gal force. On the contrary, outside the central region,              is increased monotonically, which is resulted 

from the advection of inward SF and due to the fluid mixing. Besides,                is prolonged at the central 

portion of the duct on the HW monotonically by the opposite SF in the inward direction.

Case II: Rotating channel 

Steady solutions for positive rotation

We have searched the SS branches with the help of the path continuation technique and arc-length method 
and obtained a single branch of SS which exists in the entire ranges for β = 0.01. Fig. 9 shows a unique SS 
branch, where we see that the branch is very simple. In Fig. 10, the contours of PF (up), SF (middle), and 
temperature profile (bottom) on the SS branch for β= 0.01at Dn = 2000, Gr = 1000, and for various values 
of Tr are demonstrated, where it is seen that the branch is composed of a symmetric 2-vortex      solution. 
Due to the small curvature, Coriolis, and centrifugal forces, the primary velocity and isotherms only little 
altered as the rotation is increased. The velocity of the flow in the axial direction over various grid points 
is also shown in Figure 11 for Tr = 500 and Tr = 2000 which provides us the scenario of velocity increase in 
a rotating square channel flow for the heating wall and cooling wall.

Unsteady solutions

We perform the time-dependent solution for β = 0.01at Dn= 2000 and Gr = 1000 for different values of Tr. 
The unsteady solution (US) of the entire domain of the investigated Tr (0<Tr≤2000) gives us the same 
result as the steady-state with a 2-vortex solution (see Fig. 12 and 13). There is no notable change occur-
ring in the primary flow and temperature distribution and implicit with the secondary vortices.

Convective heat transfer (CHT)

To determine the CHT from the heatingwall to the fluid, the influence of positive rotation on the heat- 
generating mechanism is examined. We compute TG at the CW and HW for this reason. Fig. 14(a)              
illustrates how the difference in temperature on the HW grows in the central region owing to a slight vibra-
tion of the heating wall and varies in other places as a result of the fluid mixing. Figure 14(b) shows that          
               on the CW diminishes in the middle area about y = 0 and               gradually increasesthe whole 

part of the duct except the middle area. The propagation of the SF in an outward direction is what leads to 

these results around y = 0 because of the centrifugal force. These results demonstrate that when Tr rises, 
there is a substantial augmentation in heat transmission from the heating lateral wall to the fluid.

Here, we studied the transient flow behavior for negative rotation of the curved MC for -500≤Tr<0, Dn = 
2000, Gr= 1000, and β = 0.01. Fig. 15(a) and 15(b) show that the UF is a steady-state with a 2-vortex solu-
tion for Tr = -10. When Tr = -250 then we see that the UF is multi-periodic with a 2- to 4-vortex solution 
(see Fig. 16 and 18). Fig. 17(a) and 17(b) demonstrate the phase-space diagram and spectrum density analysis 
for conformation of the multi-periodicity flow. Next, we investigate the UF for Tr = -500 where it can be 

visible that the UF returned to the previous state i.e., the steady-state but the remarkable scenario is that 
the UF is composed of a 4-cell solution (Fig. 19). The interaction among centrifugal, Coriolis, and buoy-
ancy forces results in the formation of these vortices.

Vortex diagram in the plane

We demonstrate the structure fluctuation of secondary vortices for various parameters of Tr to observe the 
structure of SF in the light of vortices. Fig. 20 depicts how many vortices can the flow be formed for a 
specific value of curvature at a Taylor number and a two- to eight-vortex solution is discovered in the 
secondary flow pattern for distinct values of Tr. It has become possible to figure out maximum 8-vortex 
solutions for curvature β= 0.001, compared to 4- and 2-vortex solutions for β = 0.1 and β = 0.5 correspond-
ingly. It is revealed that when Tr rises, the vortices’ number falls. In this work, the steady-state solution 
has been discovered to have 2-vortex solutions, the periodic solution has 2- to 4-vortex solutions, and the 
chaotic solution has 2- to 6-vortex solutions. Due to the fact that chaotic solutions generate a large number 
of vortices in the surrounding concave wall, it is suggested that they be used instead of steady-state or peri-
odic solutions to enhance heat transmission.

Conclusions

In the present study, the heat-flux effect and the dissemination of energy through a bent MC are deter-
mined using a spectral-based computational scheme for rotating and non-rotating cases with a temperature 
gradient between the vertical lateral walls. From the present study, the following outcomes are listed:
• For non-rotating case, two asymmetric SS are revealed with 2- to 8-vortex solutions. The nonlinearity of 

the time-advancement flow demonstrates as ‘steady-state periodic chaotic’ which consists of a 2- to 
4-vortex solution.

• For positive rotation, an asymmetric SS branchis found with a 2-vortex solution.The nonlinearity of the 
time-advancement flow is ‘steady-state’ only and consists of a two-vortex solution.

• By analyzing non-linear behavior for negative rotation, the unsteady flow goes through-‘steady-state-
multi-periodic steady-state’ with a 2- to 4-vortex solution.

• CHT is increased significantly with the increase of Dn for non-rotating duct and imposing rotational 
speed i.e., raising Tr number. Higher Tr leads to the development of the extremely complicated 
secondary flow field.

• The research demonstrates that buoyancy force interacts with centrifugal and Coriolis forces hart impact 
the fluid mixing, which then assists to turn the flow into chaos and prompts the intensification of the 
convective heat transfer (CHT).
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