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Abstract

The present research aims at investigating the LRS Bianchi type I dark energy cosmological
model within the framework of f(G) gravity. To obtain solutions for the field equations, a
parametrization of the deceleration parameter is employed. The approximate best-fit values
of the model parameters are obtained using the least squares method, incorporating
observational constraints from available datasets such as the Hubble dataset and the Pantheon
dataset by applying the Root Mean Square Error (RMSE) formula. The related cosmological
parameters are graphed against redshift, and the universe's accelerated expansion is
subsequently examined. Various physical parameters, including pressure, energy density, and
energy conditions, are also discussed.
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1. Introduction

A viable physical theory must meet three essential standards: internal consistency,
comprehensive explanatory power, and empirical validation through experimental
evidence. This trio of criteria equally applies to gravitational theories, including General
Relativity. Despite its successes, the theory is marred by singularities like black holes and
the Big Bang, and it fails to align with observational evidence at infrared scales [1].
Relativistic astrophysicists have proposed modified gravity theories by generalizing the
Einstein-Hilbert action. This involves substituting the Ricci scalar with more complex
functions, such as f(R), or combining scalar and tensorial curvature invariants. This
approach has become a standard framework for exploring the underlying causes of the
universe's accelerated expansion. This modification gives rise to the f(R) theory of
gravitation [2]. Another extension of gravitational theory is f(G), which incorporates the
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Gauss-Bonnet curvature invariant G. This framework enables the development of consistent
models that satisfy local General Relativity constraints. Notably, the invariant G can
eliminate ghost contributions and aid in regularizing the gravitational action.

In recent years, numerous cosmological models have been developed within the
framework of f(G) theory, accommodating various physical fluids. Researchers have
employed diverse approaches, including the Noether symmetry method, to explore f(G)
cosmology. Studies have also focused on cosmological solutions in the context of specific
models, such as the ACDM model, and have investigated the coupling of four-dimensional
spacetimes with Gauss-Bonnet gravity, as suggested by [3-5]. Furthermore, bouncing
cosmology and static spherically symmetric star solutions have been explored within the
f(G) gravity framework [6-8]. Additionally, string bulk viscous cosmological models have
been examined in the context of f(G) theory [9].

Bianchi Universes serve as valuable tools for analyzing cosmological models
characterized by anisotropic and homogeneous backgrounds. Their pedagogical
significance stems from their ability to model homogeneous yet anisotropic universes.
Recent observations [10-15], such as those from WMAP, suggest that the standard
cosmological model requires modification to accommodate anisotropic features, echoing
the morphology of Bianchi Universes. Furthermore, evidence indicates that the universe
was not initially smooth, particularly during the inflationary period, and may have retained
some degree of inhomogeneity.

Fayaz et al. [16] derived precise power-law solutions for anisotropic universes within
the framework of Gauss-Bonnet gravity. Li et al. [17] probed the universe's late-time
acceleration. Meanwhile, Nojiri et al. [18] introduced a novel concept: Gauss-Bonnet dark
energy. Moreover, it was shown that there are some viable f(G) models that can pass the
solar system test [19,20]. Shekh ef al. [21] discussed Quintessential f(G) gravity with a
statistical fitting of H(z). A theoretical framework where the gravitational action
incorporates functions of the Gauss-Bonnet invariant has also been explored in the literature
for its potential to replicate cosmic evolution [21-38].

Recent studies have explored a variety of cosmological models in both general relativity
and modified theories of gravity. For instance, tilted two-fluid cosmological models with
variable G and A have been investigated within the framework of general relativity [39].
Models based on the f(R,T) theory have also been developed, where cosmologies filled
with a perfect fluid source were analyzed in detail [40]. In addition, magnetized dark energy
cosmological models with a time-dependent cosmological term have been considered in the
context of Lyra geometry [41]. Quark and strange quark matter in the f(R,T) theory of
gravity have been constrained using observational data [42], while two-fluid cosmological
models in f(T) gravity have been tested against observations to explore their viability [43].
Two interacting fluids with quadratic EOS in a five-dimensional Bianchi model were
proposed [44], while higher-dimensional spherically symmetric string cosmological models
with a zero-mass scalar field in Lyra geometry have been considered [45].



M. S. Palaspagar et al., J. Sci. Res. 18 (1), 91-106 (2026) 93

In the present study, the Bianchi Type-I universe is investigated within the framework
of f(G) gravity, utilizing the deceleration parameter g = b — % , as previously proposed
by [46,47]. This strategy is employed to fine-tune the model and determine the best-fit
values of the parameters b and n. Through comparative analysis of theoretical predictions
and observational data, the optimal parameter set that aligns with empirical evidence is
identified using statistical methods. The analysis is based on observational Hubble data
(OHD) samples, providing a robust framework for testing the cosmological model against
a broad spectrum of observational constraints.

The paper is strutrured as follows: Section 2 presents a concise overview of f(G) gravity
and its mathematical formulation. Section 3 provides deterministic solutions of the field
equations with varying deceleration parameters. To restrict the model parameters, Section
4 employs observational Hubble datasets. Section 5 is devoted to apparent magnitude and
luminosity distance. Section 6 discusses cosmographic parameters and energy conditions.
Finally, Section 7 summarizes the findings and outlines their broader implications.

2. Overview and Mathematical Formulation of f(G) Gravity

The action of the f(G) gravity is given by

S = JIR+ F(G)] J=gd*x + Sy (gij, ) M)
where, g;; is the metric tensor, S, is the action of matter. The matter is minimally coupled
to the metric tensor g;; which means that f(G) is a purely metric theory of gravity. The
scalar field ¢ represents the matter fields. Thus, the action depends on both the metric and
the matter fields.

The function f{G) is an arbitrary function of the Gauss-Bonnet invariant G, defined as

G = R? — 4R;;RY + R;j,,RV* )
where, R is the Ricci scalar, R;; stands for Ricci tensor and R;j,, denotes Riemannian
tensors.

By varying the action (1) with respect to the metric gij, we obtain the field equations

Ry — %Rgij +6 [Riujv + Ruj9vi — Rw9ji—Rij vy + Riwgju + %R(Rijg;w -

giugm)] VEVY + (Gfe — f)gij = kTy; (3)
Here V# denotes the covariant derivative and f(G) stand for the derivative of f(G) with
respect to G.

The Friedmann-Robertson-Walker (FRW) metric accurately describes the present
universe, but it is unlikely that the universe’s geometry remained isotropic throughout its
evolution. In the early universe, anisotropy is more plausible. Bianchi models generalize
FRW spacetimes and allow for anisotropic expansion.

Here, we consider the LRS Bianchi type-I metric:

ds? = dt? — A%dx? — B*(dy? + dz?), 4)

The Bianchi type I model, characterized by metric potentials A and B that vary with
cosmic time t, offers a more comprehensive framework than the isotropic FRW models.
This model is particularly significant in describing the universe's early evolution, as it
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provides a homogeneous representation with flat spatial sections. Although the spatial
geometry is flat, the expansion dynamics can be anisotropic.
The Ricci scalar R and Gauss-Bonnet (GB) invariant for Bianchi type I is found to be

R=-2[t+22+20+5 (5)
AB? | . ABB
G =8[5+255] ©)

where the dot (7) denotes differentiation with respect to cosmic time t.

According to Grand Unified Theories (GUTs), after the universe cooled below a critical
temperature, spontaneous symmetry breaking occurred, producing stable topological
defects. One-dimensional defects are called cosmic strings, which are believed to play a
role in galaxy formation.

For anisotropic fluids, we assume the following energy—momentum tensor:

T, = diaglp, —px, —Py, —Pel, (7
where, p is the energy density of the fluid, and p, p, p, are the pressures along x, y, z axes,
respectively.

The anisotropic fluid is characterized by the equation of state (EoS) given as

p = wp, ®)
where, w need not be constant.

From (7), the tensor can be expressed as

Ty = diag[l, —wy, —wy, —w,]p, )
where, @y, wy, w, are the directional EoS parameters along the x,y, and z axes; o is a
deviation-free EoS parameter of the fluid.

To parametrize deviations from isotropy, set w, = w, and the skewness parameter § is
introduced to describe deviations from w along the y and z directions.
Thus, in this case, the energy—momentum tensor is expressed as

T) = diag[l, —w,—(w + &), —(w + 8)]p, (10)
The mean Hubble parameter is
H =% (Hy + 2Hy), (11)

where, H; = é, H, = H; = E,are the directional Hubble parameter’s.
A B

The expansion scalar 8, shear scalar ¢ are defined as

—ui =498
Q_uii_A+23’_ . (12)
- w1 (A_E
7= 00 =3 (A B)' (13)
The average scale factor a is defined via the proper volume:
V =a®= AB? (14)

Finally, substituting the metric (4) into the field equations (3), we obtain the independent
equations of motion:

B2 B BB - B2 .

w2t 25— 165 fo — 85 fot Gfo — f = —kop (1
A B AB AB AB ; AB p
Z+E+E_8(E+E)fa_8EfG+GfG_f:_k(w+6)p (16)

B? AB AB?
E—I—ZE_Z‘LEfG—}_GfG_f:kp (17)
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3. Solution of the Field Equations with Varying Deceleration Parameter

Here, three equations (15-17) involving six parameters: A, B, p, p,and f, are presented.
To construct a physically viable and observationally consistent cosmological model, the
following assumptions are made.

(i) Form of f(G)

A power-law form of the Gauss—Bonnet function is considered:
f(G) =pa™, (18)

where, f and m are arbitrary constants.

(ii) Relation between directional Hubble Parameters

We employ a linear relation between the directional Hubble parameters H; and H,:

H;, = aH,, 19)
where, @ = 0 is a constant controlling the anisotropy of the model. This choice leads to a
proportionality between the shear scalar o and the expansion scalar 8, i.e., 0 « 8.

(iii) Time-varying deceleration parameter

A time-dependent deceleration parameter of the form is assumed:

q=b—= (20)
where, b, n are constants.

The Hubble parameter H and the deceleration parameter g serve as essential tools for
understanding cosmic evolution within various cosmological frameworks. The Hubble
parameter provides insight into the current expansion rate of the universe, while the
deceleration parameter characterizes its acceleration status, distinguishing between
accelerating (q < 0) and decelerating (q > 0) phases. This transition is strongly supported
by recent astrophysical evidence, including observations of Type la supernovae [41,42] and
cosmic microwave background (CMB) anisotropies [43]. Within the framework of f(G)
gravity, this formulation is particularly useful, as it captures key dynamical features of
cosmic evolution without requiring a complex equation of state. These derivations help
reveal the dynamical effects of f(G) gravity and further clarify whether the model can
reproduce the observed cosmic acceleration or even predict novel behavior unique to the
f(G) framework.

In general, the deceleration parameter is defined as

d (1
a=5(5)-1 @
By comparing equations (19) and (20), and choosing
_ b+

n
A point-type singularity is encountered att = 0.

The Hubble parameter and the scale factor then take the forms
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n eTLt

- (b+1)(e™t-1)
1
a=n(e™ — 1)+, (23)
1
where, n = §(b + 1)@+,

(22)

3.1. The deceleration parameter q(t) in terms of cosmic time

From equs. (20) and (21), the deceleration parameter in terms of cosmic time is
g=—1+ (b+1)

ent

(24)

In our model, when

t= %log (1 +2)~®*D 4+ 1],

the sign of g changes.

This gives a relation between cosmic time ¢, redshift z, and the scale factor
a(t) =1 +2)"1.

The Hubble parameter (H) in terms of redshift (z) is

n
H=-—[n1+2®" +1], (25)

Finally, the Hubble rate function takes the form
H
H= (1 + 90 + 1], @9

where Hy, = 100h is the Hubble constant at z = 0, and 7, b are free parameters to be
estimated by observations.

3.2. Transformation rule

To relate cosmic time and redshift, we use
1 dz

H(z) = ——— 27
1+z dt
Thus, the deceleration parameter in terms of z becomes
_ b(14+2)P*yq
- (1+Z)(b+1)+T] (28)
3.3. Evolution of H
Using equation (25) and
. dH
H=2 y 29)
and H=-(1+ z)H(z)E (30)
we obtain
. 2
F o= 10D (4 4 G D[p(1 + 2)@*D 1], 31)

(1+m)?
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3.4. Energy density and pressure

Substituting H and H , the energy density and pressures are

9(1+2a)H3
= m[n(l +2)O* 4 1]? (32)

3.5. Directional pressures

_ 6n? 2(b+1) (b+1)7] _ 27 H§ (b+1) 2
Px = ritarnbrD [(1 +2) +n(1+2) ] PCTEICETSE [n(l +2) + 1] (33)

__ 3nf(a+D)
Py =Pz = 2+ 2)(b + D

9HE(a?+a+1)
‘%m +2)@+D 4 172 ,

[(Q +2)2C*D + (1 + 2)®*V]

The expansion scalar and the shear scalar turn out to be

3H
= o+ z)®*D 4+ 1] (35)

_ V3a-1) Hy b1
o =D (1 + 7)1 + 1) (36)

The evolution of the shear o(z) indicates that the shear magnitude | 6(z) | increases
monotonically with redshift for both parameter choices a = 1.001 and a = 1.1.
Importantly, the dimensionless ratio | ¢/H | |, which directly measures the anisotropy
relative to the Hubble expansion, also grows with redshift and remains significant around
the recombination epoch (zrec=1100z). This behavior demonstrates that shear does not
decay at high redshift; instead, it persists and even amplifies as z — oo.

The Deceleration Parameter becomes as
_ b(a+z)®¥Dy—q

T (1+z)b+D4q 37
The EoS and Skewness parameter turn out to be
_ -3 2(a+2)n?(1+)2(1+2) P+ [(1+2)P+D 4y
w= (142a) + 3n2(b+1)(1+2a)HE Mm@+z)b+41)2 (38)
(2-a-a?) n2(14+n)2(1+2) B+ [(14+2) B+ D4y
= 1- 3 2 39)
(142a) 3(b+1)n?H§ [nA+2)P+D 41]

4. Observational Hubble Datasets (OHD)

To constrain the cosmological model's parameters, a combination of observational datasets,
including Pantheon Supernovae samples, baryon acoustic oscillation (BAO) datasets, and
cosmic chronometer (CC) datasets, is utilized. The Pantheon Supernovae samples provide a
total of 1048 data points, whereas the BAO and CC datasets contribute 6 and 57 data points,
respectively. The emcee Python library is employed, which leverages the Markov Chain
Monte Carlo (MCMC) method for Bayesian inference and likelihood estimation.This
approach facilitates efficient exploration of the parameter space, yielding reliable
constraints on our cosmological model.
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Table 1. Constrained values of model parameters and R? values.

Datasets Hy b R?
Pantheon 67.071122 0.5999715-00018 0.8062
OHD 68.011137 0.599961395518 0.8144

A statistical analysis of these cosmological parameters is currently being conducted.The
subsequent step involves combining observational Hubble data, specifically H(z) values,
to determine the optimal fit for the model parameters b and n. To validate the approach, the
model parameters b and n are constrained using observational datasets, which yield the best-
fit values of the model parameters.

Dataset have latest 57 data points of H(z) in the red-shift range 0.07 < z < 2.4 in
which 31 points from Differential Age (DA) method and 26 points from BAO. The best-fit
curve of H(z) corresponding to 57 observed data points is obtained using the R? - test
R2 = 1 — 2V IHDobs=HDenl” N (40)

237 [(H) obs = (H)mean]
where (H;),ps are observed value and (H;)¢, are theoretical values obtained from the best
fit plot.

Ho = 68.01+%12]

N . T n = 0.55+883

Fig. 1. Contour plot for the Hubble dataset (z).
5. Apparent Magnitude and Luminosity Distance

The expansion of the universe is strongly supported by observations of Type Ia Supernovae
(SNe-Ia). Observations of Type Ia supernovae (SNela) have consistently supported the
expanding universe paradigm. The SNela dataset utilized in this study is compiled from
various astronomical surveys, including the Panoramic Survey Telescope and Rapid
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Response System, the Sloan Digital Sky Survey (SDSS), the Supernovae Legacy Survey
(SNLS), and the Hubble Space Telescope (HST) survey [51].
The total flux of the source of light is measured by the luminosity distance is

H, ’
dy=(1+2) [; ;5 dz @1)
To determine best fit values of H,), the apparent magnitude in terms of d; is defined as:
7(2) = M + 5logyod,, — 5logss ( ) + 25, (42)

where, M is constant for all SNela
The distance modulus u(z) = T — M is given by

1(z) = 5logyed, — 510910( ) +25 (43)
To obtain the best fit curve of apparent magnitude 7(z) with the use of the pantheon

sample dataset of 1048 points of distance moduli u(z) towards the range 0.01 < z <
2.26 for various redshifts [52]. From [53] the statistically significant value of M is -19.30.

2 _ T34 () ops—(k)en]

R _1_ 10148 iJobs i)t (44)
[(r)obs— (#L)mean]

Since d; (z), m(z), and u(z) become undefined at z = —1, the parameter space is

restricted by setting z > —1 and Hy > 0.

Using both the Hubble H (z) data and the Pantheon compilation, the R?-test is performed
to determine the best-fit values for the model parameters @ and H,. Figs. 1 and 2 show the
maximum likelihood contours for these parameters, along with their 10 and 20 confidence
intervals.

Hp — 67.07%}33

n = 0.30*3-81
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Fig. 2. Contour plot for the Pantheon dataset.
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Fig. 3. Error bar plot for 57 Hubble dataset points with best-fit curves.\
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0.0 0.5 1.0 15 2.0

Redshift
Fig. 4. Error bar plot for 1048 Pantheon dataset points with best-fit curves.

Figs. 3 and 4 display the error bar plots for the 57 data points from the Hubble dataset
and the 1048 data points from the Pantheon dataset, using the model parameter values listed
in Table 1. Both datasets are compared to the standard ACDM model (shown as a dotted
black line), with parameters set as Hy = 67.8 km/s/Mpc, 2,, = 0.7 , and ,,, = 0.3.

6. Cosmographic Parameters and Energy Conditions
To understand the evolution of the universe through different phases, it is essential to

analyze key cosmological parameters such as the deceleration parameter (q), pressure (p),
density (p), and energy conditions.
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Fig. 5. Evolution of the deceleration parameter with redshift for the Hubble dataset.

From figure, a positive value of g indicates that the universe is decelerating, whereas a
negative value signifies accelerated expansion. The point where the universe transitions
from deceleration to acceleration is marked by g = 0. Numerous studies using Type Ia
Supernova (SNe-Ia) observations have shown that the universe was decelerating for
redshifts z > 0.5, and has been accelerating for z < 0.5. In our model, the variation of
the deceleration parameter with redshift is illustrated in Figs. 5 and 6, based on both
datasets. The parameter values for H, and n used in the analysis are listed in Table 1. The
redshift values at which the transition from deceleration to acceleration occurs are z;, =
0.59 for the Hubble dataset and z;, = 0.98 for the Pantheon dataset.

At present (z = 0), the deceleration parameter is g, = —0.25 for the Hubble dataset
and q, = —0.29 for the Pantheon dataset.

Additionally, for z > 10, the deceleration parameter approaches a matter dominated
regime (¢ = 0.5) in the Hubble dataset, signifying a late-time cosmic evolution.

Pressure (py, py) and energy density (p):

—— Planck Hp = 68.00
104{ —— Pantheon Hg=67.07

1012 {

10% 4

Energy Density p(z)

0 1 2 3 4 5
Redshift z

Fig. 6. Evolution of energy density as a function of redshift for the Hubble and Pantheon datasets.
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Fig. 7. Evolution of Pressure p, as a function of redshift for the Hubble and Pantheon datasets.
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Pressure py(2)

105 4
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Redshift z
Fig. 8. Evolution of Pressure p,, as a function of redshift for the Hubble and Pantheon datasets.

Egs. (32) - (34) describe the evolution of x and y component of pressure and energy
density in terms of redshift. Figs. 6-8 show the variation of these parameters based on the
best-fit values from the Hubble and Pantheon datasets with constant parameter set to a =
05 n=n=k=1,b=2.

As shown in Fig. 6, energy density increases with redshift, indicating a higher density
in the early universe and a decreasing trend as the universe expands.

Figs. 7 and 8 illustrates that the x and y component of pressure remains negative
throughout the cosmic evolution and decreases with redshift. This aligns with the
accelerated expansion observed in recent cosmological studies.

Energy conditions are essential concepts in general relativity, providing the foundation
for key theorems about the behavior of intense gravitational fields and the structure of the
universe. The energy condition for our model are presented in Figs. 9 to 11. These figures
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are generated using the best fit values of the Hubble and Pantheon datasets from Table 1
with constant parameters settoa = 0.5, =n=k=1,b =6.
The four main energy conditions are described as follows:
e Strong Energy Condition (SEC): Requires gravity to be attractive:
p+3p =0.
e Dominant Energy Condition (DEC): Ensures that energy density remains positive and
propagates causally:
p=lpl.
e  Weak Energy Condition (WEC): Implies that the measured energy:
p=0,p+p =0.
e Null Energy Condition (NEC): Represents the most fundamental condition required for
WEC and SEC:
p+tp =0.

—— Planck Ho =68 —— Planck Hy =68
| — Pantheon Hy =67.07

0 1 H 3 i 5 [ 1 7 3
Redshift z Redshift z

Fig. 9. Evolution of the Weak Energy Condition (WEC) with redshift.

—— Planck Hy = 68.00 = Planck Hy = 68.00
—— Pantheon Hp=67.07 w¢{ — Pantheon Hy=67.07

2 3
Redshift z 0 : o
Redshift z

Fig. 10. Evolution of the Dominant Energy Condition (DEC) with redshitt.
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Fig. 11. Strong Energy Condition (SEC) violation with redshift.

The Strong Energy Condition (SEC) is especially important for understanding the
present accelerated expansion of the universe. In typical cosmological models, the SEC is
anticipated to be violated during periods of cosmic acceleration.

Our model reveals that DEC and WEC are satisfied ensuring that the model remains
physically viable. SEC is violated for late-time evolution (see Fig. 11). This aligns with the
expectation that SEC must be violated in models that describe an accelerated universe. NEC
validation confirms that the WEC is satisfied, reinforcing the physical consistency of our
model.

7. Conclusion

This work investigates the cosmological behavior of an anisotropic universe in the
framework of f(G) gravity using the LRS Bianchi type-1 spacetime. Exact analytical
solutions of the field equations were obtained by assuming a proportional relation between
the shear scalar and the expansion scalar, along with a time-dependent deceleration
parameter. The model parameters were constrained using recent observational datasets from
Hubble and Pantheon samples, showing a strong statistical consistency and a good
agreement with the observed accelerated expansion of the universe. The positive and
monotonically decreasing energy density confirms the physical acceptability of the model
throughout cosmic evolution. The directional pressures show a negative trend at late times,
indicating a transition from a matter-dominated phase to a dark-energy-dominated phase
responsible for acceleration. The analysis of energy conditions demonstrates that the Weak
and Dominant Energy Conditions are satisfied, ensuring the stability and realistic nature of
the model, while the violation of the Strong Energy Condition supports the occurrence of
cosmic acceleration. Overall, the findings establish that the considered f(G) gravity model
in an anisotropic Bianchi type-I background provides a viable and observationally
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consistent explanation for the late-time accelerated expansion of the universe, while
preserving essential physical characteristics of a realistic cosmological model.
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