
 

Accelerating Bianchi I Universe with Time Varying Deceleration Parameter 

in f(G) Gravity 

M. S. Palaspagar1*, P. P. Khade2, P. R. Patil2 

1Department of Mathematics, Rajarshee Shahu Science College, Chandur Rly District, 

Amravati 444904, India 

2Department of Mathematics, Vidya Bharati Mahavidyalaya, Camp Amravati 444601, India 

Received 1 June 2025, accepted in final revised form 8 October 2025 

Abstract 

The present research aims at investigating the LRS Bianchi type I dark energy cosmological 

model within the framework of 𝑓(𝐺) gravity. To obtain solutions for the field equations, a 

parametrization of the deceleration parameter is employed. The approximate best-fit values 

of the model parameters are obtained using the least squares method, incorporating 

observational constraints from available datasets such as the Hubble dataset and the Pantheon 

dataset by applying the Root Mean Square Error (RMSE) formula. The related cosmological 

parameters are graphed against redshift, and the universe's accelerated expansion is 

subsequently examined. Various physical parameters, including pressure, energy density, and 

energy conditions, are also discussed. 

Keywords: LRS Bianchi type-I space-time; f(G) Gravity; Cosmic string; Statefinder 

diagnostics; Observational constraints. 
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1.   Introduction 

A viable physical theory must meet three essential standards: internal consistency, 

comprehensive explanatory power, and empirical validation through experimental 

evidence. This trio of criteria equally applies to gravitational theories, including General 

Relativity. Despite its successes, the theory is marred by singularities like black holes and 

the Big Bang, and it fails to align with observational evidence at infrared scales [1]. 

Relativistic astrophysicists have proposed modified gravity theories by generalizing the 

Einstein-Hilbert action. This involves substituting the Ricci scalar with more complex 

functions, such as 𝑓(𝑅), or combining scalar and tensorial curvature invariants. This 

approach has become a standard framework for exploring the underlying causes of the 

universe's accelerated expansion. This modification gives rise to the 𝑓(𝑅) theory of 

gravitation [2]. Another extension of gravitational theory is 𝑓(𝐺), which incorporates the 
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Gauss-Bonnet curvature invariant 𝐺. This framework enables the development of consistent 

models that satisfy local General Relativity constraints. Notably, the invariant G can 

eliminate ghost contributions and aid in regularizing the gravitational action. 

In recent years, numerous cosmological models have been developed within the 

framework of 𝑓(𝐺) theory, accommodating various physical fluids. Researchers have 

employed diverse approaches, including the Noether symmetry method, to explore 𝑓(𝐺) 

cosmology. Studies have also focused on cosmological solutions in the context of specific 

models, such as the ΛCDM model, and have investigated the coupling of four-dimensional 

spacetimes with Gauss-Bonnet gravity, as suggested by [3-5]. Furthermore, bouncing 

cosmology and static spherically symmetric star solutions have been explored within the 

𝑓(𝐺) gravity framework [6-8]. Additionally, string bulk viscous cosmological models have 

been examined in the context of 𝑓(𝐺) theory [9]. 

Bianchi Universes serve as valuable tools for analyzing cosmological models 

characterized by anisotropic and homogeneous backgrounds. Their pedagogical 

significance stems from their ability to model homogeneous yet anisotropic universes. 

Recent observations [10-15], such as those from WMAP, suggest that the standard 

cosmological model requires modification to accommodate anisotropic features, echoing 

the morphology of Bianchi Universes. Furthermore, evidence indicates that the universe 

was not initially smooth, particularly during the inflationary period, and may have retained 

some degree of inhomogeneity. 

Fayaz et al. [16] derived precise power-law solutions for anisotropic universes within 

the framework of Gauss-Bonnet gravity. Li et al. [17] probed the universe's late-time 

acceleration. Meanwhile, Nojiri et al. [18] introduced a novel concept: Gauss-Bonnet dark 

energy. Moreover, it was shown that there are some viable 𝑓(𝐺) models that can pass the 

solar system test [19,20]. Shekh et al. [21] discussed Quintessential 𝑓(𝐺) gravity with a 

statistical fitting of 𝐻(𝑧). A theoretical framework where the gravitational action 

incorporates functions of the Gauss-Bonnet invariant has also been explored in the literature 

for its potential to replicate cosmic evolution [21-38]. 

Recent studies have explored a variety of cosmological models in both general relativity 

and modified theories of gravity. For instance, tilted two-fluid cosmological models with 

variable 𝐺 and 𝛬 have been investigated within the framework of general relativity [39]. 

Models based on the 𝑓(𝑅, 𝑇) theory have also been developed, where cosmologies filled 

with a perfect fluid source were analyzed in detail [40]. In addition, magnetized dark energy 

cosmological models with a time-dependent cosmological term have been considered in the 

context of Lyra geometry [41]. Quark and strange quark matter in the 𝑓(𝑅, 𝑇) theory of 

gravity have been constrained using observational data [42], while two-fluid cosmological 

models in 𝑓(𝑇) gravity have been tested against observations to explore their viability [43]. 

Two interacting fluids with quadratic EOS in a five-dimensional Bianchi model were 

proposed [44], while higher-dimensional spherically symmetric string cosmological models 

with a zero-mass scalar field in Lyra geometry have been considered [45]. 
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In the present study, the Bianchi Type-I universe is investigated within the framework 

of 𝑓(𝐺) gravity, utilizing the deceleration parameter  𝑞 =  𝑏 − 
𝑛

𝐻
 , as previously proposed 

by [46,47]. This strategy is employed to fine-tune the model and determine the best-fit 

values of the parameters 𝑏 and 𝑛. Through comparative analysis of theoretical predictions 

and observational data, the optimal parameter set that aligns with empirical evidence is 

identified using statistical methods. The analysis is based on observational Hubble data 

(OHD) samples, providing a robust framework for testing the cosmological model against 

a broad spectrum of observational constraints. 

The paper is strutrured as follows: Section 2 presents a concise overview of 𝑓(𝐺) gravity 

and its mathematical formulation. Section 3 provides deterministic solutions of the field 

equations with varying deceleration parameters. To restrict the model parameters, Section 

4 employs observational Hubble datasets. Section 5 is devoted to apparent magnitude and 

luminosity distance. Section 6 discusses cosmographic parameters and energy conditions. 

Finally, Section 7 summarizes the findings and outlines their broader implications. 

 

2. Overview and Mathematical Formulation of 𝒇(𝑮) Gravity 

 

The action of the 𝑓(𝐺) gravity is given by  

   𝑆 =
1

2𝐾
∫[𝑅 + 𝑓(𝐺)] √−𝑔𝑑4𝑥 + 𝑆𝜑(𝑔𝑖𝑗 , 𝜑)                                                                   (1) 

where, 𝑔𝑖𝑗  is the metric tensor, 𝑆𝜑 is the action of matter. The matter is minimally coupled 

to the metric tensor 𝑔𝑖𝑗 which means that 𝑓(𝐺) is a purely metric theory of gravity. The 

scalar field 𝜑 represents the matter fields. Thus, the action depends on both the metric and 

the matter fields. 

The function f(G) is an arbitrary function of the Gauss-Bonnet invariant G, defined as  

    𝐺 = 𝑅2 − 4𝑅𝑖𝑗𝑅𝑖𝑗 + 𝑅𝑖𝑗𝜇𝑣𝑅𝑖𝑗𝜇𝑣                                                                                     (2)                                 

where, R is the Ricci scalar, 𝑅𝑖𝑗 stands for Ricci tensor and 𝑅𝑖𝑗𝜇𝑣 denotes Riemannian 

tensors.  

By varying the action (1) with respect to the metric 𝑔𝑖𝑗, we obtain the field equations  

      𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 + 𝛿 [𝑅𝑖𝜇𝑗𝑣 + 𝑅𝜇𝑗𝑔𝑣𝑖 − 𝑅𝜇𝑣𝑔𝑗𝑖−𝑅𝑖𝑗𝑔𝑣𝜇 + 𝑅𝑖𝑣𝑔𝑗𝜇 +

1

2
𝑅(𝑅𝑖𝑗𝑔𝜇𝑣 −

      𝑔𝑖𝑣𝑔𝑗𝜇)] ∇𝜇∇𝑣 + (𝐺𝑓𝐺 − 𝑓)𝑔𝑖𝑗 = 𝑘𝑇𝑖𝑗                                                                         (3)                                                                                                               

Here ∇𝜇 denotes the covariant derivative and 𝑓(𝐺) stand for the derivative of 𝑓(𝐺) with  

respect to 𝐺.    

The Friedmann-Robertson-Walker (FRW) metric accurately describes the present 

universe, but it is unlikely that the universe’s geometry remained isotropic throughout its 

evolution. In the early universe, anisotropy is more plausible. Bianchi models generalize 

FRW spacetimes and allow for anisotropic expansion. 

Here, we consider the LRS Bianchi type-I metric: 

       𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2(𝑑𝑦2 + 𝑑𝑧2),                                                                     (4)                                                                 

The Bianchi type I model, characterized by metric potentials 𝐴 and 𝐵 that vary with 

cosmic time 𝑡, offers a more comprehensive framework than the isotropic FRW models. 

This model is particularly significant in describing the universe's early evolution, as it 
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provides a homogeneous representation with flat spatial sections. Although the spatial 

geometry is flat, the expansion dynamics can be anisotropic. 

The Ricci scalar 𝑅 and Gauss-Bonnet (GB) invariant for Bianchi type I is found to be 

       𝑅 = −2 [
𝐴̈

𝐴
+ 2

𝐵̈

𝐵
+ 2

𝐴̇𝐵̇

𝐴𝐵
+

𝐵̇2

𝐵2]                                                                                      (5)                                                                                                          

       𝐺 = 8 [
𝐴̈𝐵̇2

𝐴𝐵2 + 2
𝐴̇𝐵̇𝐵̈

𝐴𝐵2]                                                                                                     (6)                                                                                                 

where the dot (˙) denotes differentiation with respect to cosmic time 𝑡.  

According to Grand Unified Theories (GUTs), after the universe cooled below a critical 

temperature, spontaneous symmetry breaking occurred, producing stable topological 

defects. One-dimensional defects are called cosmic strings, which are believed to play a 

role in galaxy formation. 

For anisotropic fluids, we assume the following energy–momentum tensor: 

         𝑇𝑣
𝜇

= 𝑑𝑖𝑎𝑔[𝜌, −𝑝𝑥 , −𝑝𝑦 , −𝑝𝑧],                                                                                 (7)                                                                                                    

where, 𝜌 is the energy density of the fluid, and 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 are the pressures along 𝑥, 𝑦, 𝑧  axes, 

respectively.  

The anisotropic fluid is characterized by the equation of state (EoS) given as 

         𝑝 = 𝜔𝜌,                                                                                                                      (8)                                                                                                                                     

where, ω need not be constant. 

From (7), the tensor can be expressed as 

        𝑇𝑣
𝜇

= 𝑑𝑖𝑎𝑔[1, −𝜔𝑥, −𝜔𝑦 , −𝜔𝑧]𝜌,                                                                             (9)                                                                                                

where,  𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧  are the directional EoS parameters along the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 axes; ω is a 

deviation-free EoS parameter of the fluid. 

To parametrize deviations from isotropy, set 𝜔𝑥  =  𝜔, and the skewness parameter 𝛿 is 

introduced to describe deviations from 𝜔 along the 𝑦 𝑎𝑛𝑑 𝑧 directions. 

Thus, in this case, the energy–momentum tensor is expressed as 

         𝑇𝑣
𝜇

= 𝑑𝑖𝑎𝑔[1, −𝜔, −(𝜔 + 𝛿), −(𝜔 + 𝛿)]𝜌,                                                          (10)                                                                     

The mean Hubble parameter is  

        𝐻 =
1

3
(𝐻1 + 2𝐻2),                                                                                                  (11)                                                                                                                        

where,  𝐻1 =
𝐴̇

𝐴
,   𝐻2 = 𝐻3 =

𝐵̇

𝐵
 , are the directional Hubble parameter’s. 

The expansion scalar 𝜃, shear scalar 𝜎 are defined as  

       𝜃 = 𝑢;𝑖
𝑖 =

𝐴̇

𝐴
+ 2

𝐵̇

𝐵
,                                                                                                      (12)                                                                                                                 

       𝜎 = 𝜎𝜇𝑣𝜎𝜇𝑣 =
1

√3
(

𝐴̇

𝐴
−

𝐵̇

𝐵
).                                                                                         (13)                                                                                                             

The average scale factor 𝑎 is defined via the proper volume: 

      𝑉 = 𝑎3 = 𝐴𝐵2.                                                                                                           (14)                                                                                                                          

Finally, substituting the metric (4) into the field equations (3), we obtain the independent 

equations of motion: 

        
𝐵̇2

𝐵2 + 2
𝐵̈

𝐵
− 16

𝐵̈𝐵̇ 

𝐵2 𝑓𝐺̇ − 8
𝐵̇2

𝐵2 𝑓𝐺̈ + 𝐺𝑓𝐺 − 𝑓 = −𝑘𝜔𝜌                                                  (15)                                                                       

        
𝐴̈

𝐴
+

𝐵̈

𝐵
+

𝐴̇𝐵̇

𝐴𝐵
− 8 (

𝐴̈𝐵̇ 

𝐴𝐵
+

𝐴̇𝐵̈ 

𝐴𝐵
) 𝑓𝐺̇ − 8

𝐴̇𝐵̇

𝐴𝐵
𝑓𝐺̈ + 𝐺𝑓𝐺 − 𝑓 = −𝑘(𝜔 + 𝛿)𝜌                        (16)                                                    

        
𝐵̇2

𝐵2 + 2
𝐴̇𝐵̇

𝐴𝐵
− 24

𝐴̇𝐵̇2

𝐴𝐵2 𝑓𝐺̇ + 𝐺𝑓𝐺 − 𝑓 = 𝑘𝜌                                                                     (17)                                           
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3. Solution of the Field Equations with Varying Deceleration Parameter 

Here, three equations (15–17) involving six parameters: 𝐴, 𝐵, 𝑝, 𝜌, and 𝑓, are presented. 

To construct a physically viable and observationally consistent cosmological model, the 

following assumptions are made. 

 

(i) Form of 𝑓(𝐺) 

 

A power-law form of the Gauss–Bonnet function is considered: 

        𝑓(𝐺) = 𝛽𝐺𝑚,                                                                                                           (18)                                                                                                                       

where,  𝛽 and 𝑚 are arbitrary constants. 

 

(ii) Relation between directional Hubble Parameters 

 

We employ a linear relation between the directional Hubble parameters  𝐻1 and 𝐻2: 

        𝐻1 = 𝛼𝐻2,                                                                                                                (19)                                                                                                                            

where, 𝛼 ≥ 0 is a constant controlling the anisotropy of the model. This choice leads to a 

proportionality between the shear scalar 𝜎 and the expansion scalar  𝜃, i.e., 𝜎 ∝ 𝜃.  

 

(iii) Time-varying deceleration parameter 

 

A time-dependent deceleration parameter of the form is assumed: 

        𝑞 = 𝑏 −
𝑛

𝐻
                                                                                                                 (20)                                                                                          

where, 𝑏, 𝑛 are constants.  

The Hubble parameter 𝐻 and the deceleration parameter 𝑞 serve as essential tools for 

understanding cosmic evolution within various cosmological frameworks. The Hubble 

parameter provides insight into the current expansion rate of the universe, while the 

deceleration parameter characterizes its acceleration status, distinguishing between 

accelerating (𝑞 < 0) and decelerating (𝑞 > 0) phases. This transition is strongly supported 

by recent astrophysical evidence, including observations of Type Ia supernovae [41,42] and 

cosmic microwave background (CMB) anisotropies [43]. Within the framework of 𝑓(𝐺) 

gravity, this formulation is particularly useful, as it captures key dynamical features of 

cosmic evolution without requiring a complex equation of state. These derivations help 

reveal the dynamical effects of 𝑓(𝐺) gravity and further clarify whether the model can 

reproduce the observed cosmic acceleration or even predict novel behavior unique to the 

𝑓(𝐺) framework. 

In general, the deceleration parameter is defined as  

         𝑞 =
𝑑

𝑑𝑡
(

1

𝐻
) − 1                                                                                                         (21)                                                                                                                

By comparing equations (19) and (20), and choosing 

        𝑐 = −
(𝑏+1)

𝑛
   

A point-type singularity is encountered at 𝑡 =  0. 

The Hubble parameter and the scale factor then take the forms   
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          𝐻 =
𝑛 𝑒𝑛𝑡

(𝑏+1)(𝑒𝑛𝑡−1)
                                                                                                       (22)                                                                                                      

         𝑎 = 𝜂(𝑒𝑛𝑡 − 1)
1

(𝑏+1),                                                                                                 (23)                                                                          

where, 𝜂 = 𝛿(𝑏 + 1)
1

(𝑏+1). 

 

3.1. The deceleration parameter 𝒒(𝒕) in terms of cosmic time 

 

From equs. (20) and (21), the deceleration parameter in terms of cosmic time is 

         𝑞 = −1 +
(𝑏+1)

𝑒𝑛𝑡                                                                                                          (24)                                                                                                                

In our model, when 

𝑡 =
1

𝑛
log [𝜂(1 + 𝑧)−(𝑏+1) + 1],                                                                                                                       

the sign of 𝑞 changes. 

This gives a relation between cosmic time 𝑡, redshift 𝑧, and the scale factor  
        𝑎(𝑡) = (1 + 𝑧)−1. 

The Hubble parameter (𝐻) in terms of redshift (𝑧) is 

𝐻 =
𝑛 

𝑏+1 
[𝜂(1 + 𝑧)(𝑏+1) + 1],                                                                                   (25)                                                         

Finally, the Hubble rate function takes the form 

        𝐻 =
𝐻0

1+𝜂
[𝜂(1 + 𝑧)(𝑏+1) + 1],                                                                                    (26)                                                     

where 𝐻0 = 100ℎ is the Hubble constant at 𝑧 = 0, and 𝜂, 𝑏 are free parameters to be 

estimated by observations.  

3.2. Transformation rule 

To relate cosmic time and redshift, we use 

 𝐻(𝑧) = −
1

1+𝑧

𝑑𝑧

𝑑𝑡
                                                                                                        (27)                                                    

Thus, the deceleration parameter in terms of 𝑧 becomes                             

𝑞 =
𝑏(1+z)(𝑏+1))−η

(1+z)(𝑏+1)+η
                                                                                                       (28)                                                                           

3.3. Evolution of 𝑯  

Using equation (25) and 

𝐻̇ =
𝑑𝐻

𝑑𝑡
,                                                                                                                      (29) 

and   𝐻̇ = −(1 + 𝑧)𝐻(𝑧)
𝑑𝐻

𝑑𝑧
                                                                                             (30)                                               

we obtain 

𝐻̇ = −
𝜂(𝑏+1)𝐻0

2

(1+𝜂)2 (1 + 𝑧)(𝑏+1)[𝜂(1 + 𝑧)(𝑏+1) + 1].                                                    (31)       
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3.4. Energy density and pressure 

 

Substituting 𝐻 and 𝐻̇ , the energy density and pressures are 

𝜌 =  
9(1+2𝛼)𝐻0

2

𝑘(𝛼+2)2(1+η)2 [η(1 + z)(𝑏+1) + 1]2                                                                         (32)                                        

 

3.5. Directional pressures 

     

 𝑝𝑥 =
6𝑛2

𝑘𝜂2(𝛼+2)(𝑏+1)
[(1 + 𝑧)2(𝑏+1) + 𝜂(1 + 𝑧)(𝑏+1)] −  

27 𝐻0
2

𝑘(𝛼+2)2(1+η)2 [η(1 + z)(𝑏+1) + 1]
2
       (33)                                    

𝑝𝑦 = 𝑝𝑧 =
3𝑛2(𝛼 + 1)

𝑘𝜂2(𝛼 + 2)(𝑏 + 1)
[(1 + 𝑧)2(𝑏+1) + 𝜂(1 + 𝑧)(𝑏+1)] 

−
9𝐻0

2(𝛼2+𝛼+1)

𝑘(𝛼+2)2(1+η)2 [η(1 + z)(𝑏+1) + 1]2                                                                                                  (34) 

The expansion scalar and the shear scalar turn out to be 

𝜃 =
3𝐻0

(1+𝜂)
[𝜂(1 + 𝑧)(𝑏+1) + 1]                                                                      (35)                                                                      

𝜎 =
√3(𝛼−1)

(𝛼+2)

𝐻0

1+𝜂
[(𝜂(1 + 𝑧)𝑏+1 + 1)]                                                                           (36)   

The evolution of the shear 𝜎(𝑧) indicates that the shear magnitude ∣ 𝜎(𝑧) ∣ increases 

monotonically with redshift for both parameter choices 𝛼 = 1.001 and  𝛼 = 1.1. 

Importantly, the dimensionless ratio ∣ 𝜎/𝐻 ∣ |, which directly measures the anisotropy 

relative to the Hubble expansion, also grows with redshift and remains significant around 

the recombination epoch (zrec≈1100z). This behavior demonstrates that shear does not 

decay at high redshift; instead, it persists and even amplifies as 𝑧 → ∞.                                                  

The Deceleration Parameter becomes as  

𝑞 =
𝑏(1+z)(𝑏+1))−η

(1+z)(𝑏+1)+η
                                                                                                      (37)   

The EoS and Skewness parameter turn out to be 

𝜔 =
−3

(1+2𝛼)
+

2(𝛼+2)𝑛2(1+η)2(1+𝑧)(𝑏+1)

3𝜂2(𝑏+1)(1+2𝛼)𝐻0
2

[(1+𝑧)(𝑏+1)+𝜂]

[η(1+z)(𝑏+1)+1]2                                                (38)                                                  

𝛿 =
(2−𝛼−𝛼2)

(1+2𝛼)
{1 −

𝑛2(1+η)2(1+𝑧)(𝑏+1)

3(𝑏+1)𝜂2𝐻0
2

[(1+𝑧)(𝑏+1)+𝜂 ]

[η(1+z)(𝑏+1)+1]
2}                                                 (39)                                             

 

4. Observational Hubble Datasets (OHD) 

 

To constrain the cosmological model's parameters, a combination of observational datasets, 

including Pantheon Supernovae samples, baryon acoustic oscillation (BAO) datasets, and 

cosmic chronometer (CC) datasets, is utilized.The Pantheon Supernovae samples provide a 

total of 1048 data points, whereas the BAO and CC datasets contribute 6 and 57 data points, 

respectively. The emcee Python library is employed, which leverages the Markov Chain 

Monte Carlo (MCMC) method for Bayesian inference and likelihood estimation.This 

approach facilitates efficient exploration of the parameter space, yielding reliable 

constraints on our cosmological model. 
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Table 1. Constrained values of model parameters and 𝑅2 values. 
 

Datasets 𝐻0 b 𝑅2 

Pantheon 67.07−1.22
+1.22 0.59997−0.00016

+0.00016  0.8062 

OHD 68.01−1.54
+1.57 0.59996−0.00016

+0.00016 0.8144 

 

A statistical analysis of these cosmological parameters is currently being conducted.The 

subsequent step involves combining observational Hubble data, specifically 𝐻(𝑧) values, 

to determine the optimal fit for the model parameters 𝑏 and 𝑛. To validate the approach, the 

model parameters b and n are constrained using observational datasets, which yield the best-

fit values of the model parameters.  

Dataset have latest 57 data points of 𝐻(𝑧) in the red-shift range 0.07 ≤  𝑧 ≤  2.4 in 

which 31 points from Differential Age (DA) method and 26 points from BAO. The best-fit 

curve of 𝐻(𝑧) corresponding to 57 observed data points is obtained using the 𝑅2 -  test 

𝑅2 = 1 −
∑ [(𝐻𝑖)𝑜𝑏𝑠−(𝐻𝑖)𝑡ℎ]57

1
2

∑ [(𝐻𝑖)𝑜𝑏𝑠−(𝐻𝑖)𝑚𝑒𝑎𝑛]57
1

2,                                                                                      (40)                                                                                                         

where  (𝐻𝑖)𝑜𝑏𝑠 are observed value and (𝐻𝑖)𝑡ℎ are theoretical values obtained from the best 

fit plot.  

 

 
Fig. 1. Contour plot for the Hubble dataset (𝑧). 

5. Apparent Magnitude and Luminosity Distance 

The expansion of the universe is strongly supported by observations of Type Ia Supernovae 

(SNe-Ia). Observations of Type Ia supernovae (SNeIa) have consistently supported the 

expanding universe paradigm. The SNeIa dataset utilized in this study is compiled from 

various astronomical surveys, including the Panoramic Survey Telescope and Rapid 
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Response System, the Sloan Digital Sky Survey (SDSS), the Supernovae Legacy Survey 

(SNLS), and the Hubble Space Telescope (HST) survey [51]. 

The total flux of the source of light is measured by the luminosity distance is  

𝑑𝐿 = (1 + 𝑧) ∫
𝐻0

𝐻(𝑧′)

𝑧

0
𝑑𝑧′                                                                                           (41)                                                                                                            

To determine best fit values of 𝐻0, the apparent magnitude in terms of 𝑑𝐿 is defined as: 

𝜏(𝑧) = 𝑀 + 5𝑙𝑜𝑔10𝑑𝐿 − 5𝑙𝑜𝑔10 (
𝐻0

𝑀𝑝𝑐
) + 25,                                                          (42)                                                           

where, 𝑀 is constant for all SNeIa 

The distance modulus 𝜇(𝑧) = 𝜏 − 𝑀 is given by 

𝜇(𝑧) = 5𝑙𝑜𝑔10𝑑𝐿 − 5𝑙𝑜𝑔10 (
𝐻0

𝑀𝑝𝑐
) + 25                                                                   (43)                                                                                      

To obtain the best fit curve of apparent magnitude 𝜏(𝑧) with the use of the pantheon 

sample dataset of 1048 points of distance moduli 𝜇(𝑧) towards the  range 0.01 ≤  𝑧 ≤

 2.26 for various redshifts [52]. From [53] the statistically significant value of 𝑀 is -19.30. 

𝑅2 = 1 −
∑ [(𝜇𝑖)𝑜𝑏𝑠−(𝜇𝑖)𝑡ℎ]1048

1
2

∑ [(𝜇𝑖)𝑜𝑏𝑠−(𝜇𝑖)𝑚𝑒𝑎𝑛]1048
1

2                                                                              (44)                                                                                           

Since 𝑑𝐿(𝑧), 𝑚(𝑧), and 𝜇(𝑧) become undefined at 𝑧 =  −1, the parameter space is 

restricted  by setting 𝑧 >  −1 and 𝐻0 > 0. 

Using both the Hubble 𝐻(𝑧) data and the Pantheon compilation, the 𝑅2-test is performed 

to determine the best-fit values for the model parameters 𝛼 and 𝐻0. Figs. 1 and 2 show the 

maximum  likelihood contours for these parameters, along with their 1𝜎 and 2𝜎 confidence 

intervals. 

 

 
Fig. 2. Contour plot for the Pantheon dataset. 
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Fig. 3. Error bar plot for 57 Hubble dataset points with best-fit curves.\ 

 

 
Fig. 4. Error bar plot for 1048 Pantheon dataset points with best-fit curves. 

 

Figs. 3 and 4 display the error bar plots for the 57 data points from the Hubble dataset 

and the 1048 data points from the Pantheon dataset, using the model parameter values listed 

in Table 1. Both datasets are compared to the standard ΛCDM model (shown as a dotted 

black line), with parameters set as 𝐻0 = 67.8 km/s/Mpc, 𝛺𝛬0
= 0.7 , and 𝛺𝑚0

= 0.3. 

 

6. Cosmographic Parameters and Energy Conditions 

 

To understand the evolution of the universe through different phases, it is essential to 

analyze key cosmological parameters such as the deceleration parameter (𝑞), pressure (𝑝), 

density (𝜌), and energy conditions. 
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Fig. 5. Evolution of the deceleration parameter with redshift for the Hubble dataset. 

 

From figure, a positive value of 𝑞 indicates that the universe is decelerating, whereas a 

negative value signifies accelerated  expansion. The point where the universe transitions 

from deceleration to acceleration is marked by 𝑞 = 0. Numerous studies using Type Ia 

Supernova (SNe-Ia) observations have shown that the universe was decelerating for 

redshifts 𝑧 >  0.5, and has been accelerating  for 𝑧 <  0.5. In our model, the variation of 

the deceleration parameter with redshift is illustrated in Figs. 5 and 6, based on both 

datasets. The parameter values for 𝐻0 and 𝑛 used in the analysis are listed in Table 1. The 

redshift values at which the transition from deceleration to acceleration occurs are 𝑧𝑑𝑎  =

 0.59 for the Hubble dataset and 𝑧𝑑𝑎  =  0.98 for the Pantheon dataset. 

At present (𝑧 =  0), the deceleration parameter is 𝑞0  =  −0.25 for the Hubble dataset 

and 𝑞0  =  −0.29 for the Pantheon dataset. 

Additionally, for 𝑧 >  10, the deceleration parameter approaches a matter dominated 

regime (𝑞 ≈  0.5) in the Hubble dataset, signifying a late-time cosmic evolution. 

Pressure (𝑝𝑥 , 𝑝𝑦) and energy density (𝜌): 

 
Fig. 6. Evolution of energy density as a function of redshift for the Hubble and Pantheon datasets. 



102 Time Varying Deceleration Parameter in f(G) Gravity 

 

 
Fig. 7. Evolution of Pressure 𝑝𝑥 as a function of redshift for the Hubble and Pantheon datasets. 

 

 
Fig. 8. Evolution of Pressure 𝑝𝑦 as a function of redshift for the Hubble and Pantheon datasets. 

 

Eqs. (32) - (34) describe the evolution of 𝑥 and 𝑦 component of pressure and energy 

density in terms of redshift. Figs. 6-8 show the variation of these parameters based on the 

best-fit values from the Hubble and Pantheon datasets with constant parameter set to 𝛼 =

0.5, 𝜂 = 𝑛 = 𝑘 = 1, 𝑏 = 2. 

As shown in Fig. 6, energy density increases with redshift, indicating a higher density 

in the early universe and a decreasing trend as the universe expands. 

Figs. 7 and 8 illustrates that the x and y component of pressure remains negative 

throughout the cosmic evolution and decreases with redshift. This aligns with the 

accelerated expansion observed in recent cosmological studies. 

Energy conditions are essential concepts in general relativity, providing the foundation 

for key theorems about the behavior of intense gravitational fields and the structure of the 

universe. The energy condition for our model are presented in Figs. 9 to 11. These figures 
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are generated using the best fit values of the Hubble and Pantheon datasets from Table 1 

with constant parameters set to 𝛼 = 0.5, 𝜂 = 𝑛 = 𝑘 = 1, 𝑏 = 6. 

The four main energy conditions are described as follows: 

• Strong Energy Condition (SEC): Requires gravity to be attractive: 

                𝜌 + 3𝑝 ≥ 0. 

• Dominant Energy Condition (DEC): Ensures that energy density remains positive and 

propagates causally: 

                𝜌 ≥ |𝑝| . 

• Weak Energy Condition (WEC): Implies that the measured energy: 

                𝜌 ≥ 0, 𝜌 + 𝑝 ≥ 0. 

• Null Energy Condition (NEC): Represents the most fundamental condition required for 

WEC and SEC: 

                 𝜌 + 𝑝 ≥ 0. 

 

 

  
Fig. 9. Evolution of the Weak Energy Condition (WEC) with redshift. 

 

  

Fig. 10. Evolution of the Dominant Energy Condition (DEC) with redshift. 
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Fig. 11. Strong Energy Condition (SEC) violation with redshift. 

 

The Strong Energy Condition (SEC) is especially important for understanding the 

present accelerated expansion of the universe. In typical cosmological models, the SEC is 

anticipated to be violated during periods of cosmic acceleration. 

Our model reveals that DEC and WEC are satisfied ensuring that the model remains 

physically viable. SEC is violated for late-time evolution (see Fig. 11). This aligns with the 

expectation that SEC must be violated in models that describe an accelerated universe. NEC 

validation confirms that the WEC is satisfied, reinforcing the physical consistency of our 

model. 

 

7. Conclusion 

 

This work investigates the cosmological behavior of an anisotropic universe in the 

framework of 𝑓(𝐺) gravity using the LRS Bianchi type-I spacetime. Exact analytical 

solutions of the field equations were obtained by assuming a proportional relation between 

the shear scalar and the expansion scalar, along with a time-dependent deceleration 

parameter. The model parameters were constrained using recent observational datasets from 

Hubble and Pantheon samples, showing a strong statistical consistency and a good 

agreement with the observed accelerated expansion of the universe. The positive and 

monotonically decreasing energy density confirms the physical acceptability of the model 

throughout cosmic evolution. The directional pressures show a negative trend at late times, 

indicating a transition from a matter-dominated phase to a dark-energy-dominated phase 

responsible for acceleration. The analysis of energy conditions demonstrates that the Weak 

and Dominant Energy Conditions are satisfied, ensuring the stability and realistic nature of 

the model, while the violation of the Strong Energy Condition supports the occurrence of 

cosmic acceleration. Overall, the findings establish that the considered 𝑓(𝐺) gravity model 

in an anisotropic Bianchi type-I background provides a viable and observationally 
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consistent explanation for the late-time accelerated expansion of the universe, while 

preserving essential physical characteristics of a realistic cosmological model. 
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