Frequency and Antimicrobial Sensitivity Pattern of Extended Spectrum β-Lactamases Producing Escherichia coli and Klebsiella pneumoniae Isolated from urine at a Tertiary Care Hospital

Islam MB1, Jhora ST2, Yusuf MA3, Sattar AFMA4, Shahidullah SK5, Rahman NMW6, Sharif AR7, Ahsan AI8, Wadud ABMA9, Chowdhury MS10

Abstract
Background: Infections due to extended spectrum β-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae have become an important clinical problem. These organisms are important regarding the infection control by the physicians. Objective: The present study was undertaken to determine the prevalence of ESBLs along with their antimicrobial sensitivity pattern in Escherichia coli and Klebsiella pneumoniae. Methodology: This cross sectional study was conducted in the Department of Microbiology at Sir Salimullah Medical College, Dhaka. Urine samples were collected from patients who were clinically suspected to have UTI. After incubation, plates were checked for presence of suspected pathogens. Organisms were identified to species level by conventional methods. All isolated E. coli and K. pneumoniae were included in the study. The susceptibility to antibiotics was determined by Kirby Bauer method on Muller Hinton agar. Isolates were screened for ESBL production by using disk diffusion of cefotaxime, ceftazidime, ceftriaxone and cefpodoxime placed on inoculated plates containing Muller Hinton agar according to the CLSI recommendations. Phenotypic confirmatory test for ESBL producers was done by combined disc diffusion for all the isolates that were screened positive for the ESBL production following CLSI guidelines. Combined disk diffusion method was also done in this study. Result: A total of 220 non repeated urine samples were cultured of which 132(60%) cases had shown the bacterial growth. Among the 132 samples Escherichia coli had found in 103(78.0%) cases and Klebsiella spp. was found in 14(10.6%) cases. Out of 103 E coli 23(22.3%) cases was found as ESBL strain. On the other hand within 14 Klebsiella species, the ESBL strain was found in 5(35.7%) cases. Both E coli and Klebsiella species were 100% sensitive to imipenem. However, cephamycin was sensitive in 93.7% and 100% in E coli and Klebsiella species respectively. Conclusion: Results indicate that routine ESBL detection should be made imperative and empirical use of third generation cephalosporins must be discouraged.

Key words: Extended spectrum β-lactamases, Escherichia coli, Klebsiella pneumoniae, 3rd generation cephalosporin

Introduction
The most common cause of bacterial resistance to β-lactam antibiotics is the production of β-lactamases1. The latest in the arsenal of these enzymes has been the evolution of extended spectrum β-lactamases (ESBLs). ESBLs are defined as β-lactamases capable of hydrolyzing oximinocephalosporins and are inhibited by β-lactamase inhibitors2. An extensive use of β-lactam antibiotics in hospitals and community has created major resistance problem leading to increased morbidity, mortality and health-care costs3. The incidence of ESBL producing strains among clinical isolates has been steadily increasing over the past years resulting in limitation of therapeutic options4. Microorganisms responsible for urinary tract infection (UTI) such as E. coli and Klebsiella spp. have the ability to produce ESBLs in large quantities. These enzymes are plasmid borne and confer multiple drug resistance, making

1. Dr. Md. Badrul Islam, Associate Professor, Department of Microbiology, Dhaka National Medical College, Dhaka
2. Prof. Sanya Tahmina Ihora, Professor & Head, Department of Microbiology, Sir Salimullah Medical College, Dhaka
3. Dr. Md. Abdullah Yusuf, Lecturer, Department of Microbiology, Shaheed Suhrawardy Medical College, Dhaka
4. Dr. AFM Arshedi Sattar, Clinical Pathologist, Dhaka Medical College Hospital, Dhaka
5. Dr. Sk Shahidul Islam, Assistant Professor, Department of Microbiology, NICVD, Dhaka
6. Dr. NM Wahidur Rahman, Assistant Professor, Department of Microbiology, Eastern Medical College, Comilla
7. Dr. Ahmed Raihan Sharif, Medical Officer, Department of Virology, IEDCR, Dhaka
8. Dr. Ali Imam Ahsan, Junior Consultant, SAHIK, Dhaka
9. Dr. ABM Abdul Wadud, Consultant, Microbiology & Immunology, LABAID Group, Dhaka
10. Dr. Md. Shahjahan Chowdhury, Associate Professor, Department of Pathology, Dhaka National Medical College, Dhaka

Correspondence
Dr. Md. Badrul Islam, Associate Professor, Department of Microbiology, Dhaka National Medical College, Dhaka; Email : bodrulislam63@gmail.com; Mobile: +88 01670738692
Screening for ESBLs: Isolates were screened for ESBL production by using disk diffusion of cefotaxime, ceftazidime, ceftriaxone and cefpodoxime placed on inoculated plates containing Muller Hinton agar media according to the CLSI17 recommendations. Isolates showing inhibition zone size of 22mm with ceftazidime (30µg), 25mm with ceftriaxone (30µg), 27mm with cefotaxime (30µg) and 17 mm for cefpodoxime were suspected for ESBL production. \textit{E. coli} ATCC 25922 was used as a negative control.

Confirmatory test for ESBLs: Phenotypic confirmatory test for ESBL producers was done by combined disc diffusion for all the isolates that were screened positive for the ESBL production following CLSI17 guidelines.

Combined disk diffusion method: In this test a disk of ceftazidime (30µg) alone and a disk of ceftazidime in combination with clavulanic acid (30/10µg) were used. Both the disks were placed 25 mm apart, centre to centre, on a lawn culture of the test isolate on Muller Hinton agar plate and was incubated overnight at 37° C. Difference in zone diameter with and without clavulanic acid was measured. The positive result was defined as 5 mm increase in inhibition zone diameter around combination disks with clavulanic acid versus its standard zone when tested alone17.

Results

Out of the 220 consecutive, non-repeat urine samples processed, 132(60.0%) samples yielded various bacterial isolates. Among them, \textit{E. coli} were the highest number of isolated from the specimen which was 103(78.0%) and the next to this is the \textit{K. Pneumoniae} which was isolated in 14(10.6%) cases. ESBL production was observed in 22.3% of \textit{E. coli} (23/103) and 35.7% of \textit{K. pneumoniae} (5/14).

Table 1: Age distribution among the study population (n=28)

<table>
<thead>
<tr>
<th>Age group</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>3</td>
<td>10.7</td>
</tr>
<tr>
<td>20-40</td>
<td>19</td>
<td>67.8</td>
</tr>
<tr>
<td>40-60</td>
<td>5</td>
<td>17.9</td>
</tr>
<tr>
<td>>60</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100</td>
</tr>
</tbody>
</table>

*Mean age ± SD=35 ± 24.7

All of them showed inhibition zone size of 22mm with ceftazidime during screening test. Confirmatory test for ESBL production were performed by CLSI17 confirmatory test on these 28 isolates of \textit{E. coli} and \textit{Klebsiella spp}. These ESBL positive isolates were obtained from 12 male and 16 female patients with a male female ratio of 1:1.3. They were distributed in the age group of 1 month to 77 years and the mean age of the study population was 35±24.7 years. The antimicrobial susceptibility results of
ESBL producers were also done and showed that susceptibility of ESBL producers to imipenem, nitrofurantoin and amikacin were found to be 100%, 89% and 86% respectively.

Table 2 : Distribution of sex among the study population (n=28)

<table>
<thead>
<tr>
<th>Sex group</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>12</td>
<td>42.9</td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>57.1</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100</td>
</tr>
</tbody>
</table>

Male : Female= 1:1.3

The antimicrobial resistance was significantly higher in ESBL producers than in non-ESBL producers. ESBL producers were almost always resistant to ampicillin and piperacillin. Both E. coli and Klebsiella species were 100% sensitive to imipenem. However, cephaparin was sensitive in 93.7% and 100% in E. coli and Klebsiella species respectively.

Table 3 : Distribution ESBL producing E. coli and Klebsiella species (n=117)

<table>
<thead>
<tr>
<th>Bacteria Isolated</th>
<th>ESBL positive</th>
<th>ESBL negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>23(82.1%)</td>
<td>80(89.9%)</td>
<td>103(88.0%)</td>
</tr>
<tr>
<td>Klebsiella species</td>
<td>5(17.9%)</td>
<td>9(10.1%)</td>
<td>14(12.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>28(100%)</td>
<td>89 (100%)</td>
<td>117(100%)</td>
</tr>
</tbody>
</table>

* Pearson Chi-Square test was corrected by Fisher's Exact Test
*p value= 0.318

Cephaparin resistance was also higher in ESBL producing E. coli and K. pneumoniae isolates when compared to ESBL non producers. Combination of β-lactam/β-lactamase inhibitors showed greater activity in both ESBL producers and non producers. Among aminoglycosides, amikacin showed greater activity against all the isolates irrespective of their ESBL status.

Discussion

Antibiotic resistance monitoring has a central role among all strategies to manage the problem of antibiotic policy. Since their first description in the mid 1970s, ESBLs have been isolated worldwide and form a major contributor of drug resistance in many of Enterobacteriaceae. ESBLs are now a problem in hospitalized patients throughout the world. The prevalence of ESBLs among clinical isolates vary greatly world wide and in geographic areas and are rapidly changing overtime. Of the 132 strains included in this study 23.5% showed ESBL production, with the highest incidence in E. coli (82.1%) followed by K. pneumoniae (17.9%). The ESBL production is alarming. The incidence of ESBL in major hospitals of India has been reported to be as high as 58%. The range of ESBL isolation rate has been varied from 6 to 39% in different studies. However, very similar percentage was reported from Chennai (20%) and Hyderabad (19.8%). One reason for such variability may be the very low number of samples studied.

Interestingly among all ESBL isolates, it is predominantly present among E. coli (82.1%) compared to K. pneumoniae (17.9%). Similar finding showing a high prevalence of ESBLs among E. coli was reported. The high incidence of ESBLs among E. coli may be peculiar to the Indian subcontinent. Cefpodoxime showed the highest sensitivity in detecting ESBL producing E. coli and K. pneumoniae as reported earlier. Organisms that express an ESBL are frequently resistant to other antimicrobial agents, as many of these additional resistant genes are encoded on the ESBL associated plasmid. In this study high level of resistance was observed against tetracycline. However, good activity was showed by β-lactam/β-lactamase inhibitor combination. Among the non-β-lactam antibiotics, amikacin showed higher sensitivity against these ESBL producers. Similar results were reported for the patients with serious infections with ESBL producers. In the present study, ESBL producing isolates were isolated from inpatients units as well as from clinical samples from patients attending outpatient. As indicated in many previous studies all ESBL producers were found to be susceptible to imipenem and amikacin. However, amikacin and carbapenems are usually used only as the reserve drugs. A similar study conducted by et al showed 100% susceptibility to amikacin and imipenem. The marked increase in β-lactamase production, including the high level constitutive ESBL producers have left us with few alternatives in combating serious infection.

Conclusion

In conclusion, this study emphasizes the need for continued surveillance of ESBL producing bacteria as high prevalence of antibiotic resistance in ESBL positive E. coli and K. pneumoniae was observed. Phenotypic confirmatory test using combination disk is simple and cost effective for the detection of ESBL producers as it has 100% concordance with MIC reduction test. The control measure include judicious use of antibiotics, strict hygiene protocols and implementation of appropriate infection control measures in the hospital, especially while treating high risk patients.

References

4. Podschun R, Ullmann U. Klebsiella species as Nosocomial Pathogens:
17. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 16th informational supplement .2006; M100-S15