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Abstract

Differential equations are the formulation of scientific theory for many real-world physical
problems. Boundary value problems (BVPs) occur frequently in the fields of engineering and
science, such as gas dynamics, nuclear physics, atomic structures, and chemical reactions. In
most cases, BVPs do not always find the exact solutions to these problems. Boubaker
wavelets are wavelet functions derived from Boubaker polynomials. They serve as an
effective numerical tool for tackling a range of scientific and engineering problems, including
differential and variational equations. Their strength lies in generating accurate approximate
solutions by transforming complicated equations into simpler linear systems. In this paper, a
wavelet-based Galerkin method using Boubaker wavelets for the numerical solution of BVPs
is proposed. Here, Boubaker wavelets are used as weight functions that are the assumed basis
elements that allow us to obtain the numerical solution of the BVPs. The numerical results
from the proposed method are compared with the exact solution to assess accuracy against
existing schemes (Galerkin method using other wavelets, such as Laguerre and Fibonacci
wavelets). Some BVPs are taken to demonstrate the validity and applicability of the proposed
method.
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1. Introduction

In recent years, studies of boundary value problems in second-order ordinary differential
equations have attracted the attention of many mathematicians and physicists. Also, most
of the differential equations arising from the modelling of physical phenomena do not
always have known analytical solutions. Thus, the need for the development of numerical
approaches to find approximate solutions becomes essential.

Recently, some of the numerical methods have been used for the numerical solutions of
the second-order ordinary differential equations. For example, the Haar wavelet collocation
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method [1], the Legendre wavelet collocation method [2], the Taylor wavelet-based
Galerkin method [3] etc.

Wavelet analysis became important in the 1980s after proving useful in signal and image
processing. The approach uses repeated shifting and scaling of one function to build a
smooth orthonormal basis, which was crucial for developing compression algorithms that
keep signals and images within certain amplitude limits. Major developments include
wavelet series in applied mathematics, sub-band coding for voice and image compression,
and multiresolution signal processing for computer vision. Special interest has been
dedicated to the construction of compactly supported smooth wavelet bases. Already we
know that spectral methods have good spectral localization but poor spatial localization,
while finite element methods have good spatial localization but poor spectral localization.
Wavelet bases execute to combine the advantages of both spectral and finite element bases.
An approach to studying differential equations is the use of wavelet function bases in place
of other conventional piecewise polynomial trial functions in finite element type methods
[4,5].

The Galerkin method is considered the most widely used in applied mathematics
because of its implementation and simplicity. This transforms the differential equations into
algebraic ones that can be solved numerically. The resulting linear system of algebraic
equations for the unknown coefficients is then solved to obtain numerical solutions of the
differential equations [6,7].

The advantage of the wavelet-Galerkin method over the finite difference or finite
element method has led to tremendous applications in science and engineering. To a certain
extent, the wavelet technique is a strong competitor to the finite element method. Although
the wavelet method provided an efficient alternative technique for solving differential
equations, especially boundary value problems, numerically.

In this paper, a wavelet-based Galerkin method using Boubaker wavelets was developed
for the numerical solution for BVPs. This method is based on expanding the solution by
Boubaker wavelets with unknown coefficients. The properties of Boubaker wavelets
together with the Galerkin method are utilized to evaluate the unknown coefficients, and
then a numerical solution of the BVPs is obtained.

The organization of the paper is as follows. Boubaker wavelets and function
approximations are given in section 2. Section 3 deals with the wavelet-based Galerkin
method for the solution of BVPs. Numerical implementation is given in section 4. Finally,
conclusions of the proposed work are discussed in section 5.

2. Boubaker Wavelets and Function Approximation

Boubaker wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a
single function called the mother wavelet. When the dilation parameter @ and the translation
parameter b vary continuously and have the following family of continuous wavelets [8,9]:
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1 x
Yap(x) = lalzy (T),Va,b ER&a # 0

Restrict the parameters ¢ & b to discrete values as

a=ay",b=mbyag"; ay > 1,by > 0
and the following family of discrete wavelets

1

1pn,m(x) = |a0|5¢(agx - mbo), nmeZz
Where vy form a wavelet basis for a, b. In particular, whena, = 2 & by = 1, then
Y, ,(¥) forms an orthonormal basis.

Boubaker wavelets are defined as follows

@m) , k+1, _
1pn,m(x) = m( .)2 2 Bp,(2"'x —2n+ 1), Py <x <

0, Otherwise
where, k is any positive integer, n =1,2,3,........ ,2¥=1 is an argument and m =
0,1,2,3........ M — 1 is the order of Boubaker functions
By(x) =1,
Bi(x) = %(Zx -1).B,(x) = %(6x2 — 6x + 1) and so on.
For instance, for ¥ = 1 and M = 3, the Boubaker wavelet bases as follows:
PYr0(x) = 2,1 1(x) = 2V3(8x — 3), 1 ,(x) = 2v/5(96x% — 72x + 13) and so on.

@2.1)

Function approximation
Suppose y(x) € L* [0 , 1) is expanded in terms of Boubaker wavelets as:

y(x) = 0r?:l Z?ﬁ:o Cn,m lpn,m (X) (22)
Truncating the above infinite series, we get

Y = X2 Mty P () 2.3)

Convergence of Boubaker wavelets
Theorem: If a continuous function y(x) € L?>(R) defined on [0,1) be bounded, i.e.
y( x ) < K, then the Boubaker wavelets expansion of y(x) converges uniformly to it [10].

3. Method of Solution

Consider the boundary value of the problem is of the form,

Y + Py +Q@y = f(x) 3.1
With boundary conditions y(0)=ay(1)=>b (3.2)
Where P(x) & Q(x) are constants or functions and f(x) be a continuous function of X .
Write the Eq. (3.1) as R(x) =y +Px)y +Qx)y — f(x) (3.3)

where R(x)the residual of Eq. (3.1) equals zero, the exact solution is identified, and the
boundary conditions are satisfied.

Consider the trial series solution of Eq. (3.1), ¥ (x) defined over [0, 1) can be expanded
as a modified Boubaker wavelet, satisfying the given boundary conditions, which involves
unknown coefficients as follows:

y(x) =

2k1M

Ocnmll}nm(x) (3-4)
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Where ¢, ,,'s are unknown coefficients to be determined.

Accuracy in the solution is increased by choosing higher-degree Boubaker wavelet
polynomials.

Differentiate Eq. (3.4) twice with respect to X and substitute the values of iny,y’,¥" Eq.
(3.3). To find ¢, s, choose the function as assumed bases elements and integrate on
boundary values together with the residual to zero [11].

ie. fol Y1) RMX)dx =0,m=0,12,.......
then obtained a system of linear algebraic equations, on solving this system, to get unknown
coefficients. Substitute these unknowns in the trail solution i.e. Eq. (3.4), obtained the
numerical solution of Eq. (3.1).
In order to know the accuracy of BWGM on the test problems, use the maximum
absolute error as a measure of error. The formulas for the calculations are listed as follows:
(i)  Maximum absolute error = E = max ‘ y(x), — y(x),

max

where y(x), and y(x), are exact and numerical solution
(ii) L, - Norm= ||(Zp=1 EZ)Y?|| (iii) L, - Norm= ||[Max(E,)|l, m =

El

4. Numerical Implementation

Problem 4.1 First, consider the boundary value problem(In Eq. (3.1) P(x) = —1,
Q(x) =0&f(x) = —(e* 1+ 1))ie.
y' —y' =—(*1+1),0<x<1 4.1)
With boundary conditions: y(0)=0,y(1) =0 4.2)
The implementation of the Eq. (4.1) as per the method explained in section 3 is as follows:
and its residual can be written as:
Rx)=y"—y" +(e*1+1) 4.3)
Now, choosing the function w(x) = x(1 — x) for Boubaker wavelet bases to satisfy the
given boundary conditions Eq. (4.2), i.e. ¥(x) = w(x) X P (x)
P10(x) = Py(x) X x(1 —x) = 2x(1 — x)
P11(0) =1 () Xx(1—x) = 2V3(8x — 3)x(1 — x)
P12(%) = P1o(x) X x(1 — x) = 2V5(96x2 — 72x + 13)x(1 — x)
Assuming the trail solution of Eq. (4.1) for k = 1and M = 3 is given by

Y(x) = c1,0P1,0(%) + 11911 (%) + €129 2 (x) (4.4)
Then the Eq. (4.4) becomes

y(x) = ¢ 0{2x(1 — )} + ¢11{2V3(8x — 3)x(1 — x)} +
¢1,{2V5(96x% — 72x + 13)x(1 — x)} (4.5)
Differentiate Eq. (4.5) w.r.t. X twice and substitute the values of y’,y"in Eq. (4.3), to
get the residual of Eq. (4.1). The “weight functions” are the same as the basis functions.
Then by the weighted Galerkin method, consider the following:
Jy ¥1;(0) R(x)dx =0, = 0,1,2 (4.6)
Forj = 0,1,2 in Eq. (4.6),
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fol P10(x) R(x)dx =0
Le. fol Y11 (x)R(x)dx =0

Jy ¥12(x) RGx)dx = 0

From Eq. (4.7), obtained a system of algebraic equations with unknown coefficients i.e.
€1,0, €1,1and ¢q ,. Solving this by the Gauss elimination method, finding the values of ¢; o, =
0.37193, ¢;; = 0.01208 and c¢; , = 0.00027. On substituting these values in Eq. (4.5)
then obtained the numerical solution of Eq. (4.1). Table 1 shows the comparison between
BWGM and absolute errors, while Table 2 compares error norms against exact solutions
for verification. Fig. 1 illustrates the numerical solution in relation to the exact solution of
Eq. 4.1)is y(x) = x(1 — e* D[13].

(4.7)

Table 1. Comparison of numerical solutionand absolute error with exact solution of the problem 4.1.

Numerical solution Exact Absolute error

Ref[12]  Ref[13] BWGM  solution  Ref[12]  Ref[13] BWGM
0.1 0.3079992  0.059383  0.059397  0.059343 1.02e-03 4.00e-05 5.40e-05
0.2 0.5880739  0.110234  0.110115 0.110134  7.00e-04 1.00e-04 1.90e-05
0.3 0.8094184 0.151200  0.150948 0.151024  4.00e-04 1.76e-04 7.60e-05
0.4 0.9515192 0.180617  0.180408 0.180475  4.60e-04 1.42¢-04 6.70e-05
0.5 1.0001543  0.196983  0.196729  0.196735 1.50e-04 2.48e-04 6.00e-06
0.6 0.9513935 0.198083  0.197868  0.197808 3.40e-04 2.75e-04 6.00e-05
0.7 0.8092985 0.181655  0.181503  0.181427  2.80e-04 2.28e-04 7.60e-05
0.8 0.5878225  0.145200  0.145035 0.145015 3.80e-05 1.85¢-04 2.00e-05
0.9 0.3084107 0.085710  0.085587 0.085646  6.10e-04 6.40e-05 5.90e-05

Table 2. Comparison for error norms L, & L, to compare with exact solutions for problem 4.1.

Method L, norm L,norm
Ref[12] 1.60e-03 1.00e-03
Ref[13] 5.60e-04 2.75e-04
BWGM 1.64e-04 7.60e-05
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Fig. 1. Comparison of numerical solution with exact solution of the problem 4.1.
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Problem 4.2 Next, consider another the boundary value problem (In Eq.(3.1) P(x) =
0,0(x) =1&f(x) =x2) ie.

y'+y=x%0<x<1 (4.8)
With boundary conditions: y(0)=0,y(1)=0 (4.9)
As explained in section 3 and in the previous problem, obtained the values of ¢; o =
—0.07158, ¢; 1 = —0.00552 and ¢;, = —0.00016. Substituting these values in Eq. (4.5), to
find the numerical solution. The comparison of the numerical solution and the absolute
errors are presented in Tables 3 and 4, while Table 5 compares error norms against exact
solutions for verification, and numerical solution with the exact solution of Eq. (4.8) 1S

y(x) = 751’71(;():;2;1(1—@ + x? — 2 [14] in Fig. 2.

Table 3. Comparison of numerical solutionand absolute error with exact solution of the problem 4.2.

Numerical solution Exact solution Absolute error
X Ref [14] BWGM Ref [14]] BWGM
0.125 -0.0121 -0.0119057 -0.0119 2.00e-04 5.70e-06
0.375 -0.0340 -0.0334693 -0.0334 6.00e-04 6.93e-05
0.625 -0.0440 -0.0434389 -0.0435 5.00e-04 6.11e-05
0.875 -0.0261 -0.0258631 -0.0259 2.00e-04 3.69¢-05

Table 4. Comparison of numerical solutionand absolute error with exact solution of the problem 4.2.

< Numerical solution Exact solution Absolute error

FDM BWGM FDM BWGM
0.1 -0.009628 -0.009534 -0.009555 7.30e-05 2.10e-05
0.2 -0.019027 -0.018901 -0.018897 1.30e-04 4.00e-06
0.3 -0.027804 -0.027661 -0.027635 1.69¢-04 2.60e-05
0.4 -0.035371 -0.035209 -0.035180 1.91e-04 2.90e-05
0.5 -0.040954 -0.040772 -0.040759 1.95¢-04 1.30e-05
0.6 -0.043600 -0.043407 -0.043416 1.84e-04 9.00e-06
0.7 -0.042180 -0.042007 -0.042025 1.55e-04 1.80e-05
0.8 -0.035418 -0.035296 -0.035302 1.16e-04 6.00e-05
0.9 -0.021878 -0.021831 -0.021815 6.30e-05 1.60e-05

Table 5. Comparison for error norms L, & L, to compare with exact solutions for problem 4.2.

Method L, norm L,norm

Ref [14] 8.31e-04 6.00e-04
FDM 4.78e-04 1.95¢-04
BWGM 8.00e-05 6.00e-05

Problem 4.3 Now consider the singular boundary value problem (In Eq.(3.1) P(x) = %
Q(x) =1&f(x) =x?>—x3-9x+4)ie.

Y 4oy +y=x?—x*—9x+40<x<1 (4.10)
With boundary conditions: y(0)=0,y(1) =0 (4.11)

’



L. M. Angadi, J. Sci. Res. 18 (1), 81-89 (2026) 87

0 T T T T
Exact solution
-0.005 - O BWGM i

-0.01 b

-0.015 b

-0.02 - 1

-0.025 - 1

-0.03 - 1

-0.035 b

0.04 1 ,

0.045 1 1 I 1 I 1 I . I
0 0.1 02 03 04 05 06 07 08 09 1

X
Fig. 2. Comparison of numerical solution with exact solution of the problem 4.2.

As explained in section 3 and in the previous problem, obtained the values of ¢; o =
0.18746,c;, = 0.03609 and c; , = 0.00001. Substituting these values in Eq. (4.5), to find
the numerical solution. The comparison of the numerical solution and the absolute errors
are presented in Table 6, while Table 7 compares error norms against exact solutions for
confirmation, and the numerical solution with the exact solution of Eq. (4.10) is y(x) =
x? — x3 [15] in Fig. 3.

Table 6. Comparison of numerical solutionand absolute error with exact solution of the problem 4.3.

< Numerical solution Exact Absolute error
Ref [15] Ref[16] BWGM solution  Ref[15]  Ref[16] BWGM
0.1 0.010673 0.009677 0.008989 0.009000 1.67¢-03 6.77¢-04 1.10e-05

0.2 0.033159 0.032675 0.031988 0.032000 1.16e-03 6.75e-04 1.20e-05
0.3 0.063290 0.063354 0.062993 0.063000 2.90e-04 3.54e-04 7.00e-06
0.4 0.095881 0.095981 0.096003 0.096000 1.19e-04 1.90e-05 3.00e-06
0.5 0.125034 0.124731 0.125014 0.125000 3.40e-05 2.69e-04 1.40e-05
0.6 0.144429 0.143688 0.144023 0.144000 4.29e-04 3.12e-04 2.30e-05
0.7 0.147623 0.146841 0.147030 0.147000 6.23e-04 1.59e-04 3.00e-05
0.8 0.128350 0.128089 0.128029 0.128000 3.50e-04 8.90e-05 2.90e-05
0.9 0.080816 0.080862 0.081020 0.081000 1.84e-04 1.38e-04 2.00e-05

Table 7. Comparison for error norms L, & L., to compare with exact solutions for problem 4.3.

Method L, norm L,norm
Ref[15] 2.20e-03 1.70e-03
Ref[16] 1.10e-03 6.77e-04

BWGM 5.65e-05 3.00e-05
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Fig. 3. Comparison of numerical solution with exact solution of the problem 4.3.

5. Conclusions

This paper presents a wavelet-based Galerkin method that employs Boubaker wavelets
(BWGM) for the computation of numerical solutions to differential equations. The results
indicate that the proposed method surpasses current techniques, such as the Finite difference
method (FDM) and the Galerkin Method using Laguerre and Fibonacci wavelets, yielding
solutions that align more closely with the exact results. Furthermore, the absolute error,
L, & L,, norms associated with this method is significantly lower when compared to the
existing methods, namely the Finite difference method (FDM) and the Galerkin Method
utilizing Laguerre and Fibonacci wavelets. This advancement represents a notable
contribution to recent research in numerical analysis, offering substantial advantages to
novice researchers. Consequently, the Boubaker wavelet-based Galerkin method proves to
be highly effective for addressing boundary value problems.
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