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Abstract 

In this paper, thermodynamic effects in modified (2+1)-dimensional FRW cosmology is 

explored. The impacts of fluctuations in the Hubble parameter and its derivatives on the 

universe's evolution and corresponding thermodynamic behavior are examined. Using the 

modified FRW metric as a starting point, and the conditions ∇𝜇𝑟̃∇𝜇𝑟̃ = 0, we obtained the 

adjusted apparent horizon radius  𝑟̃𝐴
−2 = 𝐻2 + 𝑘 𝑎2⁄  and matching surface gravity. The 

energy and generalized entropy at the horizon are obtained using the Misner–Sharp 

formalism. This is accomplished by using our modified (2+1)-dimensional FRW cosmology 

in conjunction with the unified first law of thermodynamics. The evolution equations were 

formulated for 𝐻̇ and 𝐻2 based on modified Friedmann and acceleration equations with 

dimensionless constants 𝛼1, 𝛼2, 𝛽1 and 𝛽2. The dynamics of (2+1)-dimensional cosmology is 

improved by these changes. In order to guarantee conformity with the generalized first law, 

we apply requirements to the modified gravity parameters by examining the consistency of 

the thermodynamics equation 𝑇𝑑𝑠 = 𝑑E + 𝑊𝑑𝑣. These restrictions result in invariant 

relations between the corrections coefficients, namely 
𝛼2

𝛼1
=

1−𝛽2

1−𝛽1
  and 

𝛽2

𝛽1
=

1−𝛼2

1−𝛼1
 , which are 

symmetric under the interchange 𝛼𝑖 ↔ 𝛽𝑖. This formulation establishes a connection between 

thermodynamics and gravitational dynamics in (2+1)-dimensions, thereby facilitating the 

systematic examination of the influence of modified gravity on cosmic evolution. 

Keywords: Thermodynamics; Modified FRW cosmology; Viscous fluid; Cosmology; (2+1)-

Dimensional gravity. 
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1. Introduction 

 

In nearly all other branches of physics, smaller dimensional models have been shown to be 

quite useful. These models are important because they stimulate new ideas and new ways 

of looking at their equivalents in higher dimensions. They also provide an environment that 
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is simple enough to illustrate some basic physical processes without the mathematical 

complexity that is sometimes present in four dimensions. Interesting characteristics shared 

by four-dimensional gravity are present in (2+1)- dimensional gravity. The curvature tensor 

and the characteristics of the Einstein field equations reveal certain peculiarities of Einstein 

gravity in three space-time dimensions [1]. General Theory of Relativity (GTR or simply 

GR) in (2+1)-dimensional spacetime is regarded to possess a number of special features 

that simplifies the studying problem. As revealed from the works of several scientists, there 

are no gravitational waves, there are no black holes without a negative cosmological 

constant, and the Weyl curvature is the same in all cases [2-4]. In two spatial dimensions, 

the weak field limit of the theory does not match Newtonian gravity. Of course, here 

‘simplifying features’ means that considerable progress can be made in search of the general 

cosmological solution to the three-dimensional Einstein equations. It has been observed that 

the cosmological solution is rather cumbersome and dominated by nonintegrability in (2 + 

1)-dimension; on the other hand, the theory makes it possible to determine the general 

solutions. The state and features of the Einstein field equations in two spatial and one 

temporal dimension are what make (2 + 1)-dimension so intriguing [5-8]. In (2+1)-

dimensional space, the Einstein and Riemann tensors are the same. This means that 

spacetime is flat outside of sources where there is no gravitational field and the Newtonian 

limit doesn’t apply. It has been investigated that all hydrostatic structures in (2+1)-

dimensional GR contain matter-filled spaces without any matching to the external vacuum 

solution and thus represent a specific static cosmology [9]. Several cosmological 

observations specify that there must be some kind of dark energy with a repulsive pressure 

in the late-time universe. Therefore, it has created interest in the study of cosmological 

scaling solutions of minimally coupled scalar fields in 3 dimensions. Fujiwara et al. [10] 

have explained the case of nucleation of the universe in a (2 + 1)-dimensional gravity model 

with a negative cosmological constant. It is understood that the formula 𝑆 = 𝐴 ⁄ 4 is largely 

employed to state a black hole's energy as a function of the event horizon's area. This 

inseparable correlation could be formed as signaling that a black hole's perimeter stores all 

of its degrees of freedom. The understanding that a physical system's comprehensive 

structures can be found on its border in quantum gravity under unique conditions has long 

been pursued in an endeavor to expand this interconnectedness to more solutions in gravity. 

This idea is known as the holographic principle [11]. A lot of interest has largely been 

generated in the research of gravitational theories other than the four. Although there are 

many other factors for this, quantum gravity, grand unified theory, and string theory 

facilitate them to sustain the main driving forces. For instance, the Weyl curvature is exactly 

zero, the weak field limit of the three-space-time general theory of relativity doesn’t match 

Newtonian gravity in (2+1)-dimensions, there are no black holes or gravitational waves 

without a negative cosmological constant, and there are many other special features that 

make things easier. The structure of universal relativistic gravity in (2+1)-dimensional 

spacetime have been investigated [10-12]. (2+1)-gravity is an especially intriguing instance 

to explore because of the unique characteristics of Einstein's field equations in two space 

and one time dimension. As signified by quantum field theory, lower-dimensional systems 
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are always researched in physical systems, and applying this method to gravity produces 

highly qualitative and insightful results. It is predicated that (2+1)-gravity will produce a 

unique outlook for understanding the physical importance of (3+1)-gravity [13,14]. Kaloper 

et al. achieved a particular extension of the holographic principle to cosmology. 

It is known that at the event horizon, the black hole emits thermal radiation with a 

temperature equal to the surface gravity. Additionally, there is an entropy associated with 

the horizon of the black hole [16,17]. The first law of thermodynamics says that the 

Hawking temperature and entropy are correct. Since, Hawking radiation is a quantum 

process, statistical physics and quantum gravitational theories are connected in black hole 

thermodynamics. As a result, researchers have been trying to connect Einstein’s equation 

and thermodynamics in recent decades. Jacobson acquired Einstein equations from the 

entropy and temperature by using the Clausius relation 𝛿𝑄 =  𝑇𝑑𝑠, where 𝛿𝑄 and 𝑇 are 

point energy flux and Unruh temperature [18,19]. The relationship between 

thermodynamics and gravity has also been extended in the brane world cosmology [25,26], 

and numerous authors have studied how the thermodynamic properties match the apparent 

horizon of the FRW universe with perfect fluid [20-23]. The Einstein field equations can be 

reformulated as a first law of thermodynamics in general static spherically symmetric 

spacetime, as demonstrated in literature [27-29]. The perfect fluid cosmological models 

have been studied in greater detail in the literature, and the viscous fluid was introduced 

much later in the study of the universe [30]. Additionally, the authors considered the viscous 

generalized Chaplygin gas as a dark energy model and discovered that, in the special case, 

it corresponds to modified Chaplygin gas [31]. The viscous cosmology and 

thermodynamics of the apparent horizon in the FRW background were investigated by 

Akbar et al. [32], where the differential form of the Friedman equations of the FRW 

universe can be recorded as a similar form of the first law, 𝑇 𝐴𝑑𝑆𝐴 =  𝑑𝐸 +  𝑊𝑑𝑉 , of 

thermodynamics at the apparent horizon of the FRW universe filled with the viscous fluid. 

We have also considered a number of recent contributions on related topics in light of recent 

developments. Ditta et al. [33] examined thermal stability and quantum fluctuations in black 

hole spacetimes and examined emergent gravity phenomena in lower-dimensional models. 

Additional developments that are pertinent to our research have been published elsewhere 

[34,35]. These publications offer contrasting viewpoints on dark energy models, modified 

gravity, and thermodynamics. Our current analysis of generalized Friedmann dynamics in 

(2+1)-dimensional FRW cosmology can be placed in a wider context. In this paper, the 

generalized Friedman equations of the FRW universe are employed, and the first law of 

thermodynamics is achieved in some special conditions. The study of cosmology in lower-

dimensional spacetimes, particularly in (2+1) dimensions, provides a simplified yet 

insightful framework for understanding fundamental aspects of gravitational dynamics and 

their thermodynamic interpretations. In a (2+1)-dimensional Friedmann–Robertson–

Walker (FRW) universe, the geometry remains homogeneous and isotropic, characterized 

by a time-dependent scale factor and a constant spatial curvature. Despite the reduced 

dimensionality, the essential features of cosmic evolution, such as expansion, curvature 

effects, and the role of matter and energy, are preserved, making it a valuable setting for 
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exploring theoretical extensions. In contemporary cosmology, the mysterious elements of 

dark energy and dark matter are the main drivers of the ongoing effort to comprehend the 

universe's late-time accelerated expansion. The dynamics of interacting dark energy and 

dark matter, controlled by a quadratic equation of state with time-dependent parameters, are 

examined in this paper using a five-dimensional Bianchi type-I cosmological model. In 

order to ascertain the evolutionary behavior of the equation of state parameter and the 

cosmological term, especially in the asymptotic limit as time approaches infinity, we solve 

the Einstein field equations within this framework. For certain variants of the Hubble 

parameter, the cosmological dynamics are further investigated in both linear and power-law 

regimes, and the physical behavior of important quantities is explored both at the beginning 

and as time increases to infinity. This study's key discovery highlights the crucial role that 

the interactive coupling between the dark energy and dark matter components plays in 

determining the dynamics of the universe by directly driving a phase of cosmic expansion 

that is noticeably faster than in non-interacting scenarios [36]. 

A key concept of this framework is the apparent horizon, which serves as a causal 

boundary for the observable universe. The apparent horizon also plays a crucial role in 

connecting gravity with thermodynamics. By associating temperature and entropy to this 

horizon, one can draw parallels between gravitational dynamics and the laws of 

thermodynamics. This thermodynamic perspective suggests that the evolution of the 

universe can be interpreted as a thermodynamic process governed by the flow of energy 

across the horizon. 

To explore deviations from standard cosmology, generalized Friedmann equations are 

considered. These equations incorporate correction terms that may arise from quantum 

gravitational effects, higher-order curvature contributions, or modified gravity theories. 

Such corrections typically involve terms that depend on the expansion rate of the universe 

and its time derivative, modulated by dimensionless parameters. These additional 

contributions act as effective sources or driving terms, altering the conventional relationship 

between geometry and matter. 

The compatibility of these generalized cosmological equations with the first law of 

thermodynamics is of particular interest. By examining the energy contained within the 

apparent horizon and the effects of cosmic expansion on this energy, we can develop a 

revised version of the first law that incorporates both matter and the alterations in geometry. 

Under specific conditions on the correction parameters, the generalized Friedmann 

equations and the thermodynamic law can be made fully consistent. These conditions reveal 

intrinsic symmetries and lead to invariant relations among the correction coefficients. 

Overall, the investigation of generalized cosmological dynamics in (2+1) dimensions, 

through the lens of thermodynamics, provides a powerful approach to understanding the 

deeper connections between gravity, quantum theory, and the thermodynamic behavior of 

spacetime. 
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2. The Generalized Version of the Friedman Equation and the First Law of 

Thermodynamics 

The spatially flat FRW universe is described by the following metric [38,39], 

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡) (
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2𝑑𝜃2) ,                                                                            (1) 

where 𝑎(𝑡) is scale factor. the coordinate (𝑡, 𝑟, 𝜃 ) symbolize the co-moving coordinates, 

and the spatial curvature constant 𝑘 =  0, +1 and − 1 stands a flat, closed and open 

universe, respectively. The energy momentum tensor in the FRW metric in (2+1)-dimension 

turn into, 

𝑇𝜇𝜗 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜗 − 𝑝𝑔𝜇𝜗 ,                                                                                          (2) 

where 𝜌 is the energy density, p is pressure, 𝑢𝜇 is the velocity three vector with 𝑢𝜇𝑢𝜗 =

−1. The analysis involves matter characterized by the energy-momentum tensor 𝑇𝜇𝜗 =

(𝜌, −𝑝, −𝑝). The Einstein field equation in (2+1)-dimension can be written as [40], 

𝐺𝜇𝜗 = 𝑅𝜇𝜗 −
1

2
𝑔𝜇𝜗𝑅 = −2𝜋𝐺𝑇𝜇𝜗 .                                                                                  (3) 

The field equations (3) with the help of line element (1) and the energy-momentum 

conservation equation in (2+1)-dimensions are given by 

(
𝑎̇

𝑎
)

2

+
𝑘

𝑎2 = 2𝜋𝐺𝜌,                                                                                                           (4) 

𝑎̈

𝑎
= −2𝜋𝐺𝑝,                                                                                                                     (5) 

𝜌̇ = −2𝐻(𝜌 + 𝑝).                                                                                                           (6) 

The above metric (1) can be rewritten in spherical form 

𝑑𝑠2 = ℎ𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏 + 𝑟̃2,                                                                                                 (7) 

where, 𝑟̃ = 𝑎(𝑡)𝑟 and 𝑥0 = 𝑡, 𝑥1 = 𝑟  and two-dimensional metric ℎ𝑎𝑏 = 𝑑𝑖𝑎𝑔 (1,
𝑎2(𝑡)

1−𝑘𝑟2). 

The dynamical apparent horizon is resolved by the relation ℎ𝑎𝑏𝜕𝑎𝑟̃𝜕𝑏𝑟̃ = 0, which suggest 

that the vector ∇𝑟̃ is null on the apparent horizon for the FRW metric present the apparent 

horizon radius [41] 

𝑟̃𝐴
−2 = 𝐻2 +

𝑘

𝑎2 .                                                                                                               (8) 

The related temperature 𝑇 =
𝜅

2𝜋
 at the apparent horizon is resolved through the surface 

gravity [41] 

𝜅 = −
1

2√−ℎ
𝜕𝑎(√−ℎℎ𝑎𝑏𝜕𝑏𝑟̃) .                                                                                         (9) 

The precise expansion of the surface gravity at apparent horizon of Friedman-Robertson-

Walker universe is given by [42]; 

𝜅 = −
1

𝑟̃𝐴
(1 −

𝑟̇̃𝐴

2𝐻𝑟̃𝐴
),                                                                                                      (10) 

where, over dot represent the time derivative and Hubble parameter 𝐻 =
𝑎̇

𝑎
 . The analysis 

shows that 𝑇ℎ =
1

2𝜋𝑟̃𝐴
 be close to surface gravity |𝜅| =

1

𝑟̃𝐴
 . Focus is now placed on defining 

the energy of the universe enclosed by the apparent horizon. The quantities are added to the 

whole matter energy 𝐸 = 𝑉𝜌 inside a sphere of radius 𝑟̃ that is also the Mizner-Sharp energy 

[41] 

𝐸 =
𝑟̃

2
(1 − ℎ𝑎𝑏𝜕𝑎𝑟̃𝜕𝑏𝑟̃) ,                                                                                              (11) 
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within the apparent horizon. At the time that the apparent horizon ( ℎ𝑎𝑏𝜕𝑎𝑟̃𝜕𝑏𝑟̃ = 0 ), the 

Mizner-Sharp energy which is determined by, is actually the total matter energy within the 

sphere of radius 𝑟̃𝐴, 

𝐸 = 𝑉𝜌.                                                                                                                            (12) 

The total entropy inside the horizon 𝑆ℎ =
𝐴

4
 , where horizon area 𝐴 = 2𝜋𝑟̃𝐴. It should be 

noted that natural units are employed, with ℏ = 𝑐 = 𝐺 = 𝜅𝐵 = 1. The modified Friedman 

and acceleration described in [24] will be examined here. 

  𝐻2 +
𝑘

𝑎2 = 2𝜋𝜌 + 𝛼1𝐻2 + 𝛼2𝐻̇                                                                                     (13) 

and 

       𝐻̇ −
𝑘

𝑎2 = −2𝜋(𝜌 + 𝑝) + 𝛽1𝐻2+𝛽2𝐻̇                                                                       (14) 

The coefficients 𝛼1, 𝛼2, 𝛽1 and  𝛽2 are dimensionless constant with some conditions are 

given in literature [37]. The terms 𝐻2 and  𝐻̇ contains the dimensionless constants relates 

to the extra driving terms. So as to investigate the first law of thermodynamics from (13) 

and (14), it is necessary to acquire 𝐻2 and  𝐻̇ individually, which are given by 

𝐻2 =
2𝜋𝑎2𝛼2(𝜌+𝑝)+2𝜋(𝛽2−1)𝑎2𝜌+𝑘(1−𝛼2−𝛽2)

𝑎2𝐴
,                                                                     (15) 

𝐻̇ =
2𝜋𝑎2(1−𝛼1)(𝜌+𝑝)−2𝜋𝑎2𝛽1𝜌+𝑘(𝛼1+𝛽1−1)

𝑎2𝐴
,                                                                      (16) 

where, 

𝐴 = 𝛼1 + 𝛽2 + 𝛼2𝛽1 − 𝛽2𝛼1 − 1. 

From equation (7) and taking the derivative, the result can be obtained 

−2
𝑑𝑟̃𝐴

𝑟̃𝐴
3𝑑𝑡

= (2𝐻𝐻̇ − 2𝑘
𝐻

𝑎2),                                                                                          (17) 

After putting value of 𝐻̇ and simplifying gives 

−2
𝑑𝑟̃𝐴

𝑟̃𝐴
3 = [𝐵𝜌̇ + 𝐷𝑝̇ − 2𝐶

𝑘𝑎̇

𝑎3] 𝑑𝑡,                                                                                 (18) 

where, 

𝐵 =
2𝜋𝛼2+2𝜋(𝛽2−1)

𝐴
 , 𝐶 =

1−𝛼2−𝛽2+𝐴

𝐴
, 𝐷 =

2𝜋𝛼2

𝐴
 .                                                          (19) 

From equation (17) and (18) one can obtain 

2𝐻𝐻̇ − 2𝑘
𝐻

𝑎2 =  𝐵𝜌̇ + 𝐷𝑝̇ − 2𝐶
𝑘𝐻

𝑎2                                                                              (20) 

By putting the value of 𝐻̇ from equation (16) in above equation, the following equation is 

derived: 

−
𝑑𝑟̃𝐴

𝑟̃𝐴
3 = 𝐻 [(𝛾𝜌 + 𝜃𝑝) + (𝜂 − 1)

𝑘

𝑎2] 𝑑𝑡,                                                                     (21) 

where, 

𝛾 =
2𝜋(1−𝛼1)−2𝜋𝛽1

𝐴
, 

𝜃 =
2𝜋(1−𝛼1)

𝐴
 ,                                                

𝜂 =
𝛼1+𝛽1−1

𝐴
 .                                                                                                                          

Where the temperature and curvature as 𝑇 = 𝜅 2𝜋⁄  and 𝜅 = −
1

𝑟̃𝐴
(1 −

𝑟̇̃𝐴

2𝐻𝑟̃𝐴
). As is known, 

the definition of entropy 𝑆 = 𝐴 4⁄  and 𝐴 = 2𝜋𝑟̃𝐴, the following equation can be derived: 

𝑇𝑑𝑠 = −
1

4𝑟̃𝐴
(1 −

𝑟̇̃𝐴

2𝐻𝑟̃𝐴
) 𝑑𝑟̃𝐴 .                                                                                         (22) 
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Now multiplying equation (19) with 𝑟̃𝐴
3 (1 −

𝑟̇̃𝐴

2𝐻𝑟̃𝐴
), after solving, the result is given as [43] 

𝑇𝑑𝑠 =
𝐻

4
𝑟̃𝐴

2 (1 −
𝑟̇̃𝐴

2𝐻𝑟̃𝐴
) [𝛾𝜌 + 𝜃𝑝 + (𝜂 − 1)

𝑘

𝑎2] 𝑑𝑡,                                                     (23) 

The total matter energy is considered as 𝐸 = 𝑉𝜌. Differentiation then yields: 

𝑑𝐸 = 𝜌𝑑𝑉 + 𝑉
𝑑𝜌

𝑑𝑡
𝑑𝑡 

  𝑑𝐸 = 2𝜋𝜌𝑟̃𝐴𝑑𝑟̃𝐴 + 𝜋𝑟̃𝐴
2𝜌̇𝑑𝑡.                                                                                        (24)                            

In above equation, first 𝜌̇ is determined from equation (20) 

𝜌̇ =
2𝛾

𝐵
𝐻𝜌 +

2𝜃

𝐵
𝐻𝑝 −

𝐷

𝐵
𝑝̇ +

2

𝐵
[𝜂 − 1 + 𝐶]

𝐻𝑘

𝑎2  .                                                             (25) 

By inserting the value of 𝜌̇ into equation (25), 𝑑𝐸 is determined. 

𝑑𝐸 = 2𝜋𝑟̃𝐴𝜌𝑑𝑟̃𝐴 +
2𝜋

𝐵
𝐻𝑟̃𝐴

2 [𝛾𝜌 + 𝜃𝑃 + (𝜂 − 1 + 𝐶)
𝑘

𝑎2
] 𝑑𝑡 −

𝜋𝐷

𝐵
𝑟̃𝐴

2𝑑𝑝 

𝑑𝐸 = 2𝜋𝑟̃𝐴𝜌𝑑𝑟̃𝐴 +
2𝜋

𝐵
𝐻𝑟̃𝐴

2 [𝛾𝜌 + 𝜃𝑃 + (𝜂 − 1)
𝑘

𝑎2
] 𝑑𝑡 +

2𝜋

𝐵
𝐻𝑟̃𝐴

2 𝐶𝑘

𝑎2
𝑑𝑡 

−
𝜋𝐷

𝐵
𝑟̃𝐴

2𝑑𝑝.                                                                                                                       (26)  

Using (24) and (26), one can ultimately get the following equation: 

𝑇𝑑𝑠 =
𝐵

8𝜋
𝑑𝐸 −

1

16𝜋
[(𝛾 + 2𝐵)𝜌 + 𝜃𝑝 + (𝜂 − 1)

𝑘

𝑎2
] 𝑑𝑉 +

𝐷

8𝜋
𝑉𝑑𝑝 − 

𝐶𝐻
𝑘

𝑎2 𝑟̃𝐴
2𝑑𝑡                                                                                                                     (27)               

This equation guides us to apply some requirement as 𝜂 = 1 and 𝐶 = 0. The first 

generalized law of thermodynamics applies in those situations, after putting the value of  𝜂 

and 𝐶 and generalized law of thermodynamics, a relation connecting 𝛼1, 𝛼2, 𝛽1and  𝛽2 in 

modified Friedman-Robertson-Walker’s equations is derived: 
𝛼2

𝛼1
=

1−𝛽2

1−𝛽1
  and 

𝛽2

𝛽1
=

1−𝛼2

1−𝛼1
 .                                                                                              (28)                                                                                                    

It is evident that these relations are fixed under transformation 𝛼𝑖 ↔ 𝛽𝑖. The result is a 

generalized first law of thermodynamics where 
𝐷

8𝜋
𝑉𝑑𝑝 arises from the depression of the 

environment. 

 
3. Conclusion 

 

In this study, an investigation was carried out on the thermodynamic properties of a 

modified Friedmann-Robertson-Walker (FRW) universe in (2+1)-dimensions, 

incorporating additional correction terms in the field equations. By employing the unified 

first law of thermodynamics and examining the apparent horizon dynamics, the required 

constraints on the dimensionless parameters 𝛼1, 𝛼2, 𝛽1and  𝛽2 were found. Analysis reveals 

that the generalized first law of thermodynamics holds only when the parameters satisfy 

specific relations, remaining unchanged under the transformation 𝛼𝑖 ↔ 𝛽𝑖. These 

constraints ensure consistency between the modified cosmological equations and the 

thermodynamic laws at the apparent horizon. Furthermore, it was demonstrated that an 

additional term 
𝐷

8𝜋
𝑉𝑑𝑝 arises in the thermodynamic relation, representing the work done 

due to pressure variations in the system. This term highlights the interplay between 

geometric corrections and thermodynamic behavior in modified gravity scenarios. The 

results suggest that the modified FRW framework maintains thermodynamic consistency 
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under specific parameter constraints, reinforcing the deep connection between gravity, 

thermodynamics, and horizon dynamics. Future work could explore observational 

implications of these constraints and their role in alternative theories of gravity. While the 

present analysis has concentrated on entropy, Misner–Sharp energy, and the unified first 

law at the apparent horizon, other thermodynamic quantities such as heat capacity and free 

energies, which are important for stability analysis, will be considered in future work. 
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