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Abstract 

Differential equations are the formulation of scientific theory for many real-world physical 

problems. Boundary value problems (BVPs) occur frequently in the fields of engineering and 

science, such as gas dynamics, nuclear physics, atomic structures, and chemical reactions.  In 

most cases, BVPs do not always find the exact solutions to these problems. Boubaker 

wavelets are wavelet functions derived from Boubaker polynomials. They serve as an 

effective numerical tool for tackling a range of scientific and engineering problems, including 

differential and variational equations. Their strength lies in generating accurate approximate 

solutions by transforming complicated equations into simpler linear systems. In this paper, a 

wavelet-based Galerkin method using Boubaker wavelets for the numerical solution of BVPs 

is proposed. Here, Boubaker wavelets are used as weight functions that are the assumed basis 

elements that allow us to obtain the numerical solution of the BVPs. The numerical results 

from the proposed method are compared with the exact solution to assess accuracy against 

existing schemes (Galerkin method using other wavelets, such as Laguerre and Fibonacci 

wavelets). Some BVPs are taken to demonstrate the validity and applicability of the proposed 

method.  

Keywords: Boubaker wavelets; Function approximation; Boundary value problems; Galerkin 

method. 
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1. Introduction 

 

In recent years, studies of boundary value problems in second-order ordinary differential 

equations have attracted the attention of many mathematicians and physicists. Also, most 

of the differential equations arising from the modelling of physical phenomena do not 

always have known analytical solutions. Thus, the need for the development of numerical 

approaches to find approximate solutions becomes essential. 

Recently, some of the numerical methods have been used for the numerical solutions of 

the second-order ordinary differential equations. For example, the Haar wavelet collocation 
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method [1], the Legendre wavelet collocation method [2], the Taylor wavelet-based 

Galerkin method [3] etc. 

Wavelet analysis became important in the 1980s after proving useful in signal and image 

processing. The approach uses repeated shifting and scaling of one function to build a 

smooth orthonormal basis, which was crucial for developing compression algorithms that 

keep signals and images within certain amplitude limits. Major developments include 

wavelet series in applied mathematics, sub-band coding for voice and image compression, 

and multiresolution signal processing for computer vision. Special interest has been 

dedicated to the construction of compactly supported smooth wavelet bases. Already we 

know that spectral methods have good spectral localization but poor spatial localization, 

while finite element methods have good spatial localization but poor spectral localization. 

Wavelet bases execute to combine the advantages of both spectral and finite element bases. 

An approach to studying differential equations is the use of wavelet function bases in place 

of other conventional piecewise polynomial trial functions in finite element type methods 

[4,5]. 

The Galerkin method is considered the most widely used in applied mathematics 

because of its implementation and simplicity. This transforms the differential equations into 

algebraic ones that can be solved numerically. The resulting linear system of algebraic 

equations for the unknown coefficients is then solved to obtain numerical solutions of the 

differential equations [6,7]. 

The advantage of the wavelet-Galerkin method over the finite difference or finite 

element method has led to tremendous applications in science and engineering. To a certain 

extent, the wavelet technique is a strong competitor to the finite element method. Although 

the wavelet method provided an efficient alternative technique for solving differential 

equations, especially boundary value problems, numerically. 

In this paper, a wavelet-based Galerkin method using Boubaker wavelets was developed 

for the numerical solution for BVPs. This method is based on expanding the solution by 

Boubaker wavelets with unknown coefficients. The properties of Boubaker wavelets 

together with the Galerkin method are utilized to evaluate the unknown coefficients, and 

then a numerical solution of the BVPs is obtained. 

The organization of the paper is as follows. Boubaker wavelets and function 

approximations are given in section 2. Section 3 deals with the wavelet-based Galerkin 

method for the solution of BVPs. Numerical implementation is given in section 4. Finally, 

conclusions of the proposed work are discussed in section 5. 

 

2. Boubaker Wavelets and Function Approximation 

 

Boubaker wavelets 

Wavelets constitute a family of functions constructed from dilation and translation of a 

single function called the mother wavelet. When the dilation parameter a and the translation 

parameter b vary continuously and have the following family of continuous wavelets [8,9]: 
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𝜓𝑎,𝑏(𝑥)  =  |𝑎|
−1

2 𝜓 (
𝑥 − 𝑏

𝑎
) , ∀ 𝑎, 𝑏 ∈ 𝑅 & 𝑎 ≠  0 

Restrict the parameters ba &  to discrete values as 

𝑎 = 𝑎0
−𝑛, 𝑏 = 𝑚𝑏0𝑎0

−𝑛 ;  𝑎0  >  1, 𝑏0  >  0 

and the following family of discrete wavelets  

𝜓𝑛,𝑚(𝑥) = |𝑎0|
1

2𝜓(𝑎0
𝑛𝑥 − 𝑚𝑏0), 𝑛,𝑚 ∈ 𝑍 

Where ψ
n,m

 form a wavelet basis for 𝑎, 𝑏. In particular, when 𝑎0 = 2 & 𝑏0 = 1, then 

ψ
n,m
(x) forms an orthonormal basis.  

Boubaker wavelets are defined as follows:  

𝜓𝑛,𝑚(𝑥) = {√
2𝑚 + 1

(2𝑚!)

(𝑚!)2
2
𝑘+1

2 𝐵𝑚(2
𝑘+1𝑥 − 2𝑛 + 1),

𝑛−1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (2.1) 

where, k  is any positive integer, 𝑛 = 1,2,3, . . . . . . . . , 2𝑘−1 is an argument and 𝑚 =

0,1,2,3. . . . . . . . 𝑀 − 1 is the order of Boubaker functions  

𝐵0(𝑥) = 1  , 

𝐵1(𝑥) =
1

2
(2𝑥 − 1) . 𝐵2(𝑥) =

1

6
(6𝑥2 − 6𝑥 + 1) and so on.  

For instance, for 1k =   and 𝑀 = 3, the Boubaker wavelet bases as follows:  

𝜓1,0(𝑥) = 2, 𝜓1,1(𝑥) = 2√3(8𝑥 − 3), 𝜓1,2(𝑥) = 2√5(96𝑥
2 − 72𝑥 + 13)  and so on. 

 

Function approximation 

Suppose   )2( ) 0 , 1y x L  is expanded in terms of Boubaker wavelets as: 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
∞
𝑚=0

∞
𝑛=1 𝜓𝑛,𝑚(𝑥)                                           (2.2) 

Truncating the above infinite series, we get  

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀−1
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                                           (2.3) 

 

Convergence of Boubaker wavelets 

Theorem: If a continuous function 𝑦(𝑥) ∈ 𝐿2(𝑅) defined on [0,1) be bounded, i.e. 

( )y x K , then the Boubaker wavelets expansion of 𝑦(𝑥) converges uniformly to it [10]. 

 

3. Method of Solution 

 

Consider the boundary value of the problem is of the form, 

𝑦″ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 𝑓(𝑥)                                    (3.1) 

With boundary conditions              𝑦(0) = 𝑎, 𝑦(1) = 𝑏                                                 (3.2) 

Where ( ) ( )&P x Q x   are constants or functions and ( )xf  be a continuous function of x . 

Write the Eq. (3.1) as                𝑅(𝑥) = 𝑦″ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 − 𝑓(𝑥)                        (3.3) 

where ( )xR the residual of Eq. (3.1) equals zero, the exact solution is identified, and the 

boundary conditions are satisfied. 

Consider the trial series solution of Eq. (3.1), ( )y x defined over [0, 1) can be expanded 

as a modified Boubaker wavelet, satisfying the given boundary conditions, which involves 

unknown coefficients as follows: 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀−1
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                                    (3.4) 



84 Numerical Solution of Boundary Value Problems 

 

Where 𝑐𝑛,𝑚′𝑠 are unknown coefficients to be determined. 

Accuracy in the solution is increased by choosing higher-degree Boubaker wavelet 

polynomials.  

Differentiate Eq. (3.4) twice with respect to x and substitute the values of in 𝑦, 𝑦′, 𝑦″ Eq. 

(3.3). To find 𝑐𝑛,𝑚′𝑠, choose the function as assumed bases elements and integrate on 

boundary values together with the residual to zero [11]. 

               i.e.      ∫ 𝜓1,𝑚(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0, 𝑚 = 0,1,2, . . . . . . .. 

then obtained a system of linear algebraic equations, on solving this system, to get unknown 

coefficients. Substitute these unknowns in the trail solution i.e. Eq. (3.4), obtained the 

numerical solution of Eq. (3.1). 

In order to know the accuracy of BWGM on the test problems, use the maximum 

absolute error as a measure of error. The formulas for the calculations are listed as follows: 

(i) Maximum absolute error
max max ( ) ( )e nE y x y x= = − , 

where 𝑦(𝑥)𝑒 and 𝑦(𝑥)𝑛 are exact and numerical solution 

(ii) 𝐿2 - Norm= ‖(∑ 𝐸𝑚
2𝑛

𝑚=1 )1/2‖  (iii)
L  - Norm= ‖𝑀𝑎𝑥(𝐸𝑚)‖,𝑚 =

1,2, . . . . . ,9 

 

4. Numerical Implementation 

 

Problem 4.1 First, consider the boundary value problem(In Eq. (3.1) 𝑃(𝑥) = −1, 

𝑄(𝑥) = 0 &𝑓(𝑥) = −(𝑒𝑥−1 + 1)) i.e.   

𝑦″ − 𝑦′ = −(𝑒𝑥−1 + 1), 0 ≤ 𝑥 ≤ 1                               (4.1) 

With boundary conditions:              𝑦(0) = 0, 𝑦(1) = 0                                               (4.2) 

The implementation of the Eq. (4.1) as per the method explained in section 3 is as follows: 

and its residual can be written as:   

𝑅(𝑥) = 𝑦″ − 𝑦′ + (𝑒𝑥−1 + 1)                                      (4.3) 

Now, choosing the function 𝑤(𝑥) = 𝑥(1 − 𝑥) for Boubaker wavelet bases to satisfy the 

given boundary conditions Eq. (4.2), i.e. 𝜓(𝑥) = 𝑤(𝑥) × 𝜓(𝑥) 
𝜓1,0(𝑥) = 𝜓1,0(𝑥) × 𝑥(1 − 𝑥) = 2𝑥(1 − 𝑥) 

𝜓1,1(𝑥) = 𝜓1,1(𝑥) × 𝑥(1 − 𝑥) = 2√3(8𝑥 − 3)𝑥(1 − 𝑥) 

𝜓1,2(𝑥) = 𝜓1,2(𝑥) × 𝑥(1 − 𝑥) = 2√5(96𝑥
2 − 72𝑥 + 13)𝑥(1 − 𝑥) 

Assuming the trail solution of Eq. (4.1) for   𝑘 = 1 and 𝑀 = 3 is given by 

𝑦(𝑥) = 𝑐1,0𝜓1,0(𝑥) + 𝑐1,1𝜓1,1(𝑥) + 𝑐1,2𝜓1,2(𝑥)                           (4.4) 

Then the Eq. (4.4) becomes           

𝑦(𝑥) = 𝑐1,0{2𝑥(1 − 𝑥)} + 𝑐1,1{2√3(8𝑥 − 3)𝑥(1 − 𝑥)} +  

𝑐1,2{2√5(96𝑥
2 − 72𝑥 + 13)𝑥(1 − 𝑥)}               (4.5) 

Differentiate Eq. (4.5) w.r.t. x twice and substitute the values of  𝑦′, 𝑦″in Eq. (4.3), to 

get the residual of Eq. (4.1). The “weight functions” are the same as the basis functions.  

Then by the weighted Galerkin method, consider the following: 

∫ 𝜓1,𝑗(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0, 𝑗 = 0,1,2                                    (4.6) 

For 𝑗 = 0,1,2 in Eq. (4.6),  
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i.e.  

∫ 𝜓1,0(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,1(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,2(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

}
 
 

 
 

                                     (4.7) 

From Eq. (4.7), obtained a system of algebraic equations with unknown coefficients i.e. 

𝑐1,0, 𝑐1,1and 𝑐1,2. Solving this by the Gauss elimination method, finding the values of 𝑐1,0 =

0.37193, 𝑐1,1 = 0.01208 and 𝑐1,2 = 0.00027. On substituting these values in Eq. (4.5) 

then obtained the numerical solution of Eq. (4.1). Table 1 shows the comparison between 

BWGM and absolute errors, while Table 2 compares error norms against exact solutions 

for verification. Fig. 1 illustrates the numerical solution in relation to the exact solution of 

Eq. (4.1) is 𝑦(𝑥) = 𝑥(1 − 𝑒𝑥−1)[13]. 

 
Table 1. Comparison of numerical solutionand absolute error with exact solution of the problem 4.1. 

 

x 
Numerical solution Exact 

solution 

Absolute error 

Ref [12] Ref [13] BWGM Ref [12] Ref [13] BWGM 

0.1 0.3079992 0.059383 0.059397 0.059343 1.02e-03 4.00e-05 5.40e-05 

0.2 0.5880739 0.110234 0.110115 0.110134 7.00e-04 1.00e-04 1.90e-05 

0.3 0.8094184 0.151200 0.150948 0.151024 4.00e-04 1.76e-04 7.60e-05 

0.4 0.9515192 0.180617 0.180408 0.180475 4.60e-04 1.42e-04 6.70e-05 

0.5 1.0001543 0.196983 0.196729 0.196735 1.50e-04 2.48e-04 6.00e-06 

0.6 0.9513935 0.198083 0.197868 0.197808 3.40e-04 2.75e-04 6.00e-05 

0.7 0.8092985 0.181655 0.181503 0.181427 2.80e-04 2.28e-04 7.60e-05 

0.8 0.5878225 0.145200 0.145035 0.145015 3.80e-05 1.85e-04 2.00e-05 

0.9 0.3084107 0.085710 0.085587 0.085646 6.10e-04 6.40e-05 5.90e-05 

 
Table 2. Comparison for error norms L2 & L∞ to compare with exact solutions for problem 4.1. 
 

Method 𝐿2 norm 𝐿∞norm 

Ref [12] 1.60e-03 1.00e-03 

Ref [13] 5.60e-04 2.75e-04 

BWGM 1.64e-04 7.60e-05 

 

 
Fig. 1. Comparison of numerical solution with exact solution of the problem 4.1. 
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Problem 4.2 Next, consider another the boundary value problem (In Eq. (3.1) 𝑃(𝑥) =

0, 𝑄(𝑥) = 1 &𝑓(𝑥) = 𝑥2)   i.e.   

   𝑦″ + 𝑦 = 𝑥2, 0 ≤ 𝑥 ≤ 1                                      (4.8) 

With boundary conditions:                   𝑦(0) = 0, 𝑦(1) = 0                                           (4.9) 

As explained in section 3 and in the previous problem, obtained the values of 𝑐1,0 =

−0.07158, 𝑐1,1 = −0.00552 and 𝑐1,2 = −0.00016.  Substituting these values in Eq. (4.5), to 

find the numerical solution. The comparison of the numerical solution and the absolute 

errors are presented in Tables 3 and 4, while Table 5 compares error norms against exact 

solutions for verification, and numerical solution with the exact solution of Eq. (4.8) is  

𝑦(𝑥) =
𝑠𝑖𝑛(𝑥)+2 𝑠𝑖𝑛(1−𝑥)

𝑠𝑖𝑛(1)
+ 𝑥2 − 2 [14] in Fig. 2. 

 
Table 3. Comparison of numerical solutionand absolute error with exact solution of the problem 4.2. 

 
Table 4. Comparison of numerical solutionand absolute error with exact solution of the problem 4.2. 

 

Table 5. Comparison for error norms 𝐿2 & 𝐿∞ to compare with exact solutions for problem 4.2. 
 

Method 𝐿2 norm 𝐿∞norm 

Ref [14] 8.31e-04 6.00e-04 

FDM 4.78e-04 1.95e-04 

BWGM 8.00e-05 6.00e-05 

 

Problem 4.3 Now consider the singular boundary value problem (In Eq. (3.1) 𝑃(𝑥) =
1

𝑥
, 

𝑄(𝑥) = 1 &𝑓(𝑥) = 𝑥2 − 𝑥3 − 9𝑥 + 4) i.e.   

𝑦″ +
1

𝑥
𝑦′ + 𝑦 = 𝑥2 − 𝑥3 − 9𝑥 + 4,0 ≤ 𝑥 ≤ 1                         (4.10) 

With boundary conditions:                   𝑦(0) = 0, 𝑦(1) = 0                                         (4.11) 

 

x 
Numerical solution Exact solution Absolute error 

Ref [14] BWGM  Ref [14]] BWGM 

0.125 -0.0121 -0.0119057 -0.0119 2.00e-04 5.70e-06 

0.375 -0.0340 -0.0334693 -0.0334 6.00e-04 6.93e-05 

0.625 -0.0440 -0.0434389 -0.0435 5.00e-04 6.11e-05 

0.875 -0.0261 -0.0258631 -0.0259 2.00e-04 3.69e-05 

x 
Numerical solution Exact solution Absolute error 

FDM BWGM  FDM BWGM 

0.1 -0.009628 -0.009534 -0.009555 7.30e-05 2.10e-05 

0.2 -0.019027 -0.018901 -0.018897 1.30e-04 4.00e-06 

0.3 -0.027804 -0.027661 -0.027635 1.69e-04 2.60e-05 

0.4 -0.035371 -0.035209 -0.035180 1.91e-04 2.90e-05 

0.5 -0.040954 -0.040772 -0.040759 1.95e-04 1.30e-05 

0.6 -0.043600 -0.043407 -0.043416 1.84e-04 9.00e-06 

0.7 -0.042180 -0.042007 -0.042025 1.55e-04 1.80e-05 

0.8 -0.035418 -0.035296 -0.035302 1.16e-04 6.00e-05 

0.9 -0.021878 -0.021831 -0.021815 6.30e-05 1.60e-05 
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Fig. 2. Comparison of numerical solution with exact solution of the problem 4.2. 

 

As explained in section 3 and in the previous problem, obtained the values of 𝑐1,0 =

0.18746, 𝑐1,1 = 0.03609 and 𝑐1,2 = 0.00001. Substituting these values in Eq. (4.5), to find 

the numerical solution. The comparison of the numerical solution and the absolute errors 

are presented in Table 6, while Table 7 compares error norms against exact solutions for 

confirmation, and the numerical solution with the exact solution of Eq. (4.10) is 𝑦(𝑥) =
𝑥2 − 𝑥3 [15] in Fig. 3. 

 
Table 6. Comparison of numerical solutionand absolute error with exact solution of the problem 4.3. 

 
Table 7. Comparison for error norms L2 & L∞ to compare with exact solutions for problem 4.3. 
 

Method 𝐿2 norm 𝐿∞norm 

Ref [15] 2.20e-03 1.70e-03 

Ref [16] 1.10e-03 6.77e-04 

BWGM 5.65e-05 3.00e-05 

 

 

 

x 
Numerical solution Exact 

solution 

Absolute error 

Ref [15] Ref [16] BWGM Ref [15] Ref [16] BWGM 

0.1 0.010673 0.009677 0.008989 0.009000 1.67e-03 6.77e-04 1.10e-05 
0.2 0.033159 0.032675 0.031988 0.032000 1.16e-03 6.75e-04 1.20e-05 

0.3 0.063290 0.063354 0.062993 0.063000 2.90e-04 3.54e-04 7.00e-06 

0.4 0.095881 0.095981 0.096003 0.096000 1.19e-04 1.90e-05 3.00e-06 
0.5 0.125034 0.124731 0.125014 0.125000 3.40e-05 2.69e-04 1.40e-05 

0.6 0.144429 0.143688 0.144023 0.144000 4.29e-04 3.12e-04 2.30e-05 

0.7 0.147623 0.146841 0.147030 0.147000 6.23e-04 1.59e-04 3.00e-05 
0.8 0.128350 0.128089 0.128029 0.128000 3.50e-04 8.90e-05 2.90e-05 

0.9 0.080816 0.080862 0.081020 0.081000 1.84e-04 1.38e-04 2.00e-05 
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Fig. 3. Comparison of numerical solution with exact solution of the problem 4.3. 

 

5. Conclusions 

 

This paper presents a wavelet-based Galerkin method that employs Boubaker wavelets 

(BWGM) for the computation of numerical solutions to differential equations. The results 

indicate that the proposed method surpasses current techniques, such as the Finite difference 

method (FDM) and the Galerkin Method using Laguerre and Fibonacci wavelets, yielding 

solutions that align more closely with the exact results. Furthermore, the absolute error, 

L2 & L∞ norms associated with this method is significantly lower when compared to the 

existing methods, namely the Finite difference method (FDM) and the Galerkin Method 

utilizing Laguerre and Fibonacci wavelets. This advancement represents a notable 

contribution to recent research in numerical analysis, offering substantial advantages to 

novice researchers. Consequently, the Boubaker wavelet-based Galerkin method proves to 

be highly effective for addressing boundary value problems. 

 

References 

 
1. S. C. Shiralashetti and S. Kumbinarasaiah, Compu. Meth. Diff. Eqs. 7, 177 (2019). 

2. S. C. Shiralashetti and A. B. Deshi, Int. J. Compu. Mat. Sci. Eng. 6, ID 1750014 (2017). 

https://doi.org/10.1142/S2047684117500142 

3. L. M. Angadi, J. Math. Sci. Comp. Math. 6, 77 (2025). 

4. L. M. Angadi, J. Sci. Res. 16, 31 (2024). http://dx.doi.org/10.3329/jsr.v16i1.63085 

5. L. M. Angadi, Elect. J. Math. Anal. Appl. 13, 1 (2025). 

http://dx.doi.org/10.21608/ejmaa.2024.305417.1238 

6. K. Amaratunga and J. R. William, Inter. J. Num. Meth. Eng. 37, 2703 (1994).  

https://doi.org/10.1002/nme.1620371602 

7. J. W. Mosevic, Math. Comp. 31, 139 (1977). https://doi.org/10.1090/S0025-5718-1977-0426447-

0 

8. M. A. Sarhan, S. Shihab, and M. Rasheed, J. South. Jiaot. Univ. 55 (2020).  

https://doi.org/10.35741/issn.0258-2724.55.2.3 

9. S. C. Shiralashetti and L. Lamani, Math. Forum 28, 114 (2020). 

https://doi.org/10.1142/S2047684117500142
http://dx.doi.org/10.3329/jsr.v16i1.63085
http://dx.doi.org/10.21608/ejmaa.2024.305417.1238
https://doi.org/10.1002/nme.1620371602
https://doi.org/10.1090/S0025-5718-1977-0426447-0
https://doi.org/10.1090/S0025-5718-1977-0426447-0
https://doi.org/10.35741/issn.0258-2724.55.2.3


L. M. Angadi, J. Sci. Res. 18 (1), 81-89 (2026) 89 

 

10. S. C. Shiralashetti, E. Harishkumar, and S. Hanaji, TWMS J. Appl. Eng. Math. 1, 175 (2023). 

11. J. E. Cicelia, Ind. J. Sci. Tech. 7, 52 (2014). https://doi.org/10.17485/ijst/2014/v7sp3.3 

12. L. M. Angadi, J. Stat. Math. Eng. 10, 31 (2024). https://doi.org/10.1080/10724117.2024.2312037 

13. T. Lot and K. Mahdiani, Math. Sci. 1, 07 (2007). 

14. S. Arora, Y. S. Brar, and S. Kumar, Int. J. Compu. Appl. 97, 33 (2014). 

https://doi.org/10.5120/17108-7759 

15. L. M. Angadi, Int. J. Moder. Math. Sci. 19, 34 (2021). 

16. L. M. Angadi, J. Sci. Res. 17, 227 (2025). https://dx.doi.org/10.3329/jsr.v17i1.75341 

 

 

 

https://doi.org/10.17485/ijst/2014/v7sp3.3
https://doi.org/10.1080/10724117.2024.2312037
https://doi.org/10.5120/17108-7759
https://dx.doi.org/10.3329/jsr.v17i1.75341

