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Abstract

The f(Q,T) gravity theory has been studied in the context of a spatially homogeneous and
anisotropic Bianchi type-VI space-time in the presence of bulk viscous fluid. The field
equations are solved explicitly with the help of hyperbolic hybrid scale factor R =
e%[tanh(t)]?. The non-linear functional forms of f(Q, T) gravity: f(Q,T) = Q + aQ? + BT
where Q and T are non-metricity scalar and trace of energy momentum tensor respectively is
considered. Some physical and geometrical properties are calculated and plotted their graphs
in terms of time. For the considered model it is found that the coefficient of bulk viscosity
appears to be positive and decreases over time. The cosmological behaviour of energy density,
effective pressure, Equation of state parameter, and deceleration parameter are quite in good
agreement with recent findings of cosmology. The energy conditions of the model are also
studied.
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1. Introduction

According to the Big Bang cosmology, our universe emerged from a singularity and is
around 13.8 billion years old. Cosmologists have been drawn to modified gravity theories
to comprehend dark energy's role better. Numerous studies show that modified theories of
gravity may explain the acceleration of the cosmos in both early and late times. In modified
theories of gravity, which are geometrical generalizations of Einstein's general theory of
relativity, cosmic acceleration can be achieved by rearranging Einstein-Hilbert action by
substituting the curvature scalar R for a more generalized function. This may correspond to
a curvature scalar or a different function with matter-geometry coupling. Some extensively
used modified gravity theories are f(R) gravity [1-4], f(R,T) gravity [5-8], f(G) gravity
[9-11], f(T) gravity [12-15], f(Q) gravity [16-18], f(Q, T) gravity [19].
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Among this geometrically modified theory of gravity, the f(Q, T) gravity proposed by
Xu et al. [19] has drawn a lot of interest in recent years. Here, Q and T represent the non-
metricity and trace of the energy-momentum tensor, respectively. The f(Q, T) gravity is an
extension of f(Q) gravity, which is based on the non-minimal coupling between the non-
metricity @ and the trace T of the matter-energy momentum tensor. This non-minimal
coupling results in the non-conservation of the energy-momentum tensor potentially
providing mechanisms for Matter creation or decay in the early or late universe and
explaining cosmic acceleration without dark energy. Motivated by this, we utilize the
f(Q,T) gravity theory to investigate possible explanations for various cosmological
phenomena occurring in the universe. As an extension of symmetric teleparallel gravity
theory, the f(Q,T) gravity theory is also constrained by the curvature free and torsion free
conditions, 1.€., R"Guv = 0and Tpu‘, = 0. However, in a torsionless space, gravity is driven
by the non-metricity, which is defined as Qqyy = Vo g,v- Several authors have explored the
applications of this theory in many contexts such as Arora et al. [20] explored the bulk
viscosity in modified f(Q,T) gravity theory within Friedmann-Lemaitre-Robertson-
Walker metric (FLRW). Pati ef al. [21] investigated some rip cosmological models,
Shiravand et al. [22] studied cosmological inflation by choosing a linear combination of
Q and T. Loo et al. [23] construct the correct energy-balanced equation with the covariant
formulation in the f(Q, T) theory. Gadbail et al. [24], Pradhan et al. [25], Tayde et al. [26]
and Narzary and Dewri [27] studied some cosmological models in f(Q,T) gravity in
different context and discussed the dynamical aspects of the model.

Cosmological models with bulk viscosity have gained importance in recent years. In
this paper, we consider the universe is filled with bulk viscous fluid. Since the Dissipative
forces, including Bulk viscosity, play an important role during the early stages of cosmic
evolution. Matter behaved like a viscous fluid during the neutrino decoupling in the early
phase of Universe [28,29]. Bulk Viscosity develops whenever a fluid expands too quickly
and loses thermodynamic equilibrium. It is a measure of the pressure required to restore
equilibrium to a compressed or expanding system [30-32]. The total effective negative
pressure, resulting in a repulsive gravitational force due to bulk viscosity, counteracts the
attractive gravitational pull of matter and provides a driving force for the universe's rapid
expansion. Within the field of cosmology, the expansion scalar 8 measures how quickly the
volume of the fluid is expanding. The pressure resulting from bulk viscosity is directly
related to the expansion scalar. Therefore, the universe's expansion itself plays a role in
generating effective pressure through viscosity. The coefficient of viscosity is known to
decrease as the universe expands [33,34]. Numerous researchers have examined the impact
of bulk viscosity on cosmological evolution in different space-time: Tiwari et al. [35]
investigated Bianchi Type-V cosmological models with time-varying; Mishra et al. [36]
studied the dynamical behaviour of Bianchi type VI, universe in f(R,T) gravity. Arora et
al. [37] investigated late time acceleration with viscosity &= &, + & H + §,H? and
Koussour and Bennai [38] presented cosmological models on a Bianchi type-I space-time
in the framework of f(R,T) modified theory. Mete and Dudhe [39] studied FRW
cosmological model with bulk viscosity in the context of f(R) gravity. Also, Dewri [40]
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and Brahma and Dewri [41] studied dark energy with electromagnetic field in different
context of modified gravity in different space-time. Basumatary and Dewri [42] explored
Bianchi type V1, cosmological model in the framework of Sen-Dunn theory of gravitation.
Kumawat et al. [43] discussed the exact solution of Einstein's field equations for anisotropic
Bianchi type V1, cosmological model in the framework of the Saez-Ballester theory of
gravitation for barotropic fluid distribution.

Motivated by the above works, this article investigates a cosmological model within a
spatially homogeneous and anisotropic Bianchi type VI framework, incorporating the
presence of bulk viscosity. This presents a new cosmological model with bulk viscosity in
the Bianchi type VI framework, addressing a significant gap in the literature and enhancing
our understanding of cosmological dynamics in f(Q, T) gravity.

2. Basic Formalism in f(Q, T) Gravity

The f(Q,T) gravity is constrained with the curvature and torsion-free assumptions, i.e.,
RP G = 0and TP, = 0. The general action for f(Q, T) gravity [19] is given as,

S = f@(%f(@ T) +Lm) d* x ¢))

where Q stands for the non-metricity scalar, T for the trace of the stress-energy momentum
tensor, £, for the matter lagrangian and g = det( gu\,). Here, the energy-momentum

__ 2 8(=gLmw)
tensor can be defined as, T, = — =

Further, the non-metricity scalar is defined as
Q = _guv(LaBuLBva - LaBaLBuv) (2)
where L%g,, is the deformation tensor written as
1
L% = =5 9 (Vugpn + Vpgau — Vadup) = 59 (Qupa + Qpur — Qupy) 3
As for the non-metricity tensor Qy,,, is expressed as Qy,, = V, gy
The superpotential tensor, known as non-metricity conjugate, can be expressed by
1 1 ~ 1
Pauv = _EL?J.V + Z(Qa - Qa)gp.v - ZSa(MQV) (4)
Now, varying the gravitational action (1) w.r.t the metric tensor g,,,, the corresponding field
equations of f(Q, T) gravity is obtained as,

2 1
_\/_—gva(fQ\/ -9 P[ﬁ/) - Efgpv + fT(TuV + Guv) - fQ (PuaBQ\(;XB - ZQaBuPan) = 87[Tp.v (5)
_of _ of
where fQ = 5, fT = E

3. Bianchi Type VI Universe in f(Q, T) Gravity

The anisotropic nature of Bianchi Type spacetime implies expansion rates are direction-
dependent, spatial geometry is homogeneous but not isotropic. To explore the limits of
isotropy in cosmology and understand how anisotropies might decay or persist in the



56  Cosmic Acceleration in an Anisotropic Universe

universe's evolution, we consider the universe is described by Bianchi type VI space-time
which is spatially homogeneous and anisotropic, and is given by,

ds? = —dt? + A%dx? + B2e™2™¥dy? + C2e?™*dz? (6)
where the scale factors A, B and C are the functions of cosmic time t and m is a non-zero
constant.
The non-metricity scalar for Bianchi type—VI space-time becomes,

AB BC’ Ac’ m
C=217p AB BC AC A2 )

Here, we consider the universe is filled with bulk viscous fluid. Therefore, the energy-
momentum tensor Ty, can be parametrized as,

Tw = (p + Duuy + PGy ®)
where p =p — £6. 9)
Here p,p,p, & and 8 are the energy density, isotropic pressure, bulk viscous pressure, bulk
viscosity, and expansion scalar, respectively. The four-velocity vector u" is presumed to
satisfy u*u,, = —1. By the definition of T,,,, the ©,,, can be expressed 0,,, = pg,,y — 2Ty.
For the specification of &, we assume that the fluid obeys a linear equation of state p =
yp,0<y <1

The field equations of f(Q,T) gravity (5) for the Bianchi type-VI space-time can be
obtained with the help of Egs. (6) and (8) in Eq. (5) as, [44]

JACAD) B ¢ AB 2BC AC 2m?! .[B C _

2 _fQ[E ctastBc Tact A ‘fQB+c]=‘8“p (10)
fQ,T) A C AB BC 24C1 .[A C _
—_fQ[A c AB+BC+F]_ Q[Z+E = ~8mp 1)
£(0,T) A B 24B BC ACl .[4 B .

2 Q[Z*E*E*ﬁ*ﬁ]‘ Q[Z+E = —8mp 12
£(0,T) AB BC AC '

> AB+§+E = 8mp + 8nG(p + p) (13)

B ¢
me[B E] 0 (14)

the overhead dot represents the derivative with respect to cosmic t. In this case, f, and
8nG = fr represent differentiation with respect to Q and T respectively.

The following physical parameters were defined as they play crucial role in solving field
equations and in cosmological analysis. The spatial volume V and average scale factor 'R’
are defined as

V =R3=ABC (15)
The Hubble parameter is defined as
R (A B ¢
”—§—§<z+§+z) (16)
The deceleration parameter, expansion scalar 8 and shear scalar 62 are defined as
_ RR d (1
0= -7 =1+ (7) a7

0=3H (18)
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3
1
= H? — 3H? 19)
(2o -o)

The anisotropy parameter A4,, of the expansion is characterized by the directional Hubble
parameters, and the mean Hubble parameter is given as

3 2 2
A = 1Z(Hi —H) _ 20 (20)
m 3 H " 3H?

where H,, H, and H; are directional Hubble parameters in the direction of x, y and z —

axis, respectively, and H; = H2 = and H; =

4. Solutions of Bianchi Type VI Model

The solution of Eq. (14) yields

C =kB (21)
where k > 0 is the constant of integration. Without loss of generality, we take k = 1 for
the sake of simplicity. Using the value of C in the above Egs. (10)-(13), we obtain

f(Q, 1) 2§+2AB+232+2m _, B - 22)
2 o[ 5t ap Ttz | " ey =t
fQ,T) A B 34AB B2 . [4 B]_ _
2 Te|laTEtap TEE| felatE|T 8 (23)
£, T) 24AB  B?] _ }
> 2fo 1B +B2 = 8mp + 8nG(p + p) (24)

From Eq. (22) and (23) we get

fQ.T) fo[A 3B S5AB 3B2 2m?| f,[3B 4 B
— =t —+— —-Z|—=+=[=-8 25
2 A" B T T e | 2B T a ™ (25)
Therefore, Eq. (24) becomes
f@Q.T) 2f, [2AB B? oG A’ 3B 38 54B . 3B2 N 2m?
2 1+G|AB ' B?| 2(1+0G)|A AB ' B2 = A2
_ foG 3B A
2l = 2

“20+6)|B Ta| =8 (26)

We only get two independent field equations with five unknown parameters 4, B, p,
p and f. Therefore, the system of Eqs. (25)-(26) is undetermined and supplementary
equations relating these parameters are needed to obtain explicit solutions of this system.
We assumed that scalar expansion is proportional to the shear scalar. i.e., 8 « ¢, which
leads to a relation between the metric functions as follows
A=RB" 27
wheren # lisa positive constant. Using this relation in Egs. (25)-(26), follows that
2m?

o fQ (n+3)=—16mp (28)

fQ, 1) — fQ (n +4n+3)+ (n+3)+
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2f, B2 foG [B? B 2
f(Q,T)—m(‘l-n-l'Z)—(l_l_G) ﬁ(n +4n+3)+§(n+3)+32n
foBG
—m(n'F 3) = 161'[p (29)

In order to attain exact solutions for the energy density and pressure and to investigate
the characteristics of a dark energy (DE) model, we consider an assumed dynamics to obtain
the dynamically changing equation of state parameter. Here, the physical variation of the
scale factor is considered as

R(t) = e*[tanh(t)]® (30)

Where a and b are positive constants. Various scale factors play distinct roles in the
analysis of cosmic dynamics; for instance, the exponential scale factor predominates during
the late phase of the universe, while the hybrid scale factor facilitates a transition from early
deceleration to late-time cosmic acceleration [45]. In this work, we have utilized a
combination of exponential and hyperbolic functions, referred to as the hyperbolic hybrid
scale factor. However, limited research has been conducted on this hyperbolic hybrid scale
factor in relation to the cosmic dynamics of the universe. Jokweni et al. [46] explored
locally rotationally symmetric (LRS) Bianchi type-I in general relativity and in f(R,T)
gravity and solutions have been found by means of a special Hubble parameter, yielding a
hyperbolic hybrid scale factor. Basumatary and Dewri [47] studied a cosmological model
in f(G) gravity within a Bianchi type-III space time by considering same hyperbolic hybrid
scale factor. Consequently, motivated by the above discussions the scale factor Eq. (30) has
been chosen to investigate the cosmic dynamics further. The scale factor is zero at ¢ = 0
and the model becomes singular at t = 0, featuring a point-type singularity where the model
starts to expand from the Big Bang at t = 0, as illustrated in Fig. 1.

Using Eqs. (27) and (30) in Eq. (15) we obtained the expressions

A(t) = [eat{tanh(t)}b]% 31D
B(t) = [eat{tanh(t)}b]niﬂ (32)
c(t) = [eat{tanh(t)}b]niﬂ. (33)

Now, using Egs. (31)- (33) in equation (6), we can write the Bianchi type-VI model in the
present case as

6n 6
ds? = —dt? + [e*{tanh(t)}’]n+2dx? + [e¥{tanh(t)}’]n+2(e 2™ dy? + e?>™*dz?) (34)
5. Cosmological Models

To investigate viable cosmological scenarios in the framework of f(Q, T) gravity theory,
certain assumed forms of the functional f(Q,T) must be considered. In this paper, to get
the viable cosmological model, we consider the functional form of f(Q,T) gravity as
f(Q,T) = Q + aQ? + BT where a # 0 and B are the free parameters [22].
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Fig. 1. Scale factor (R) vs. time (Gyr).

5.1. Model: f(Q,T) = Q + aQ? + BT

For the non-linear form of the functional in the form £(Q,T) = f(Q,T) = Q + aQ? +
BT, we have

_ _ 6(n+10) 2b )2
F=Y%-14 ZaQ F=2aQ, Q=" (a + Sinh(Zt)) +
2(,at n __ S
2m*{e (tanh t)? } +2 and G = o and Gl e

So, the bulk viscous pressure and energy dens1ty can be obtained as,
-1 2(1+a)Q+(GG1 Z—G){(n+3}( +—)+(n +4n+3)F( ) +2Fm2}

B2n

- (35)
P = srteze) +2F(4n + 2)G, (E)Z
pzm 2(1+a)Q+(36—(2+3G)Gi){(n+3}( +—)+(n +4n+3)F( )2+2:::2} (36)

—2F(4n +2) (= + 36,) (E)Z

For this choice of model, the bulk viscosity coefficient ¢ and the isotropic pressure
p can be obtained as

§ = sz 1201+ @ QU = D +{Gr = D6 = 2y + 36 - )6, - 2 +3) (2 +

FT) + (% +4n+3)F (;) + 2 } 2F(4n +2) (2L + (1 +31)6,) (= )2, (37)
P=7p = s 20+ @ 0+ B6 - 2 +30)6) {0+ 3) (S +55) + (w? +
4n + 3)F (E)2 + I } — 2F(4n +2) (E + 361) (;)2. (38)

Consequently, the equation of state parameter can be obtained from the above expressions
of pressure and density as,

2(1+00)Q+(6G6,—2— G){(n+3}(£+2)+(n +an+3)F(5 )2+2;;',‘,2}+2F(4n+2)61(5)2]

w = — 2 > Ak (39)
2(1+)Q+(36 - (2+3G)Gl){(n+3}(E+E)+(n2+4n+3)F( ) + 2:;’,‘1 }—2F(4n+2)(1+6+361)( ) ]
The values of B, B and B are B = [eat{tanh(t)}b]nﬂ B=== (a +-2 )
n+2 sinh 2t

and B —_B(a+ 2b )2_£(4bcosh2t)

(n+2)2 sinh 2t n+2 \(sinh 2t)2



60  Cosmic Acceleration in an Anisotropic Universe

which can be substituted in the Egs. (35)- (39) to get the respective expressions for effective
pressure, energy density, coefficient of bulk viscosity, isotropic pressure and equation of
state (EoS) parameter. The graphical behaviour of the effective pressure for the model is
shown in Fig. 2. It can be seen that the effective pressure (p) starts from the high negative
value and has settled down to near zero. At the same time, the energy density p evolves
from a high positive value to a small positive value in the present and late times. It remains
in the positive domain during the whole cosmic evolutionary process, which can be seen
from Fig. 2. Fig. 3 shows the positively decreasing behaviour of p for the considered model.
Therefore, the presented model describes the evolution of the universe in a way that is
consistent with present-day accelerating universe. From the Fig. 4, it can be observed that
the coefficient of bulk viscous (&) is a decreasing function of time, indicating viscous effects
were present near Big Bang singularity and remained in the positive domain throughout the
cosmic evolution. The evolution trajectory of the EoS parameter (w) is shown in the Fig.
5. From the graphical representation, it can be seen that the EoS parameter is in the negative
domain, i.e., in the region —1 < w < 0. The numerical value of EoS parameter w is
constrained by several cosmological observations such as Supernovae Cosmology Project

[48], w = —1.03513:353; observations of the Cosmic Microwave Background radiation
obtained by the Wilkinson Microwave Anisotropy Probe satellite (WMAP+CMB) [49],

w = —1.073{005%); Planck 2018 [50], @ = —1.03 + 0.03. The present value of EoS
parameter w for this model corresponds to the parameters of the model, w, = —0.9205,
which is in agreement with cosmological observations. Thus, we can conclude that the
behaviour of EoS parameter favours a quintessence evolutionary phase.

Fig. 6 illustrates the squared sound stability of the model with respect to time. In the
universe, there are three different kinds of particles, i.e., sub-luminal, luminal, and super-
luminal. The sub-luminal particles move relatively slowly in comparison to the speed of
light, while the luminal particles travel at the same speed as the speed of light. In contrast,
the super-luminal particles move faster than the speed of light. Super-luminal particles
could either not exist at all, or if they do, they do not interact with ordinary matter. When
the speed of sound is less than the local light speed, Csz(t) < 1, we can conclude about the
non-violation of causality. The positive sound speed (Csz(t) > 1) is necessary for the
classical stability of the universe [51,52]. From Fig. 6, it can be observed that the squared
sound speed is less than —1 in the present and late time cosmic evolution, the model remains
unstable with the expansion of the Universe.

—— Energy Density (p)
Effective Pressure (P}

Isatropic Pressure

-5

10 1z 14 16

] 2 4 6 8
Fig. 2. Energy Density (p)and Effective t(Gyr)
Pressure (p) vs. time (Gyr). Fig. 3. Isotropic Pressure (p) vs. time (Gyr).
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6. Physical Behavior of the Model

The physical quantities of observational interests in cosmology such as Hubble parameter
(H), Deceleration parameter (q), Spatial volume of scale factor (V), scalar of expansion
(0), Shear scalar (¢)and mean anisotropy parameter (A4,,) are given in the following:

The Hubble parameter can be written as

H=a+ 2b 40
-2 sinh(2t)’ (40)
The deceleration parameter can be obtained as
4b cosh(2t)
g = (41)

-1 .

(asinh(2t) + 2b)?

The spatial volume, expansion scalar, shear scalar and anisotropy parameter of the
model are given respectively,

Cwm A 2b , 2b 1P m—1y?
V= [e®{tanh(O}]",0 =3 (a + sinh(Zt))' 0" =3 [a + sinh(2t) (n + 2)
n—1\2
and A, =2 (n n 2) . (42)

The graphical representation of the Hubble parameter is shown in Fig. 7, and the
Volume, Shear scalar, and Expansion scalar of the cosmological model is shown in Fig. 8.
It can be observed that the Hubble parameter (H),and ¢ parameters take large positive
values at t = 0 and take the small positive values as t — co. The volume is directly
proportional to time, which can be seen from Fig. 8. Also, it can be observed from Eq. (42)
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that spatial volume (V) is zero at t = 0 while the expansion scalar 6 is infinite. This
suggests that the universe starts evolving with zero volume at ¢ = 0, which is a Big Bang
scenario. The mean anisotropy A,, # 0, the model does not approach isotropy for n # 1.
In other words, as long as n # 1, our model is direction-dependent. However, for n = 1,
there is no shear indicating that the model is a isotropy for all t. The signature of the
deceleration parameter describes the acceleration or deceleration Universe, i.e., when q >
0, then the expansion phase of the universe is decelerating; when —1 < g < 0, then the
expansion phase of the universe is exponential expansion (for ¢ = —1 is known as de-sitter
expansion) and when g < —1 expansion phase of the universe is super exponential. For the
model, the behaviour of the deceleration parameter from Fig. 9 depicted that the universe
is transitioning from the deceleration phase to the acceleration phase and the present value
of q, qo = —1. Therefore, the expansion phase of our model Universe is de-sitter
expansion.

7. Energy Conditions and Statefinder Parameter

In this work, we consider energy conditions to test the validity of the models in the context
of cosmic acceleration. There are several forms of energy conditions, such as null energy
conditions (NEC), weak energy conditions (WEC), strong energy conditions (SEC), and
dominant energy conditions (DEC) are given for the content of the universe in the form of
a viscous fluid in f(Q, T) gravity as follows [53]:

i.  Null energy conditions (NEC) @ p +p = 0,

ii.  eak energy conditions (WEC) © p +p = Oandp = 0,

iii.  Strong energy conditions (SEC) & p + 3p = 0, and

iv.  Dominant energy conditions (DEC) & p — |p| = Oandp = 0,

14 T
i —_ 075
Gl i G4
8 H 0.50
5 H
04 :
003
02
fle24

0 2 4 6 8 0 12 4 1 0 2 4 6 g8 10 12 1 1
t (Gyr) t (Gyr)

Decelerated Phase (g > O)é

—0.25

Accelerated Phase (g <0)

Deceleration Parameter (|

Fig. 8. Volume, Shear scalar, and Expansion Fig. 9. Deceleration Parameter (q) vs. time.
scalar vs. time.

The graphical representation of energy conditions is shown in Fig. 10. For the
considered model, it can be seen that WEC, NEC, and DEC are obeying as they remain in
the positive domain while SEC remains in the positive domain in early cosmic evolution.
However, as the universe evolves, the SEC evolves into a negative domain. The violation
of SEC illustrates the accelerating behaviour of the model.
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Fig. 10. Energy Conditions vs. time. Fig. 11. Statefinder Parameter vs. time.

The Statefinder is a geometrical diagnostic and allows us to characterize the properties
of dark energy in an independent manner. Sahini et al. [54] introduced the diagnostic
parameter (7, s) is called statefinder parameter which is defined as

R AR r—1

RH? HZ " {3 :3(q 1)

(43)

2
The statefinder parameter pair (7, s) of the concerned model is calculated to demonstrate

the behaviour of the model with bulk viscosity, which is obtained as

12b cosh2t 16b(cosh 2 t)? — 8b(sinh 2 t)?

=1- 44

4 (asinh 2t + 2b)? (asinh 2t + 2b)3 (44)
—12bcosh2t + (asinh 2t + 2b)? + (16b cosh 2 t)* — 8b(sinh 2 t)*

<= (asinh2t + 2b)3 (45)

12bcosh2t —%(a sinh 2t + 2b)

By using Eqgs. (44) and (45), the graph of statefinder parameter 7, s is shown in the Fig.
11. It can be observed that the trajectory starts evolving from the region v < 1,s > 0, which
represents the quintessence model of dark energy. Eventually, it approaches (r,s) — (1,0)
w.r.t. time which represents the ACDM model [55]. However, the model behaves like
ACDM model at present and in the late time cosmic evolution.

8. Conclusion

In the present work, the Bianchi type-VI cosmological model was investigated in the
presence of bulk viscosity within the framework of f(Q,T) gravity. We considered the
non-linear £(Q,T) function as f(Q,T) = Q + aQ? + BT where a # 0 and B are the free
parameters. With the help of hyperbolic hybrid scale factor as R(t) = e*[tanh(t)]? the
field equations have been precisely solved. The parameters of the model are chosen as a =
—-0.102,=2,y=05a=119,b=0563,m=1and n=1.658 to provide a
physically acceptable energy density. Based on these data, it has been found that the Hubble
parameter, expansion scalar, and shear scalar decrease positively as time tends to oo, and
the volume is found to be directly proportional to time. It has been observed that the
deceleration parameter of our model Universe shows the signature flipping behaviour, i.e.,
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it shows positive in the early phase and negative for the present and late time universe.
From the graph the energy density is observed to be a decreasing function of time and
remains in the positive domain. For the bulk viscous pressure, it is negative throughout the
cosmic evolution. The negativity of p ensures an accelerating universe at the present epoch.
In the absence of bulk viscosity, the pressure remains as p = p since & = 0, lacking any
extra damping or acceleration terms associated with viscosity. This simplifies the system
and reduces its dissipative characteristics. The behaviour of the bulk viscosity coefficient
(&) is a decreasing function of time, and it is consistent with thermodynamics. Further, the
behaviour of the EoS parameter for the considered model depicts the quintessence model
in present and in late time cosmic evolution as w = —1. From the energy conditions, it can
be concluded that the violation of SEC depicts the accelerating behaviour of the model. The
physical and geometrical behaviour discussed in this paper with hyperbolic hybrid scale
factor in the aid of bulk viscous unveiled intriguing dynamics and the solutions given in
this work may be useful for a better understanding of the characteristics of the Bianchi type-
VImodel in f(Q, T) gravity.

Acknowledgment

M. Narzary acknowledges the financial support received from the University Grant
Commission, New Delhi, under the scheme of National Fellowship for Higher Education
(NFHE) vide award letter number-202223-NFST-ASS- 01433, Dated 28" June 2023 to
carry out the research work.

References

1. S. 1. Nojiri and S. D. Odintsov, Phys. Rev. D 74, ID 086005 (2006).
https://doi.org/10.1103/PhysRevD.74.086005

2. S. I Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).
https://doi.org/10.1142/S0219887807001928

3. L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, Phys. Rev. D 75, ID 083504 (2007).
https://doi.org/10.1103/PhysRevD.75.083504

4. R. Saffari and S. Rahvar, Phys. Rev. D 77, ID 104028 (2008).
https://doi.org/10.1103/PhysRevD.77.104028

5. T. Harko, F. S. Lobo, S. I. Nojiri and S. D. Odintsov, Phys. Rev. D 84, ID 024020 (2011).
https://doi.org/10.1103/PhysRevD.84.024020

6. M. J. S. Houndjo, Int. J. Mod. Phys. D 21, ID 1250003 (2012).
https://doi.org/10.1142/S0218271812500034

7. M. Sharif and M. Zubair, Astrophys. Space Sci. 349, 457 (2014).
https://doi.org/10.1007/s10509-013-1605-0

8. A. Dixit and A. Pradhan, Int. J. Geom. Meth. Mod. Phys. 17, ID 2050213 (2020).
https://doi.org/10.1142/S0219887820502138

9. S.I. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).
https://doi.org/10.1016/j.physletb.2005.10.010

10. M. Sharif and H. I. Fatima, Astrophys. Space Sci. 353, 259 (2014).
https://doi.org/10.1007/s10509-014-2000-1

11. M. Koussour, H. Filali, S. H. Shekh, and M. Bennai, Nucl. Phys. B 978, ID 115738 (2022).
https://doi.org/10.1016/j.nuclphysb.2022.115738



https://doi.org/10.1103/PhysRevD.74.086005
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1103/PhysRevD.75.083504
https://doi.org/10.1103/PhysRevD.77.104028
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1007/s10509-013-1605-0
https://doi.org/10.1142/S0219887820502138
https://doi.org/10.1016/j.physletb.2005.10.010
https://doi.org/10.1007/s10509-014-2000-1
https://doi.org/10.1016/j.nuclphysb.2022.115738

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36

37.

38.

39

M. Narzary et al., J. Sci. Res. 18 (1), 53-66 (2026) 65

. M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman, Phys. Rev. D 86, ID
104059 (2012). https://doi.org/10.1103/PhysRevD.86.104059

Y. F. Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis, Rep. Prog. Phys. 79, ID 106901
(2016). https://doi.org/10.1088/0034-4885/79/10/106901

M. Kr$sak and E. N. Saridakis, Class. Quan. Gravity 33, ID 115009 (2016).
https://doi.org/10.1088/0264-9381/33/11/115009

L. K. Duchaniya, S. V. Lohakare, B. Mishra, and S. K. Tripathy, Eur. Phys. J. C 82, ID 448
(2022). https://doi.org/10.1140/epjc/s10052-022-10406-w

J. B. Jiménez, L. Heisenberg, and T. Koivisto, Phys. Rev. D 98, ID 044048 (2018).
https://doi.org/10.1103/PhysRevD.98.044048

J. B. Jiménez, L. Heisenberg, T. Koivisto, and S. Pekar, Phys. Rev. D 101, ID 103507(2020).
https://doi.org/10.1103/PhysRevD.101.103507

S. A. Narawade, L. Pati, B. Mishra, and S. K. Tripathy, Phys. Dark Universe 36, ID 101020
(2022). https://doi.org/10.1016/j.dark.2022.101020

Y. Xu, G. Li, T. Harko, and S. D. Liang, Eur. Phys. J. C 79, ID 708 (2019).
https://doi.org/10.1140/epjc/s10052-019-7207-4

S. Arora, S. K. J. Pacif, A. Parida, and P. K. Sahoo, J. High Energy Astrophys. 33, 1 (2022).
https://doi.org/10.1016/j.jheap.2021.10.001

L. Pati, S. A. Kadam, S. K. Tripathy, and B. Mishra, Phys. Dark Universe 35, ID 100925
(2022). https://doi.org/10.1016/j.dark.2021.100925

M. Shiravand, S. Fakhry, and M. Farhoudi, Phys. Dark Universe 37, ID 101106 (2022).
https://doi.org/10.1016/j.dark.2022.101106

T. H. Loo, R. Solanki, A. De, and P. K. Sahoo, Eur. Phys. J. C 83, ID 261 (2023).
https://doi.org/10.1140/epjc/s10052-023-11391-4

G. N. Gadbail, S. Arora, and P. K. Sahoo, Phys. Lett. B 838, ID 137710 (2023).
https://doi.org/10.1016/j.physletb.2023.137710

S. Pradhan, S. K. Maurya, P. K. Sahoo, and G. Mustafa, Forts. der Phys. 72, ID 2400092 (2024).
https://doi.org/10.1002/prop.202400092

M. Tayde, Z. Hassan, and P. K. Sahoo, Nucl. Phys. B 1000, ID 116478 (2024).
https://doi.org/10.1016/j.nuclphysb.2024.116478

M. Narzary and M. Dewri, Edelweiss App. Sci. Tech. 9, 2623 (2025).
https://doi.org/10.55214/25768484.v9i5.7526

C. W. Misner, Nature 214, 40 (1967). https://doi.org/10.1038/214040a0

Z. Klimek, Nuovo Cimento B Serie 35, 249 (1976).

https://doi.org/10.1007/BF02724062

P. Ilg and H. C. Ottinger, Phys, Rev. D 61, ID 023510 (1999).
https://doi.org/10.1103/PhysRevD.61.023510

X. Chen and E. A. Spiegel, Mon. Not. R. Astron. Soc. 323, 865 (2001).
https://doi.org/10.1046/1.1365-8711.2001.04261.x

J. R. Wilson, G. J. Mathews and G. M. Fuller, Phys. Rev. D 75, ID 043521 (2007).
https://doi.org/10.1103/PhysRevD.75.043521

R. K. Mishra, A. Pradhan and C. Chawla, Int. J. Theor. Phys. 52, 2546 (2013).
https://doi.org/10.1007/s10773-013-1540-4

M. V. Santhi, V. U. M. Rao, and Y. Aditya, Can. J. Phys. 96, 55 (2018).
https://doi.org/10.1139/cip-2017-0256

L. K. Tiwari and R. K. Tiwari, Prespacetime J. 8, 1509 (2017).

. B. Mishra, S. Tarai, and S. K. J. Pacif, Int. J. Geom. Meth. Mod. Phys. 15, ID 1850036 (2018).
https://doi.org/10.1142/S0219887818500366

S. Arora, S. Bhattacharjee, and P. K. Sahoo, New Astronomy 82, ID 101452 (2021).
https://doi.org/10.1016/j.newast.2020.101452

M. Koussour and M. Bennai, Int. J. Geom. Meth. Mod. Phys. 19, ID 2250038 (2022).
https://doi.org/10.1142/S0219887822500384

. V. G. Mete and P. S. Dudhe, J. Sci. Res. 17, 141 (2025).



https://doi.org/10.1103/PhysRevD.86.104059
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1140/epjc/s10052-022-10406-w
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1016/j.dark.2022.101020
https://doi.org/10.1140/epjc/s10052-019-7207-4
https://doi.org/10.1016/j.jheap.2021.10.001
https://doi.org/10.1016/j.dark.2021.100925
https://doi.org/10.1016/j.dark.2022.101106
https://doi.org/10.1140/epjc/s10052-023-11391-4
https://doi.org/10.1016/j.physletb.2023.137710
https://doi.org/10.1002/prop.202400092
https://doi.org/10.1016/j.nuclphysb.2024.116478
https://doi.org/10.55214/25768484.v9i5.7526
https://doi.org/10.1038/214040a0
https://doi.org/10.1007/BF02724062
https://doi.org/10.1103/PhysRevD.61.023510
doi:%2010.1046/j.1365-8711.2001.%2004261.x
https://doi.org/10.1046/j.1365-8711.2001.04261.x
https://doi.org/10.1103/PhysRevD.75.043521
https://doi.org/10.1007/s10773-013-1540-4
https://doi.org/10.1139/cjp-2017-0256
https://doi.org/10.1142/S0219887818500366
https://doi.org/10.1016/j.newast.2020.101452
https://doi.org/10.1142/S0219887822500384

66  Cosmic Acceleration in an Anisotropic Universe

40.

41.

42.

43.

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

https://doi.org/10.3329/jsr.v17i1.74327

M. Dewri, J. Sci. Res. 12,251 (2020).
https://doi.org/10.3329/jsr.v12i3.43313

B. P. Brahma and M. Dewri, J. Sci. Res. 14, 721 (2022).
https://doi.org/10.3329/jsr.v14i3.56416

D. Basumatay and M. Dewri, J. Sci. Res. 13, 137 (2021).
https://doi.org/10.3329/jsr.v13i1.48479

P. Kumawat, R. Goyal and S. Choudhary, J. Sci. Res., 16, 695 (2024).
https://doi.org/10.3329/jsr.v16i3.70809

. M. Narzary and M Dewri, Int. J. Geom. Meth. Mod. Phys. 21, ID 2450130 (2024).

https://doi.org/10.1142/S0219887824501305

F. M. Esmaeili, J. High Energy Phys., Gravit. Cosmol. 4, 223 (2018).
https://doi.org/10.4236/jhepgc.2018.42017

S. Jokweni, V. Singh, A. Beesham and B. K. Bishi, Phys. Sci. Forum 7, 34 (2023).
https://doi.org/10.3390/ECU2023-14062

N. Basumatary and M. Dewri, Int. J. Innov. Res. Sci. Stud. 7, 772 (2024).
https://doi.org/10.53894/ijirss.v7i2.2890

R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, K. Barbary, M. S. Burns, A.
Conley, K. S. Dawson, S. E. Deustua, and M Doi, Astrophys.J. 716, 712 (2010).
https://doi.org/10.1088/0004-637X/716/1/712

C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw et al., The Astrophys. J. Suppl.
Ser. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20

N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini et al., Astron.
Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

N. Godani and G. C. Samanta, Chinese J. Phys. 66, 787 (2020).
https://doi.org/10.1016/j.cjph.2020.05.011

M. Koussour, S. H. Shekh, M. Bennai, and T. Ouali, Chinese J. Phys. 90, 97(2022).
https://doi.org/10.1016/j.cjph.2022.11.013

S. Arora and P. K. Sahoo, Phys. Scrip. 95, ID 095003 (2020).

https://doi.org/ 10.1088/1402-4896/abaddc

V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, J. Exp. Theor. Phys. Lett. 77, 201
(2003). https://doi.org/10.1134/1.1574831

P. Wu and H. Yu, Int. J. Mod. Phys. D 14, 1873 (2005).
https://doi.org/10.1142/S0218271805007486



https://doi.org/10.3329/jsr.v17i1.74327
https://doi.org/10.3329/jsr.v12i3.43313
https://doi.org/10.3329/jsr.v14i3.56416
https://doi.org/10.3329/jsr.v13i1.48479
https://doi.org/10.3329/jsr.v16i3.70809
https://doi.org/10.1142/S0219887824501305
https://doi.org/10.1142/S0219887824501305
https://doi.org/10.1142/S0219887824501305
https://doi.org/10.3390/ECU2023-14062
https://doi.org/10.53894/ijirss.v7i2.2890
https://doi.org/10.1088/0004-637X/716/1/712
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/j.cjph.2020.05.011
https://doi.org/10.1016/j.cjph.2022.11.013
https://doi.org/%2010.1088/1402-4896/abaddc
https://doi.org/10.1134/1.1574831
https://doi.org/10.1142/S0218271805007486

