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Abstract 

The 𝑓(𝑄, 𝑇) gravity theory has been studied in the context of a spatially homogeneous and 

anisotropic Bianchi type-VI space-time in the presence of bulk viscous fluid. The field 

equations are solved explicitly with the help of hyperbolic hybrid scale factor ℛ =
𝑒𝑎𝑡[tanh(𝑡)]𝑏 . The non-linear functional forms of 𝑓(𝑄, 𝑇) gravity: 𝑓(𝑄, 𝑇) = 𝑄 + α𝑄2 + β𝑇 

where 𝑄 and 𝑇 are non-metricity scalar and trace of energy momentum tensor respectively is 

considered. Some physical and geometrical properties are calculated and plotted their graphs 

in terms of time. For the considered model it is found that the coefficient of bulk viscosity 

appears to be positive and decreases over time. The cosmological behaviour of energy density, 

effective pressure, Equation of state parameter, and deceleration parameter are quite in good 

agreement with recent findings of cosmology. The energy conditions of the model are also 

studied. 

Keywords: 𝑓(𝑄, 𝑇) gravity; Bulk viscous; Bianchi type-VI; Equation of state (EoS) 

parameter. 
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1.  Introduction 

According to the Big Bang cosmology, our universe emerged from a singularity and is 

around 13.8 billion years old. Cosmologists have been drawn to modified gravity theories 

to comprehend dark energy's role better. Numerous studies show that modified theories of 

gravity may explain the acceleration of the cosmos in both early and late times. In modified 

theories of gravity, which are geometrical generalizations of Einstein's general theory of 

relativity, cosmic acceleration can be achieved by rearranging Einstein-Hilbert action by 

substituting the curvature scalar 𝑅 for a more generalized function. This may correspond to 

a curvature scalar or a different function with matter-geometry coupling. Some extensively 

used modified gravity theories are 𝑓(𝑅) gravity [1-4], 𝑓(𝑅, 𝑇) gravity [5-8], 𝑓(𝐺) gravity 

[9-11], 𝑓(𝑇) gravity [12-15], 𝑓(𝑄) gravity [16-18], 𝑓(𝑄, 𝑇) gravity [19].    
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Among this geometrically modified theory of gravity, the 𝑓(𝑄, 𝑇) gravity proposed by 

Xu et al. [19] has drawn a lot of interest in recent years. Here, 𝑄 and 𝑇 represent the non-

metricity and trace of the energy-momentum tensor, respectively. The 𝑓(𝑄, 𝑇) gravity is an 

extension of 𝑓(𝑄) gravity, which is based on the non-minimal coupling between the non-

metricity 𝑄 and the trace 𝑇 of the matter-energy momentum tensor. This non-minimal 

coupling results in the non-conservation of the energy-momentum tensor potentially 

providing mechanisms for Matter creation or decay in the early or late universe and 

explaining cosmic acceleration without dark energy. Motivated by this, we utilize the 

𝑓(𝑄, 𝑇) gravity theory to investigate possible explanations for various cosmological 

phenomena occurring in the universe. As an extension of symmetric teleparallel gravity 

theory, the 𝑓(𝑄, 𝑇) gravity theory is also constrained by the curvature free and torsion free 

conditions, i.e., 𝑅ρ
σμν = 0 and 𝑇ρ

μν = 0. However, in a torsionless space, gravity is driven 

by the non-metricity, which is defined as 𝑄αμν = ∇α𝑔μν. Several authors have explored the 

applications of this theory in many contexts such as Arora et al. [20] explored the bulk 

viscosity in modified 𝑓(𝑄, 𝑇) gravity theory within Friedmann-Lemaitre-Robertson-

Walker metric (FLRW). Pati et al. [21] investigated some rip cosmological models, 

Shiravand et al. [22] studied cosmological inflation by choosing a linear combination of 

𝑄 and 𝑇. Loo et al. [23] construct the correct energy-balanced equation with the covariant 

formulation in the 𝑓(𝑄, 𝑇) theory. Gadbail et al. [24], Pradhan et al. [25], Tayde et al. [26] 

and Narzary and Dewri [27] studied some cosmological models in 𝑓(𝑄, 𝑇) gravity in 

different context and discussed the dynamical aspects of the model. 

Cosmological models with bulk viscosity have gained importance in recent years. In 

this paper, we consider the universe is filled with bulk viscous fluid. Since the Dissipative 

forces, including Bulk viscosity, play an important role during the early stages of cosmic 

evolution. Matter behaved like a viscous fluid during the neutrino decoupling in the early 

phase of Universe [28,29]. Bulk Viscosity develops whenever a fluid expands too quickly 

and loses thermodynamic equilibrium. It is a measure of the pressure required to restore 

equilibrium to a compressed or expanding system [30-32]. The total effective negative 

pressure, resulting in a repulsive gravitational force due to bulk viscosity, counteracts the 

attractive gravitational pull of matter and provides a driving force for the universe's rapid 

expansion. Within the field of cosmology, the expansion scalar θ measures how quickly the 

volume of the fluid is expanding. The pressure resulting from bulk viscosity is directly 

related to the expansion scalar. Therefore, the universe's expansion itself plays a role in 

generating effective pressure through viscosity. The coefficient of viscosity is known to 

decrease as the universe expands [33,34]. Numerous researchers have examined the impact 

of bulk viscosity on cosmological evolution in different space-time: Tiwari et al. [35] 

investigated Bianchi Type-V cosmological models with time-varying; Mishra et al. [36] 

studied the dynamical behaviour of Bianchi type 𝑉𝐼ℎ universe in 𝑓(𝑅, 𝑇) gravity. Arora et 

al. [37] investigated late time acceleration with viscosity ξ = ξ0 + ξ1𝐻 + ξ2𝐻2 and 

Koussour and Bennai [38] presented cosmological models on a Bianchi type-I space-time 

in the framework of 𝑓(𝑅, 𝑇) modified theory. Mete and Dudhe [39] studied FRW 

cosmological model with bulk viscosity in the context of 𝑓(𝑅) gravity. Also, Dewri [40] 
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and Brahma and Dewri [41] studied dark energy with electromagnetic field in different 

context of modified gravity in different space-time. Basumatary and Dewri [42] explored 

Bianchi type 𝑉𝐼0 cosmological model in the framework of Sen-Dunn theory of gravitation. 

Kumawat et al. [43] discussed the exact solution of Einstein's field equations for anisotropic 

Bianchi type 𝑉𝐼0 cosmological model in the framework of the Sáez-Ballester theory of 

gravitation for barotropic fluid distribution.  

Motivated by the above works, this article investigates a cosmological model within a 

spatially homogeneous and anisotropic Bianchi type VI framework, incorporating the 

presence of bulk viscosity. This presents a new cosmological model with bulk viscosity in 

the Bianchi type VI framework, addressing a significant gap in the literature and enhancing 

our understanding of cosmological dynamics in 𝑓(𝑄, 𝑇) gravity.  

2. Basic Formalism in 𝒇(𝐐, 𝐓) Gravity 

The 𝑓(𝑄, 𝑇) gravity is constrained with the curvature and torsion-free assumptions, i.e., 

𝑅ρ
σμν = 0 and 𝑇ρ

μν = 0. The general action for 𝑓(𝑄, 𝑇) gravity [19] is given as, 

𝑆 = ∫ √(−𝑔) (
1

16π
𝑓(𝑄, 𝑇) + ℒ𝓂) 𝑑4 𝑥                                                                   (1) 

where 𝑄 stands for the non-metricity scalar, 𝑇 for the trace of the stress-energy momentum 

tensor, ℒ𝓂 for the matter lagrangian and 𝑔 ≡ 𝑑𝑒𝑡(𝑔μν). Here, the energy-momentum 

tensor can be defined as, 𝑇μν = −
2

√−𝑔

δ(√−𝑔 ℒ𝓂)

δ𝑔μν  

Further, the non-metricity scalar is defined as 

𝑄 ≡ −𝑔μν(𝐿α
βμ𝐿β

να − 𝐿α
βα𝐿β

μν)                                                                              (2) 

where 𝐿α
βμ is the deformation tensor written as 

𝐿α
βμ = −

1

2
𝑔αλ(∇μ𝑔βλ + ∇β𝑔λμ − ∇λ𝑔μβ) =

1

2
𝑔αλ(𝑄μβλ + 𝑄βμλ − 𝑄αβμ)        (3) 

As for the non-metricity tensor 𝑄γμν is expressed as 𝑄γμν ≡ ∇γ𝑔μν 

The superpotential tensor, known as non-metricity conjugate, can be expressed by 

𝑃α
μν = −

1

2
𝐿μν

α +
1

4
(𝑄α − 𝑄̃𝛼)𝑔μν −

1

4
δ   (𝜇

α 𝑄𝜈)                                                            (4) 

Now, varying the gravitational action (1) w.r.t the metric tensor 𝑔μν the corresponding field 

equations of 𝑓(𝑄, 𝑇) gravity is obtained as, 

−
2

√−𝑔
∇α(𝑓𝑄√−𝑔 𝑃𝜇𝜈

𝛼 ) −
1

2
𝑓𝑔μν + 𝑓𝑇(𝑇μν + Θμν) − 𝑓𝑄 (𝑃μαβ𝑄ν

αβ
− 2𝑄αβ

μ𝑃αβν) = 8π𝑇μν     (5) 

where 𝑓𝑄 ≡
∂𝑓

∂𝑄
, 𝑓𝑇 ≡

∂𝑓

∂𝑇
. 

 

3. Bianchi Type VI Universe in 𝒇(𝐐, 𝐓) Gravity 

 

The anisotropic nature of Bianchi Type spacetime implies expansion rates are direction-

dependent, spatial geometry is homogeneous but not isotropic. To explore the limits of 

isotropy in cosmology and understand how anisotropies might decay or persist in the 
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universe's evolution, we consider the universe is described by Bianchi type VI space-time 

which is spatially homogeneous and anisotropic, and is given by, 

𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝐵2𝑒−2𝑚𝑥𝑑𝑦2 + 𝐶2𝑒2𝑚𝑥𝑑𝑧2                                     (6) 

where the scale factors 𝐴, 𝐵 and 𝐶 are the functions of cosmic time 𝑡 and 𝑚 is a non-zero 

constant. 

The non-metricity scalar for Bianchi type-VI space-time becomes, 

𝑄 = 2 [
𝐴̇𝐵̇

𝐴𝐵
+

𝐵̇𝐶̇

𝐵𝐶
+

𝐴̇𝐶̇

𝐴𝐶
+

𝑚2

𝐴2
]                                                                         (7) 

Here, we consider the universe is filled with bulk viscous fluid. Therefore, the energy-

momentum tensor 𝑇μν  can be parametrized as, 

𝑇μν = (ρ + 𝑝̅)𝑢μ𝑢ν + 𝑝𝑔μν                                     (8) 

where  𝑝̅ = 𝑝 − 𝜉𝜃.                            (9) 

Here ρ, p, 𝑝̅, 𝜉 and 𝜃  are the energy density, isotropic pressure, bulk viscous pressure, bulk 

viscosity, and expansion scalar, respectively. The four-velocity vector 𝑢μ is presumed to 

satisfy 𝑢μ𝑢μ = −1. By the definition of 𝑇μν, the Θμν can be expressed Θμν = 𝑝̅𝑔μν − 2𝑇μν. 

For the specification of 𝜉, we assume that the fluid obeys a linear equation of state 𝑝 =

𝛾𝜌, 0 ≤ 𝛾 ≤ 1.  

The field equations of 𝑓(𝑄, 𝑇) gravity (5) for the Bianchi type-VI space-time can be 

obtained with the help of Eqs. (6) and (8) in Eq. (5) as, [44] 

𝑓(𝑄, 𝑇)

2
− 𝑓𝑄 [

𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐴̇𝐵̇

𝐴𝐵
+

2𝐵̇𝐶̇

𝐵𝐶
+

𝐴̇𝐶̇

𝐴𝐶
+

2𝑚2

𝐴2
] − 𝑓𝑄̇ [

𝐵̇

𝐵
+

𝐶̇

𝐶
] = −8π𝑝̅ (10) 

𝑓(𝑄, 𝑇)

2
− 𝑓𝑄 [

𝐴̈

𝐴
+

𝐶̈

𝐶
+

𝐴̇𝐵̇

𝐴𝐵
+

𝐵̇𝐶̇

𝐵𝐶
+

2𝐴̇𝐶̇

𝐴𝐶
] − 𝑓𝑄̇ [

𝐴̇

𝐴
+

𝐶̇

𝐶
] = −8π𝑝̅             (11) 

𝑓(𝑄, 𝑇)

2
− 𝑓𝑄 [

𝐴̈

𝐴
+

𝐵̈

𝐵
+

2𝐴̇𝐵̇

𝐴𝐵
+

𝐵̇𝐶̇

𝐵𝐶
+

𝐴̇𝐶̇

𝐴𝐶
] − 𝑓𝑄̇ [

𝐴̇

𝐴
+

𝐵̇

𝐵
] = −8π𝑝̅             (12) 

𝑓(𝑄, 𝑇)

2
− 2𝑓𝑄 [

𝐴̇𝐵̇

𝐴𝐵
+

𝐵̇𝐶̇

𝐵𝐶
+

𝐴̇𝐶̇

𝐴𝐶
] = 8πρ + 8π𝐺(ρ + 𝑝̅)                                  (13) 

𝑚𝑓𝑄 [
𝐵̇

𝐵
−

𝐶̇

𝐶
] = 0                                                                                                        (14) 

the overhead dot represents the derivative with respect to cosmic 𝑡. In this case, 𝑓𝑄 and 

8π𝐺 ≡ 𝑓𝑇 represent differentiation with respect to 𝑄 and 𝑇 respectively. 

The following physical parameters were defined as they play crucial role in solving field 

equations and in cosmological analysis. The spatial volume 𝑉 and average scale factor ′ℛ′ 

are defined as 

𝑉 = ℛ3 = 𝐴𝐵𝐶                                                                                                          (15) 

The Hubble parameter is defined as 

𝐻 =
ℛ̇

ℛ
=

1

3
(

𝐴̇

𝐴
+

𝐵̇

𝐵
+

𝐶̇

𝐶
)                                                                                         (16) 

The deceleration parameter, expansion scalar θ and shear scalar σ2 are defined as 

𝑞 = −
ℛℛ̈

ℛ2̇
= −1 +

𝑑

𝑑𝑡
(

1

𝐻
)                                                                                      (17) 

θ = 3𝐻                                                                                                                            (18) 
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σ2 =
1

2
(∑ 𝐻𝑖

2

3

𝑖=1

− 3𝐻2)                                                                                            (19) 

The anisotropy parameter 𝐴𝑚 of the expansion is characterized by the directional Hubble 

parameters, and the mean Hubble parameter is given as 

𝐴𝑚 =
1

3
∑ (

𝐻𝑖 − 𝐻

𝐻
)

23

𝑖=1

=
2σ2

3𝐻2
                                                                                (20) 

where 𝐻1, 𝐻2 and 𝐻3 are directional Hubble parameters in the direction of 𝑥, 𝑦 and 𝑧 −

𝑎𝑥𝑖𝑠, respectively, and 𝐻1 =
𝐴̇

𝐴
, 𝐻2 =

𝐵̇

𝐵
 and 𝐻3 =

𝐶̇

𝐶
. 

4. Solutions of Bianchi Type VI Model  

The solution of Eq. (14) yields 

         𝐶 = 𝑘𝐵                                                                                                                                    (21) 

where 𝑘 > 0 is the constant of integration. Without loss of generality, we take 𝑘 = 1 for 

the sake of simplicity. Using the value of 𝐶 in the above Eqs. (10)-(13), we obtain 

𝑓(𝑄, 𝑇)

2
− 𝑓𝑄 [

2𝐵̈

𝐵
+

2𝐴̇𝐵̇

𝐴𝐵
+

2𝐵2̇

𝐵2
+

2𝑚2

𝐴2
] − 2𝑓𝑄̇

𝐵̇

𝐵
= −8π𝑝̅                                (22) 

𝑓(𝑄, 𝑇)

2
− 𝑓𝑄 [

𝐴̈

𝐴
+

𝐵̈

𝐵
+

3𝐴̇𝐵̇

𝐴𝐵
+

𝐵2̇

𝐵2
] − 𝑓𝑄̇ [

𝐴̇

𝐴
+

𝐵̇

𝐵
] = −8π𝑝̅                               (23) 

𝑓(𝑄, 𝑇)

2
− 2𝑓𝑄 [

2𝐴̇𝐵̇

𝐴𝐵
+

𝐵2̇

𝐵2
] = 8πρ + 8π𝐺(ρ + 𝑝̅)                                            (24) 

From Eq. (22) and (23) we get 

𝑓(𝑄, 𝑇)

2
−

𝑓𝑄

2
[
𝐴̈

𝐴
+

3𝐵̈

𝐵
+

5𝐴̇𝐵̇

𝐴𝐵
+

3𝐵2̇

𝐵2
+

2𝑚2

𝐴2
] −

𝑓𝑄̇

2
[
3𝐵̇

𝐵
+

𝐴̇

𝐴
] = −8π𝑝̅          (25) 

Therefore, Eq. (24) becomes 

𝑓(𝑄, 𝑇)

2
−

2𝑓𝑄

1 + 𝐺
[
2𝐴̇𝐵̇

𝐴𝐵
+

𝐵2̇

𝐵2
] −

𝑓𝑄𝐺

2(1 + 𝐺)
[
𝐴̈

𝐴
+

3𝐵̈

𝐵
+

5𝐴̇𝐵̇

𝐴𝐵
+

3𝐵2̇

𝐵2
+

2𝑚2

𝐴2
]

−
𝑓𝑄̇𝐺

2(1 + 𝐺)
[
3𝐵̇

𝐵
+

𝐴̇

𝐴
] = 8πρ (26)

 

We only get two independent field equations with five unknown parameters 𝐴, 𝐵, 𝜌,

𝑝 and 𝑓. Therefore, the system of Eqs. (25)-(26) is undetermined and supplementary 

equations relating these parameters are needed to obtain explicit solutions of this system. 

We assumed that scalar expansion is proportional to the shear scalar. i.e., θ ∝ σ, which 

leads to a relation between the metric functions as follows 

𝐴 = 𝐵𝑛                     (27) 

where 𝑛 ≠ 1 is a positive constant. Using this relation in Eqs. (25)-(26), follows that 

𝑓(𝑄, 𝑇) − 𝑓𝑄 [
𝐵2̇

𝐵2
(𝑛2 + 4𝑛 + 3) +

𝐵̈

𝐵
(𝑛 + 3) +

2𝑚2

𝐵2𝑛
] −

𝑓𝑄̇𝐵̇

𝐵
(𝑛 + 3) = −16π𝑝̅ (28) 
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𝑓(𝑄, 𝑇) −
2𝑓𝑄𝐵2̇

(1 + 𝐺)𝐵2
(4𝑛 + 2) −

𝑓𝑄𝐺

(1 + 𝐺)
[
𝐵2̇

𝐵2
(𝑛2 + 4𝑛 + 3) +

𝐵̈

𝐵
(𝑛 + 3) +

2𝑚2

𝐵2𝑛
]

−
𝑓𝑄̇𝐵̇𝐺

(1 + 𝐺)𝐵
(𝑛 + 3) = 16πρ. (29)

 

In order to attain exact solutions for the energy density and pressure and to investigate 

the characteristics of a dark energy (DE) model, we consider an assumed dynamics to obtain 

the dynamically changing equation of state parameter. Here, the physical variation of the 

scale factor is considered as 

ℛ(𝑡) = 𝑒𝑎𝑡[tanh(𝑡)]𝑏                                                                                           (30) 

Where 𝑎 and 𝑏 are positive constants. Various scale factors play distinct roles in the 

analysis of cosmic dynamics; for instance, the exponential scale factor predominates during 

the late phase of the universe, while the hybrid scale factor facilitates a transition from early 

deceleration to late-time cosmic acceleration [45]. In this work, we have utilized a 

combination of exponential and hyperbolic functions, referred to as the hyperbolic hybrid 

scale factor. However, limited research has been conducted on this hyperbolic hybrid scale 

factor in relation to the cosmic dynamics of the universe. Jokweni et al. [46] explored 

locally rotationally symmetric (LRS) Bianchi type-I in general relativity and in 𝑓(𝑅, 𝑇) 

gravity and solutions have been found by means of a special Hubble parameter, yielding a 

hyperbolic hybrid scale factor. Basumatary and Dewri [47] studied a cosmological model 

in 𝑓(𝐺) gravity within a Bianchi type-III space time by considering same hyperbolic hybrid 

scale factor. Consequently, motivated by the above discussions the scale factor Eq. (30) has 

been chosen to investigate the cosmic dynamics further. The scale factor is zero at 𝑡 = 0 

and the model becomes singular at 𝑡 = 0, featuring a point-type singularity where the model 

starts to expand from the Big Bang at 𝑡 = 0, as illustrated in Fig. 1.  

Using Eqs. (27) and (30) in Eq. (15) we obtained the expressions 

𝐴(𝑡) = [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
3𝑛

𝑛+2                                                                                             (31) 

𝐵(𝑡) = [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
3

𝑛+2                                                                                              (32) 

𝐶(𝑡) = [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
3

𝑛+2.                                                                                              (33) 

Now, using Eqs. (31)- (33) in equation (6), we can write the Bianchi type-VI model in the 

present case as 

𝑑𝑠2 = −𝑑𝑡2 + [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
6𝑛

𝑛+2𝑑𝑥2 + [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
6

𝑛+2(𝑒−2𝑚𝑥𝑑𝑦2 + 𝑒2𝑚𝑥𝑑𝑧2) (34) 

 

5. Cosmological Models 

 

To investigate viable cosmological scenarios in the framework of 𝑓(𝑄, 𝑇) gravity theory, 

certain assumed forms of the functional 𝑓(𝑄, 𝑇) must be considered. In this paper, to get 

the viable cosmological model, we consider the functional form of 𝑓(𝑄, 𝑇) gravity as 

𝑓(𝑄, 𝑇) = 𝑄 + α𝑄2 + β𝑇 where α ≠ 0 𝑎𝑛𝑑 β are the free parameters [22]. 
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Fig. 1. Scale factor (ℛ) vs. time (Gyr). 

5.1. Model: 𝒇(𝑸, 𝑻) = 𝑸 + 𝜶𝑸𝟐 + 𝜷𝑻 

 

For the non-linear form of the functional in the form 𝑓(𝑄, 𝑇) = 𝑓(𝑄, 𝑇) = 𝑄 + 𝛼𝑄2 +
𝛽𝑇, we have 

       𝐹 =
∂𝑓

∂𝑄
= 1 + 2α𝑄, 𝐹̇ = 2α𝑄̇,   𝑄 =

6(𝑛+10)

𝑛+2
(𝑎 +

2𝑏

sinh(2𝑡)
)

2

+

2𝑚2{𝑒𝑎𝑡(tanh 𝑡)𝑏}
−6𝑛

𝑛+2   and  𝐺 =
β

8π
    and  𝐺1 =

𝐺

1+𝐺
. 

So, the bulk viscous pressure and energy density can be obtained as, 

𝑝̅ =
−1

32π(1+2𝐺)
[
2(1 + α)𝑄 + (𝐺𝐺1 − 2 − 𝐺) {(𝑛 + 3} (

𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
) + (𝑛2 + 4𝑛 + 3)𝐹 (

 𝐵̇ 

𝐵
)

2

+ 
2𝐹𝑚2

𝐵2𝑛
}

+2𝐹(4𝑛 + 2)𝐺1 (
 𝐵̇ 

𝐵
)

2
]  (35)  

 

𝜌 =
1

32𝜋(1+2𝐺)
[
2(1 + 𝛼)𝑄 + (3𝐺 − (2 + 3𝐺)𝐺1) {(𝑛 + 3} (

𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
) + (𝑛2 + 4𝑛 + 3)𝐹 (

 𝐵̇ 

𝐵
)

2

+ 
2𝐹𝑚2

𝐵2𝑛
}

−2𝐹(4𝑛 + 2) (
2

1+𝐺
+ 3𝐺1) (

 𝐵̇ 

𝐵
)

2
]  (36) 

  
For this choice of model, the bulk viscosity coefficient 𝜉  and the isotropic pressure 

𝑝 can be obtained as 

𝜉 =
1

96𝜋(1+2𝐺)𝐻
[2(1 + 𝛼) 𝑄(𝛾 − 1) + {(3𝛾 − 1)𝐺 − (2𝛾 + 3𝛾𝐺 − 𝐺)𝐺1 − 2} {(𝑛 + 3} (

𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
) + (𝑛2 + 4𝑛 + 3)𝐹 (

 𝐵̇ 

𝐵
)

2

+ 
2𝐹𝑚2

𝐵2𝑛
} − 2𝐹(4𝑛 + 2) (

2𝛾

1+𝐺
+ (1 + 3𝛾)𝐺1) (

 𝐵̇ 

𝐵
)

2

,              (37) 

        

  𝑝 = 𝛾𝜌 =
𝛾

32𝜋(1+2𝐺)
[2(1 + 𝛼) 𝑄 + (3𝐺 − (2 + 3𝐺)𝐺1) {(𝑛 + 3} (

𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
) + (𝑛2 +

4𝑛 + 3)𝐹 (
 𝐵̇ 

𝐵
)

2

+  
2𝐹𝑚2

𝐵2𝑛 } − 2𝐹(4𝑛 + 2) (
2

1+𝐺
+ 3𝐺1) (

 𝐵̇ 

𝐵
)

2

.     (38) 

Consequently, the equation of state parameter can be obtained from the above expressions 

of pressure and density as, 

𝜔 = −
[2(1+α)𝑄+(𝐺𝐺1−2−𝐺){(𝑛+3}(

𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
)+(𝑛2+4𝑛+3)𝐹(

 𝐵̇ 

𝐵
)

2

+
2𝐹𝑚2

𝐵2𝑛 }+2𝐹(4𝑛+2)𝐺1(
 𝐵̇ 

𝐵
)

2

]

[2(1+𝛼)𝑄+(3𝐺−(2+3𝐺)𝐺1){(𝑛+3}(
𝐹𝐵̈

𝐵
+

𝐹̇ 𝐵̇ 

𝐵
)+(𝑛2+4𝑛+3)𝐹(

 𝐵̇ 

𝐵
)

2

+          
2𝐹𝑚2

𝐵2𝑛 }−2𝐹(4𝑛+2)(
2

1+𝐺
+3𝐺1)(

 𝐵̇ 

𝐵
)

2

 ]

. (39)

The values of 𝐵, 𝐵̇ and 𝐵̈ are 𝐵 = [𝑒𝑎𝑡{tanh(𝑡)}𝑏]
3

𝑛+2, 𝐵̇ =
3 𝐵

𝑛+2
(𝑎 +

2𝑏

sinh 2𝑡
)  

and 𝐵̈ =
9𝐵

(𝑛+2)2 (𝑎 +
2𝑏

sinh 2𝑡
)

2

−
3𝐵

𝑛+2
(

4𝑏 cosh 2𝑡

(sinh 2𝑡)2)  
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which can be substituted in the Eqs. (35)- (39)  to get the respective expressions for effective 

pressure, energy density, coefficient of bulk viscosity, isotropic pressure and equation of 

state (EoS) parameter. The graphical behaviour of the effective pressure for the model is 

shown in Fig. 2. It can be seen that the effective pressure (𝑝) starts from the high negative 

value and has settled down to near zero. At the same time, the energy density 𝜌 evolves 

from a high positive value to a small positive value in the present and late times. It remains 

in the positive domain during the whole cosmic evolutionary process, which can be seen 

from Fig. 2. Fig. 3 shows the positively decreasing behaviour of 𝑝 for the considered model. 

Therefore, the presented model describes the evolution of the universe in a way that is 

consistent with present-day accelerating universe. From the Fig. 4, it can be observed that 

the coefficient of bulk viscous (ξ) is a decreasing function of time, indicating viscous effects 

were present near Big Bang singularity and remained in the positive domain throughout the 

cosmic evolution.  The evolution trajectory of the EoS parameter (ω) is shown in the Fig. 

5. From the graphical representation, it can be seen that the EoS parameter is in the negative 

domain, i.e., in the region −1 ≤ 𝜔 < 0. The numerical value of EoS parameter 𝜔 is 

constrained by several cosmological observations such as Supernovae Cosmology Project 

[48], 𝜔 = −1.035−0.079
+0.055; observations of the Cosmic Microwave Background radiation 

obtained by the Wilkinson Microwave Anisotropy Probe satellite (WMAP+CMB) [49], 

𝜔 = −1.073{−0.089}
{+0.090}

; Planck 2018 [50], 𝜔 = −1.03 ± 0.03. The present value of EoS 

parameter ω for this model corresponds to the parameters of the model, 𝜔0  = −0.9205, 
which is in agreement with cosmological observation𝑠. Thus, we can conclude that the 

behaviour of EoS parameter favours a quintessence evolutionary phase.  

Fig. 6 illustrates the squared sound stability of the model with respect to time. In the 

universe, there are three different kinds of particles, i.e., sub-luminal, luminal, and super-

luminal. The sub-luminal particles move relatively slowly in comparison to the speed of 

light, while the luminal particles travel at the same speed as the speed of light. In contrast, 

the super-luminal particles move faster than the speed of light. Super-luminal particles 

could either not exist at all, or if they do, they do not interact with ordinary matter. When 

the speed of sound is less than the local light speed, 𝐶𝑠(𝑡)
2 ≤ 1, we can conclude about the 

non-violation of causality. The positive sound speed (𝐶𝑠(𝑡)
2 > 1) is necessary for the 

classical stability of the universe [51,52]. From Fig. 6, it can be observed that the squared 

sound speed is less than −1 in the present and late time cosmic evolution, the model remains 

unstable with the expansion of the Universe.  

 

 
Fig. 2. Energy Density (𝜌) and Effective 

Pressure (𝑝̅) vs. time (Gyr). 
 

Fig. 3. Isotropic Pressure (p) vs. time (Gyr). 
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Fig. 4. Coefficient of Bulk Viscous (𝜉) vs. time 

(Gyr). 

Fig. 5. Equation of state parameter (𝜔) vs. time 

(Gyr). 

 

  
Fig. 6. 𝐶𝑠(𝑡)

2  vs. time (Gyr). Fig. 7. Hubble Parameter (H) vs. time (Gyr). 

 

6. Physical Behavior of the Model  

 

The physical quantities of observational interests in cosmology such as Hubble parameter 

(𝐻), Deceleration parameter (𝑞), Spatial volume of scale factor (𝑉), scalar of expansion 

(𝜃), Shear scalar (𝜎)and mean anisotropy parameter (𝐴𝑚) are given in the following: 

The Hubble parameter can be written as 

H = a +
2b

sinh(2t)
.                                                                                                      (40) 

The deceleration parameter can be obtained as 

𝑞 = −1 +
4𝑏 cosh(2𝑡)

(𝑎 sinh(2𝑡) + 2𝑏)2
.                                                                                (41) 

The spatial volume, expansion scalar, shear scalar and anisotropy parameter of the 

model are given respectively, 

          𝑉 = [𝑒𝑎𝑡{tanh(𝑡)}𝑏]3 , θ = 3 (𝑎 +
2𝑏

sinh(2𝑡)
) ,  σ2 = 3 [𝑎 +

2𝑏

sinh(2𝑡)
]

2

(
𝑛 − 1

𝑛 + 2
)

2

 and     𝐴𝑚 = 2 (
𝑛 − 1

𝑛 + 2
)

2

.                                                                                                       (42)

 

The graphical representation of the Hubble parameter is shown in Fig. 7, and the 

Volume, Shear scalar, and Expansion scalar of the cosmological model is shown in Fig. 8. 

It can be observed that the Hubble parameter (𝐻),and 𝜎 parameters take large positive 

values at 𝑡 = 0 and take the small positive values as 𝑡 → ∞. The volume is directly 

proportional to time, which can be seen from Fig. 8. Also, it can be observed from Eq. (42) 
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that spatial volume (𝑉) is zero at 𝑡 = 0 while the expansion scalar 𝜃 is infinite. This 

suggests that the universe starts evolving with zero volume at 𝑡 = 0, which is a Big Bang 

scenario. The mean anisotropy 𝐴𝑚 ≠  0, the model does not approach isotropy for 𝑛 ≠ 1. 

In other words, as long as 𝑛 ≠ 1, our model is direction-dependent. However, for 𝑛 = 1, 

there is no shear indicating that the model is a isotropy for all 𝑡. The signature of the 

deceleration parameter describes the acceleration or deceleration Universe, i.e., when 𝑞 >

0, then the expansion phase of the universe is decelerating; when −1 ≤  𝑞 <  0, then the 

expansion phase of the universe is exponential expansion (for 𝑞 = −1 is known as de-sitter 

expansion) and when 𝑞 < −1 expansion phase of the universe is super exponential. For the 

model, the behaviour of the deceleration parameter from Fig. 9 depicted that the universe 

is transitioning from the deceleration phase to the acceleration phase and the present value 

of 𝑞, 𝑞0  = −1. Therefore, the expansion phase of our model Universe is de-sitter 

expansion. 

7. Energy Conditions and Statefinder Parameter 

In this work, we consider energy conditions to test the validity of the models in the context 

of cosmic acceleration. There are several forms of energy conditions, such as null energy 

conditions (NEC), weak energy conditions (WEC), strong energy conditions (SEC), and 

dominant energy conditions (DEC) are given for the content of the universe in the form of 

a viscous fluid in 𝑓(𝑄, 𝑇) gravity as follows [53]: 

i. Null energy conditions (NEC) ⇔ 𝜌 + 𝑝̅  ≥  0, 

ii. eak energy conditions (WEC)  ⇔ 𝜌 + 𝑝̅ ≥  0 and 𝜌 ≥  0, 

iii. Strong energy conditions (SEC) ⇔ 𝜌 +  3 𝑝̅ ≥  0, and 

iv. Dominant energy conditions (DEC) ⇔ 𝜌 − |𝑝̅ | ≥  0 and 𝜌 ≥  0, 

 

  
Fig. 8. Volume, Shear scalar, and Expansion 

scalar vs. time. 

 

Fig. 9. Deceleration Parameter (q) vs. time. 

The graphical representation of energy conditions is shown in Fig. 10. For the 

considered model, it can be seen that WEC, NEC, and DEC are obeying as they remain in 

the positive domain while SEC remains in the positive domain in early cosmic evolution. 

However, as the universe evolves, the SEC evolves into a negative domain. The violation 

of SEC illustrates the accelerating behaviour of the model. 
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Fig. 10. Energy Conditions vs. time. Fig. 11. Statefinder Parameter vs. time. 

 

The Statefinder is a geometrical diagnostic and allows us to characterize the properties 

of dark energy in an independent manner. Sahini et al. [54] introduced the diagnostic 

parameter (𝑟, 𝑠) is called statefinder parameter which is defined as 

𝑟 =
𝑅

𝑅𝐻3
= 1 + 3

𝐻̇

𝐻2
+

𝐻̈

𝐻3
, 𝑠 =

𝑟 − 1

3 (𝑞 −
1
2

)
                                                    (43) 

The statefinder parameter pair (𝑟, 𝑠) of the concerned model is calculated to demonstrate 

the behaviour of the model with bulk viscosity, which is obtained as 

 

𝑟 = 1 −
12𝑏 cosh 2 𝑡

(𝑎 sinh 2 𝑡 + 2𝑏)2
+

16𝑏(cosh 2 𝑡)2 − 8𝑏(sinh 2 𝑡)2

(𝑎 sinh 2 𝑡 + 2𝑏)3
                         (44) 

𝑠 =
−12𝑏 cosh 2 𝑡 + (𝑎 sinh 2 𝑡 + 2𝑏)2 +

(16𝑏 cosh 2 𝑡)2 − 8𝑏(sinh 2 𝑡)2

(𝑎 sinh 2 𝑡 + 2𝑏)3

12𝑏 cosh 2 𝑡 −
9
2

(𝑎 sinh 2 𝑡 + 2𝑏)
 (45) 

By using Eqs. (44) and (45), the graph of statefinder parameter 𝑟, 𝑠  is shown in the Fig. 

11. It can be observed that the trajectory starts evolving from the region 𝑟 < 1, 𝑠 > 0, which 

represents the quintessence model of dark energy. Eventually, it approaches (𝑟, 𝑠) → (1,0) 

w.r.t. time which represents the ΛCDM model [55]. However, the model behaves like 

ΛCDM model at present and in the late time cosmic evolution. 

 

8. Conclusion  

 

In the present work, the Bianchi type-VI cosmological model was investigated in the 

presence of bulk viscosity within the framework of 𝑓(𝑄, 𝑇) gravity. We considered the  

non-linear 𝑓(𝑄, 𝑇) function as 𝑓(𝑄, 𝑇) = 𝑄 + α𝑄2 + β𝑇 where α ≠ 0 and β are the free 

parameters. With the help of hyperbolic hybrid scale factor as ℛ(𝑡) = 𝑒𝑎𝑡[tanh(𝑡)]𝑏 the 

field equations have been precisely solved. The parameters of the model are chosen as α =

−0.102, β = 2, γ = 0.5, 𝑎 = 1.19, 𝑏 = 0.563, 𝑚 = 1 and 𝑛 = 1.658 to provide a 

physically acceptable energy density. Based on these data, it has been found that the Hubble 

parameter, expansion scalar, and shear scalar decrease positively as time tends to ∞, and 

the volume is found to be directly proportional to time. It has been observed that the 

deceleration parameter of our model Universe shows the signature flipping behaviour, i.e., 
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it shows positive in the early phase and negative for the present and late time universe. 

From the graph the energy density is observed to be a decreasing function of time and 

remains in the positive domain. For the bulk viscous pressure, it is negative throughout the 

cosmic evolution. The negativity of 𝑝̅ ensures an accelerating universe at the present epoch. 

In the absence of bulk viscosity, the pressure remains as 𝑝̅ = 𝑝 since 𝜉 = 0, lacking any 

extra damping or acceleration terms associated with viscosity. This simplifies the system 

and reduces its dissipative characteristics. The behaviour of the bulk viscosity coefficient 

(𝜉) is a decreasing function of time, and it is consistent with thermodynamics. Further, the 

behaviour of the EoS parameter for the considered model depicts the quintessence model 

in present and in late time cosmic evolution as 𝜔 ≡ −1. From the energy conditions, it can 

be concluded that the violation of SEC depicts the accelerating behaviour of the model. The 

physical and geometrical behaviour discussed in this paper with hyperbolic hybrid scale 

factor in the aid of bulk viscous unveiled intriguing dynamics and the solutions given in 

this work may be useful for a better understanding of the characteristics of the Bianchi type-

VI model in 𝑓(𝑄, 𝑇) gravity. 
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