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Abstract 

This paper introduces a novel extension of the classical Banach Contraction Principle, 

focusing on "perimetric contractions" in n-gon. Unlike traditional contractions that deal with 

the distances between pairs of points, perimetric contractions are concerned with the 

contraction of the entire perimeter of an n-gon, considering the distances between consecutive 

points along the boundary. This new perspective enables the development of fixed-point 

results in higher-dimensional metric spaces. The core objective is to establish a fixed-point 

theorem for mappings that contract the perimeters of n-gon, providing a generalization of 

Banach's original theorem. The paper demonstrates that such mappings are continuous and 

presents conditions under which fixed points exist and are unique. Additionally, the 

relationships between perimetric contractions and conventional contraction mappings are 

examined, thus expanding the applicability of fixed-point theorems in more complex settings. 
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1. Introduction 

Banach developed the Contraction Mapping Principle in his 1920 dissertation, which was 

later published in 1922 [1]. Banach was the first to formulate this result in an accurate 

abstract form appropriate for a variety of applications, even though the concept of 

successive approximations in a number of concrete situations (solution of differential and 

integral equations, approximation theory) had previously been presented in the works of 

Chebyshev, Picard, Caccioppoli, and others [1]. One hundred years later, fixed-point 

theorems continue to pique the interest of mathematicians worldwide. This is supported by 

the large number of articles and monographs that have been written about fixed point theory 

and its applications in recent decades; for example, the monographs [2-4] for a survey on 

fixed point results. 
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Over time, there have been numerous generalizations of the Banach contraction 

principle. The authors [5] pointed out that metric extensions are typically verified against 

three classical fixed point theorems in addition to Banach's fixed point theorem. These are 

Caristi's theorem [8], the extension of Banach's theorem to nonexpansive mappings [7], and 

Nadler's famous set-valued extension of Banach's theorem [6]. At the same time, there are 

at least two different kinds of generalizations of these theorems that may be distinguished: 

the first weakens the contractive character of the mapping, as seen in [9-18]; the second 

weakens the topology [19-32]. 

Assume that 𝑋 is a metric space. It has been proved that the fixed point theorem for a 

new class of mappings, 𝑇: 𝑋 → 𝑋, in this work. These mappings can be generalized as 

mappings contracting perimeters of n gon. This work's main theorem proof is based on the 

concepts of the proof of Banach's classical theorem and generalized for perimetric 

contraction of triangles. However, the key distinction is that our mappings' definition is 

based on mapping n points of the space rather than three. 

Additionally, it requires the necessary condition that 𝑇(𝑇𝑥) ≠ 𝑥 for any 𝑥 ∈ 𝑋 such that 

𝑇𝑥 ≠ 𝑥, which stops the mapping T from having points with least period two [33]. A 

significant subclass of these mappings are the ordinary contraction mappings, from which 

we can quickly derive the classical Banach's theorem as a straightforward consequence. For 

a space 𝑋 with |𝑋| = ℵ0, where |𝑋| is the cardinality of the set 𝑋, an example of a mapping 

that contracts the perimeters of n-gon but is not a contraction mapping is built. 

The core of this paper is to establish a fixed-point theorem for mappings that contract 

the perimeters of n-gon, thereby extending the established theory of Banach’s contraction 

principle. This work addresses the properties of such mappings, investigates their 

uniqueness and existence of fixed points, and provides conditions under which these 

mappings exhibit interesting geometric behaviors. We will also explore the relationship 

between these perimetric contractions and ordinary contraction mappings, highlighting their 

connections and differences in the context of metric spaces. By introducing the perimetric 

contraction of n-gon, this paper contributes to the ongoing research in metric space theory, 

extending the applicability of fixed-point theorems to more complex and higher-

dimensional structures. 

2. Mapping Contracting Perimeters of n–gon 

Definition 2.1. Let (𝑋, 𝑑) be a metric space with |𝑋| ≥ 𝑛. We shall say that 𝑇: 𝑋 → 𝑋  is a 

mapping contracting perimeters of n-gon on 𝑋 if there exists 𝛼 ∈ [0,1) such that the 

inequality  

      𝑑(𝑇𝑥1, 𝑇𝑥2) + 𝑑(𝑇𝑥2, 𝑇𝑥3)+ . . . + 𝑑(𝑇𝑥𝑛, 𝑇𝑥1) ≤       𝛼(𝑑( 𝑥1, 𝑥2) +

𝑑( 𝑥2, 𝑥3)+ . . . + 𝑑( 𝑥𝑛, 𝑥1)).                                                                                          (2.1) 

 Holds for all n pairwise distinct points 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛 ∈ 𝑋.                                                                                                                       
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Remark 2.2. Note that the requirement for 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛 ∈ 𝑋 to be pairwise distinct is 

essential. One can see that otherwise this definition is equivalent to the definition of 

contraction mapping.   

Proposition 2.3. Mappings contracting perimeters of n-gon are continuous. 

Proof. Let (𝑋, 𝑑) be a metric space with |𝑋| ≥ 𝑛, 𝑇: 𝑋 → 𝑋  be a mapping contracting 

perimeters of n–gon on 𝑋 and let 𝑥0 be an arbitrary. If 𝑥0 is an isolated point of 𝑋, then it is 

clearly 𝑇 is continuous at 𝑥0. Therefore it remains to show that for any 𝜖 > 0  there exist a 

𝛿 > 0  such that  

𝑑( 𝑇𝑥0 , 𝑇𝑥) < 𝜖 for all 𝑥 ∈ 𝑋 satisfying  𝑑( 𝑥0 , 𝑥) < 𝛿. 

Let 𝜖 > 0  be an arbitrary. Choose 𝛿 > 0 be such that  0 < 𝛿 <
𝜖

(2𝑛−2)𝛼
.  

Since 𝑥0 is a accumulation point of, there exist 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛−2 ∈ 𝑋 with 𝑥1 ≠ 𝑥2 ≠

𝑥3 ≠ ⋯ ≠ 𝑥𝑛−2 ≠ 𝑥0 such that 

𝑑( 𝑥0 , 𝑥1) < 𝛿, 𝑑( 𝑥0 , 𝑥2) < 𝛿, 𝑑( 𝑥0 , 𝑥3) < 𝛿,… . . . , 𝑑( 𝑥0 , 𝑥𝑛−2) < 𝛿.  

Now, for all 𝑥 ∈ 𝑋 with 𝑥 ≠ 𝑥0 satisfying 𝑑( 𝑥0 , 𝑥) < 𝛿. we have  

𝑑( 𝑇𝑥0, 𝑇𝑥) ≤  𝑑( 𝑇𝑥0, 𝑇𝑥) + 𝑑( 𝑇𝑥, 𝑇𝑥1) + 𝑑( 𝑇𝑥1, 𝑇𝑥2) + ………+ 𝑑( 𝑇𝑥𝑛−2, 𝑇𝑥0).  

By using (2.1) and triangle inequality we have,  

𝑑( 𝑇𝑥0, 𝑇𝑥) ≤ 𝛼(𝑑(𝑥0, 𝑥) + 𝑑( 𝑥, 𝑥1) + 𝑑(𝑥1, 𝑥2) + ………+ 𝑑(𝑥𝑛−2, 𝑥0)) 

𝑑( 𝑇𝑥0, 𝑇𝑥)   ≤ 2𝛼(𝑑(𝑥0, 𝑥) + 𝑑( 𝑥0, 𝑥1) + 𝑑(𝑥0, 𝑥2) + ………+ 𝑑(𝑥0, 𝑥𝑛−2)) 

                                    ≤ 2𝛼(𝛿 + 𝛿 + 𝛿 + ………+ 𝛿 )  

                                    ≤ 2𝛼(𝑛 − 1)𝛿  

                                    ≤ 2(𝑛 − 1)𝛼𝛿 

                                    ≤ (2𝑛 − 2)𝛼𝛿 

                                   < 𝜖    and hence the result follows.                                                                                                                                     

Theorem 2.4. Let (𝑋, 𝑑), |𝑋| ≥ 𝑛, be a complete  metric space and let the mapping     

𝑇: 𝑋 → 𝑋 satisfy the following to conditions:  

(i) 𝑇𝑚(𝑥) ≠ 𝑥  for all 𝑥 ∈ 𝑋  with 𝑚 =  2, 3, 4, …… , 𝑛 − 1 such that 𝑇(𝑥) ≠ 𝑥.  

      (ii) 𝑇 is a mapping contracting perimeters of n-gon on 𝑋. 

Then 𝑇 has a fixed point. The number of fixed points is at most 𝑛 − 1 . 

Proof. Let  𝑥0 ∈ 𝑋, 𝑇𝑥0 = 𝑥1, 𝑇𝑥1 = 𝑥2 , …… . . , 𝑇𝑥𝑛 = 𝑥𝑛+1, …… ..  Suppose that 𝑥𝑖  is 

not a fixed point of the mapping 𝑇 for every i =  0, 1, 2, …… .. Let us show that all 𝑥𝑖 are 

different. Since 𝑥𝑖 is not fixed , then 𝑥𝑖 ≠ 𝑥𝑖+1 = 𝑇𝑥𝑖 .  

By condition (i) If 𝑚 = 2, then 𝑇2(𝑥𝑖) = 𝑇(𝑇𝑥𝑖) = 𝑇(𝑥𝑖+1) =  𝑥𝑖+2 ≠ 𝑥𝑖 .  

              If 𝑚 = 3, then 𝑇3(𝑥𝑖) = 𝑇(𝑇
2𝑥𝑖) = 𝑇(𝑥𝑖+2) =  𝑥𝑖+3 ≠ 𝑥𝑖 .  

                    …………….. 

              If 𝑚 =  𝑛 − 1, then 𝑇𝑛−1(𝑥𝑖) = 𝑇(𝑇
𝑛−2𝑥𝑖)   

                                          = 𝑇(𝑇(𝑇𝑛−3𝑥𝑖))   

                                          = 𝑇(𝑇(𝑇(𝑇𝑛−4𝑥𝑖)))   

                                                     ……….. 

                                          = 𝑇(𝑇 (𝑇 (𝑇 (…………… . (𝑇(𝑥𝑖)))))   …(𝑛 − 2 times of T )  

                                          𝑇𝑛−1(𝑥𝑖) =  𝑥𝑖+𝑛−1 ≠ 𝑥𝑖 . 

Since, 𝑥𝑖 is not fixed point for all m =  2, 3, 4, …… , n − 1 and by the supposition that 𝑥𝑖+1 

is not fixed point we have 𝑥𝑖+1 ≠ 𝑥𝑖+2 = 𝑇𝑥𝑖+1.  
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By condition (i) If m =  2 , then 𝑇2(𝑥𝑖+1) = 𝑇(𝑇𝑥𝑖+1) = 𝑇(𝑥𝑖+2) =  𝑥𝑖+3 ≠ 𝑥𝑖+1.  

If m =  3 , then 𝑇3(𝑥𝑖+1) = 𝑇(𝑇
2𝑥𝑖+1) = 𝑇(𝑥𝑖+3) =  𝑥𝑖+4 ≠ 𝑥𝑖+1.  

                                  …………….. 

If m =  n − 1 , then  𝑇𝑛−1(𝑥𝑖+1) =  𝑥𝑖+1+(𝑛−1) ≠ 𝑥𝑖+1. 

Since 𝑥𝑖+1 is not fixed point for all m =  2, 3, 4, …… , n − 1. Therefore 

𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, …… , 𝑥𝑖+𝑛−1 are pairwise distinct. Further, set  

     𝑝0 =  𝑑(𝑥0, 𝑥1) + 𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2,  𝑥3) + ………+ 𝑑(𝑥𝑛−1, 𝑥0),  

     𝑝1 =  𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2,  𝑥3) + 𝑑(𝑥3,  𝑥4) + ………+ 𝑑(𝑥𝑛, 𝑥1),  

     𝑝2 =  𝑑(𝑥2,  𝑥3) + 𝑑(𝑥3,  𝑥4) + 𝑑(𝑥4,  𝑥5) + ………+ 𝑑(𝑥𝑛+1, 𝑥2),  

     𝑝3 =  𝑑(𝑥3,  𝑥4) + 𝑑(𝑥4,  𝑥5) + 𝑑(𝑥5,  𝑥6) + ………+ 𝑑(𝑥𝑛+2, 𝑥3),  

                                       …... 

     𝑝𝑛 =  𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑(𝑥𝑛+2, 𝑥𝑛+3) + ………+ 𝑑(𝑥𝑛+𝑚−1, 𝑥𝑛).  

Since 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2 , …… , 𝑥𝑖+𝑛−1  are pairwise distinct by (2.1) we have 

 𝑝1 ≤  𝛼 𝑝0, 𝑝2 ≤ 𝛼𝑝1, ……… , 𝑝𝑛 ≤ 𝛼 𝑝𝑛−1 and 𝑝0 > 𝑝1 > 𝑝2 >. . …  > 𝑝𝑛 >. .…      (2.2)  

Suppose that 𝑗 ≥ 𝑛  is a minimal natural number such that 𝑥𝑗 =  𝑥𝑖  for some 𝑖 such that 

0 ≤ 𝑖 < 𝑗 − (𝑛 − 1). Then 𝑥𝑗+1 =  𝑥𝑖+1, 𝑥𝑗+2 =  𝑥𝑖+2, 𝑥𝑗+3 =  𝑥𝑖+3, …… . , 𝑥𝑗+(𝑛−1) =

 𝑥𝑖+(𝑛−1).  Hence  𝑝𝑖 =  𝑝𝑗 which contradict to (2.2).  

Further, let us show that {𝑥𝑛} is a Cauchy sequence. It is clear that  

                                               𝑑(𝑥1, 𝑥2) ≤ 𝑝0 ,  

                                       𝑑(𝑥2, 𝑥3) ≤ 𝑝1 ≤  𝛼 𝑝0 ,  

                              𝑑(𝑥3, 𝑥4) ≤ 𝑝2 ≤  𝛼 𝑝1 ≤ 𝛼
2 𝑝0 , 

                                                    …… 

                                 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ 𝑝𝑛−1 ≤ 𝛼
𝑛−1 𝑝0 ,  

                                 𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝑝𝑛 ≤ 𝛼
𝑛 𝑝0 , 

By the triangle inequality,  

𝑑(𝑥𝑛, 𝑥𝑛+𝑝) ≤  𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑(𝑥𝑛+2, 𝑥𝑛+3) + ……+ 𝑑(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝)  

                   ≤ 𝛼𝑛−1 𝑝0 + 𝛼
𝑛 𝑝0 + 𝛼

𝑛+1 𝑝0 + ………+ 𝛼
𝑛+𝑝−2 𝑝0 = 𝛼

𝑛−1(1 + 𝛼 + 𝛼2 +

                    …+ 𝛼𝑝−1 )𝑝0 = 𝛼
𝑛−1 (

1−𝛼𝑝 

1−𝛼
)𝑝0.   

Since, by the supposition 0 ≤ 𝛼 < 1 , then 𝑑(𝑥𝑛, 𝑥𝑛+𝑝) <  𝛼
𝑛−1 (

1 

1−𝛼
) 𝑝0.  Hence 

𝑑(𝑥𝑛, 𝑥𝑛+𝑝) → 0  𝑎𝑠  𝑛 →  ∞  for every  > 0. Thus {𝑥𝑛} is a Cauchy sequence. By 

completeness of (𝑋, 𝑑) , this sequence has a limit 𝑥∗ ∈ 𝑋.   

Let us prove that 𝑇𝑥∗ = 𝑥∗.  By the triangle inequality and by inequality (2.1) we have   

               𝑑(𝑥∗, 𝑇𝑥∗) ≤  𝑑(𝑥∗ , 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥
∗) =  𝑑(𝑥∗ , 𝑥𝑛) + 𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥

∗)   

                                ≤  𝑑(𝑥∗ , 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥𝑛+1) +  𝑑(𝑥𝑛+1 , 𝑥𝑛+2) + ⋯+ 𝑑(𝑥𝑛+𝑖−2 , 𝑥
∗)  

where i =  1, 2, 3, … , n. 

                                 ≤ 𝑑(𝑥∗, 𝑥𝑛) + 𝛼(𝑑(𝑥𝑛+1, 𝑥
∗) + 𝑑(𝑥𝑛+2, 𝑥

∗) + ⋯+ 𝑑(𝑥𝑛+𝑖−2, 𝑥
∗)).  

Since all the terms in the previous sum tend to zero as  𝑛 → ∞, we obtain 𝑑(𝑥∗, 𝑇𝑥∗) = 0. 

Suppose that there exist at least n pairwise distinct fixed points 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛. Then 

𝑇𝑥1 = 𝑥1, 𝑇𝑥2 = 𝑥2, 𝑇𝑥3 = 𝑥3, … , 𝑇𝑥𝑛 = 𝑥𝑛, which contradicts to (2.1) .                                                                                                                                                                      

 

Remark 2.5. Suppose that under the supposition of the theorem the mapping 𝑇 has a fixed 

point 𝑓1 which is a limit of some iteration sequence 𝑥0, 𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 , …  such that 
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𝑥𝑛 ≠ 𝑓1 for all 𝑛 =  1,2,3, …. Then 𝑓1 is a unique fixed point. Indeed suppose that 𝑇 has 

another fixed point 𝑓2, 𝑓3, 𝑓4, … , 𝑓𝑛−1 such that 𝑓2 ≠ 𝑓1,  𝑓3 ≠ 𝑓2, 𝑓4 ≠ 𝑓3 , … , 𝑓𝑛−1 ≠ 𝑓1.  

It is clear that 𝑥𝑛 ≠ 𝑓2, 𝑥𝑛 ≠ 𝑓3, … , 𝑥𝑛 ≠ 𝑓𝑛−1 for all 𝑛 =  1, 2, 3, …. Hence we have that 

the points 𝑓1, 𝑓2, 𝑓3, 𝑓4, … , 𝑓𝑛−1 and 𝑥𝑛  are n pairwise distinct for all 𝑛 =  1, 2, 3, …. Consider 

the ratio   

                 𝑅𝑛 = 
𝑑(𝑇𝑓1,𝑇𝑓2 )+𝑑(𝑇𝑓2,𝑇𝑓3 )+⋯+𝑑(𝑇𝑓𝑛−1,𝑇𝑥𝑛 )+ 𝑑(𝑇𝑥𝑛,𝑇𝑓1)

𝑑(𝑓1 ,𝑓2 )+𝑑(𝑓2 ,𝑓3 )+⋯+𝑑(𝑓𝑛−1,𝑥𝑛 )+ 𝑑(𝑥𝑛 ,𝑓1)
 

                        = 
𝑑(𝑓1,𝑓2 )+𝑑(𝑓2,𝑓3 )+⋯+𝑑(𝑓𝑛−1,𝑥𝑛+1 )+ 𝑑(𝑥𝑛+1 ,𝑓1)

𝑑(𝑓1,𝑓2 )+𝑑(𝑓2,𝑓3 )+⋯+𝑑(𝑓𝑛−1,𝑥𝑛 )+ 𝑑(𝑥𝑛,𝑓1)
  

Taking into consideration that  𝑑(𝑓2 , 𝑓3 ) → 0 , 𝑑(𝑓3 , 𝑓4 ) → 0 , … , 𝑑(𝑓𝑛−1, 𝑥𝑛+1  ) → 0,
𝑑(𝑓𝑛−1, 𝑥𝑛 ) → 0 and 𝑑(𝑥𝑛+1, 𝑓1 ) → 𝑑(𝑓1, 𝑓2 ), 𝑑(𝑥𝑛, 𝑓1 ) → 𝑑(𝑓1, 𝑓2 ), we obtain  𝑅𝑛 → 1  

as 𝑛 →  ∞   which contradicts to condition (2.1).      

Example 2.6.  Let us construct an example of t he mapping 𝑇 contracting perimeters of n-

gon which has exactly n-1 fixed points. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛} , 𝑑(𝑥1, 𝑥2) =

 𝑑(𝑥2, 𝑥3) = ⋯ =  𝑑(𝑥𝑛, 𝑥1) = 1      and let 𝑇: 𝑋 → 𝑋 be such that  𝑇𝑥1 = 𝑥1 , 𝑇𝑥2 = 𝑥2,

𝑇𝑥3 = 𝑥3, … , 𝑇𝑥𝑛 = 𝑥𝑛 . One can easily see that conditions (i) and (ii) of Theorem 2.4 are 

fulfilled.    

 Example 2.7. Let us show that condition (i) of Theorem 2.4 is necessary. Let 𝑋 =

 {𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛} , 𝑑(𝑥1, 𝑥2) =  𝑑(𝑥2, 𝑥3) = ⋯ =  𝑑(𝑥𝑛, 𝑥1) = 1   and let 𝑇:𝑋 → 𝑋 be 

such that  𝑇𝑥1 = 𝑥2, 𝑇𝑥2 = 𝑥1, 𝑇𝑥3 = 𝑥4, 𝑇𝑥4 = 𝑥3, … , 𝑇𝑥𝑛−1 = 𝑥𝑛, 𝑇𝑥𝑛 = 𝑥𝑛−1. One 

can easily see that condition (ii) of Theorem 2.4 is fulfilled but 𝑇 does not have any fixed 

point.  

Let  (𝑋, 𝑑)  be a metric space. Then a mapping 𝑇: 𝑋 → 𝑋  is called a contraction mapping 

on 𝑋 if there exist 𝛼 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦)  ≤  𝛼 (𝑑( 𝑥 , 𝑦)), for all𝑥, 𝑦 ∈ 𝑋.                                   (2.3)        

Corollary 2.8.  (Banach fixed point theorem) Let (𝑋, 𝑑)  be a nonempty complete metric 

space with a contraction mapping : X → X . Then T admits a unique fixed point. 

Proof. For |𝑋| = 1, 2  the proof is trivial. Let |𝑋| ≥ 𝑛. Suppose that there exist 𝑥 ∈ 𝑋 such 

that 𝑇𝑚𝑥 = 𝑥  for  𝑚 = 𝑛 . Consequently 

  𝑑( 𝑥, 𝑇𝑛−1𝑥) =  𝑑(𝑇𝑛−1𝑥, 𝑥) = 𝑑(𝑇𝑛−1𝑥, 𝑇(𝑇𝑛−1𝑥) which contradicts to (2.3). Thus 

condition (i) of Theorem 2.4 holds. Let 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛  ∈ 𝑋 be pairwise distinct. By (2.3) 

we obtain 𝑑(𝑇𝑥1, 𝑇𝑥2) ≤ 𝛼 𝑑(𝑥1, 𝑥2),  

                                                𝑑(𝑇𝑥2, 𝑇𝑥3) ≤ 𝛼 𝑑(𝑥2, 𝑥3) ,  

                                                                  …. 

                                               𝑑(𝑇𝑥𝑛, 𝑇𝑥1) ≤ 𝛼 𝑑(𝑥𝑛, 𝑥1) which immediately implies 

condition (ii) of Theorem (2.4). This completes the proof of existence of fixed point.                                                                      

The uniqueness can be shown in a standard way. 

Let (𝑋, 𝑑) be a metric space and 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛 ∈ 𝑋 . We shall say that the points 

𝑥2, 𝑥3, … . . , 𝑥𝑛−1 lies between 𝑥1 and 𝑥𝑛 in the metric space (𝑋, 𝑑)  if the extremal version 

of the triangle inequality  

𝑑(𝑥1, 𝑥𝑛) =  𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑥𝑛) +  𝑑(𝑥1, 𝑥3) + 𝑑(𝑥3, 𝑥𝑛) + ⋯+ 𝑑(𝑥1, 𝑥𝑛−1) +

𝑑(𝑥𝑛−1, 𝑥𝑛) (2.4) holds.  
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Example 2.9. Let us construct an example of a mapping 𝑇:𝑋 → 𝑋 contracting perimeters 

of n- gon that is not contraction mapping for a metric space 𝑋 with |𝑋| = ℵ0. Let 𝑋 =
{𝑥∗, 𝑥1, 𝑥2, 𝑥3, … . . } and let 𝑎 be a positive real number. Define a metric 𝑑 on 𝑋 as follows:  

   𝑑(𝑥, 𝑦) =  

{
 
 

 
     

𝑎

2
⌊
𝑖

𝑛−1⌋
 ,    𝑖𝑓 𝑥 = 𝑥𝑖 ,   𝑦 = 𝑥𝑖+1 ,𝑖 = 0,1,2,….. 

∑
𝑎

2
⌊
𝑐

𝑛−1⌋

𝑗−1
𝑐=𝑖 

 , 𝑖𝑓 𝑥 = 𝑥𝑖  ,   𝑦 = 𝑥𝑗  ;  𝑖+1<𝑗 

2(𝑛−1)𝑎−∑
𝑎

2
⌊
𝑐

𝑛−1⌋

𝑖−1
𝑐=0  , 𝑖𝑓 𝑥 =  𝑥𝑖 ,   𝑦 =  𝑥

∗   

0 , 𝑖𝑓 𝑥 =  𝑦 

   

where  ⌊. ⌋ is the floor function. Then (𝑋, 𝑑) is a complete metric space with a single limit 

point 𝑥∗.     

Fig. 1. The points of the space (X, d) with consecutive distances between them. 

 

Define a mapping 𝑇:𝑋 → 𝑋 as 𝑇𝑥𝑖𝑚 = 𝑥𝑖𝑚+ 1, for all i =  0, 1, 2, …… . . and m = 1, 2, … .,

n − 1, 𝑇𝑥∗ = 𝑥∗.  

Since 𝑑(𝑇𝑥(𝑛−1)𝑖𝑚 , 𝑇𝑥(𝑛−1)𝑖𝑚+1) = 𝑑(𝑥(𝑛−1)𝑖𝑚 , 𝑥(𝑛−1)𝑖𝑚+1) for all 𝑖𝑚 = 0, 1, 2, …    and  

m = 1, 2, … . , n − 1, using (2.3) we see that 𝑇 is not contraction mapping. 

Let us show that inequality (2.1) holds for every n pairwise distinct points from the space 

𝑋. Consider the points 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , … , 𝑥𝑖𝑛−1 , 𝑥
∗  ∈ 𝑋 with 0 ≤ 𝑖1 < 𝑖2 < 𝑖3 < ⋯ < 𝑖𝑛−1.  

Then we have  

𝑑(𝑥𝑖1 , 𝑥𝑖2) + 𝑑(𝑥𝑖2 , 𝑥𝑖3) + … ,+𝑑(𝑥𝑖𝑛−1 , 𝑥
∗) +  𝑑(𝑥∗, 𝑥𝑖1) =  2𝑑((𝑥𝑖1 , 𝑥

∗) 

                                                                                              =  4(𝑛 − 1)𝑎 − 2 ∑
𝑎

2
⌊
𝑐

𝑛−1⌋

𝑖1− 1 
𝑐=0  

 and 

 𝑑(𝑇𝑥𝑖1 , 𝑇𝑥𝑖2) + 𝑑(𝑇𝑥𝑖2 , 𝑇𝑥𝑖3) + … ,+𝑑(𝑇𝑥𝑖𝑛−1 , 𝑇𝑥
∗) +  𝑑(𝑇𝑥∗, 𝑇𝑥𝑖1) =  2𝑑((𝑇𝑥𝑖1 , 𝑇𝑥

∗)

=  2𝑑(𝑥𝑖1+1 , 𝑥
∗)  =  4(𝑛 − 1)𝑎 − 2 ∑

𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖1 

𝑐=0 

 .  

Now we have,  

 𝑑(𝑥0, 𝑥𝑖𝑚) =  

{
 
 
 
 
 

 
 
 
 
 2(𝑛 − 1)𝑎 (1 − (

1

2
)
𝑝

) ,         𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝,

2(𝑛 − 1)𝑎 (1 − (
1

2
)
𝑝

) − 
𝑎

2𝑝−1
,          𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − 1,

2(𝑛 − 1)𝑎 (1 − (
1

2
)
𝑝

) − 
𝑎

2𝑝−2
,         𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − 2,

⋮
⋮

2(𝑛 − 1)𝑎 (1 − (
1

2
)
𝑝

) − 
𝑎

2𝑝−(𝑛−2)
,    𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − (𝑛 − 2).

 

 where 𝑝 = 1,2,3, ….                           (2.5)  

Consider the ratio,  



S. Darekar et al., J. Sci. Res. 18 (1), 43-52 (2026) 49 

 

𝑅𝑖1 = 
 𝑑(𝑇𝑥𝑖1 , 𝑇𝑥𝑖2) + 𝑑(𝑇𝑥𝑖2 , 𝑇𝑥𝑖3) + …+ 𝑑(𝑇𝑥𝑖𝑛−1 , 𝑇𝑥

∗) +  𝑑(𝑇𝑥∗, 𝑇𝑥𝑖1)

𝑑(𝑥𝑖1 , 𝑥𝑖2) + 𝑑(𝑥𝑖2 , 𝑥𝑖3) + …+ 𝑑(𝑥𝑖𝑛−1 , 𝑥
∗) +  𝑑(𝑥∗, 𝑥𝑖1)

 

= 

4(𝑛 − 1)𝑎 − 2 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖1 
𝑐=0 

4(𝑛 − 1)𝑎 − 2 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖1− 1 
𝑐=0 

 

   𝑅𝑖1 =

{
 
 
 
 
 

 
 
 
 
 1 −

𝑎

2𝑝

2(𝑛−1)𝑎−2(𝑛−1)𝑎(1−(
1

2
)
𝑝
)
,          𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝,

1 −
𝑎

2𝑝−1

2(𝑛−1)𝑎−2(𝑛−1)𝑎(1−(
1

2
)
𝑝
)+

𝑎

2𝑝−1

,          𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − 1    

1 −
𝑎

2𝑝−1

2(𝑛−1)𝑎−2(𝑛−1)𝑎(1−(
1

2
)
𝑝
)+

𝑎

2𝑝−2

,        𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − 2

⋮

1 −
𝑎

2𝑝−1

2(𝑛−1)𝑎−2(𝑛−1)𝑎(1−(
1

2
)
𝑝
)+

𝑎

2𝑝−(𝑛−2)

,    𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − (𝑛 − 2)

 

𝑅𝑖1 =

{
 
 
 
 

 
 
 
 

2𝑛 − 3

2𝑛 − 2
,          𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝,

𝑛 − 1

𝑛
,          𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − 1    

𝑛

𝑛 + 1
,        𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − 2

⋮
(𝑛 − 2) + 2𝑛−3

(𝑛 − 1) + 2𝑛−3
, 𝑖𝑓 𝑖1 = (𝑛 − 1)𝑝 − (𝑛 − 2).

 

Now, let us consider the points 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , … , 𝑥𝑖𝑛  ∈ 𝑋 with 0 ≤ 𝑖1 < 𝑖2 < 𝑖3 < ⋯ < 𝑖𝑛.  

Then,  we have,  

𝑑(𝑥𝑖1 , 𝑥𝑖2) + 𝑑(𝑥𝑖2 , 𝑥𝑖3) + … ,+𝑑(𝑥𝑖𝑛 , 𝑥𝑖1) =  2𝑑((𝑥𝑖1 , 𝑥𝑖𝑛) =  2 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖𝑛− 1 

𝑐= 𝑖1

 

   and  𝑑(𝑇𝑥𝑖1 , 𝑇𝑥𝑖2) + 𝑑(𝑇𝑥𝑖2 , 𝑇𝑥𝑖3) + … ,+𝑑(𝑇𝑥𝑖𝑛 , 𝑇𝑥𝑖1) =  2𝑑((𝑇𝑥𝑖1 , 𝑇𝑥𝑖𝑛) 

=  2𝑑(𝑥𝑖1+1 , 𝑥𝑖𝑛+1 )    

                                      =  2𝑑(𝑥𝑖1 , 𝑥𝑖𝑛) − 2[𝑑(𝑥𝑖1 , 𝑥𝑖1+1 ) − 𝑑(𝑥𝑖𝑛 , 𝑥𝑖𝑛+1)] 

=  2 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖𝑛− 1 

𝑐= 𝑖1

− 2(
𝑎

2⌊
𝑖1
𝑛−1

⌋
−

𝑎

2
⌊
𝑖𝑛
𝑛−1⌋

) 

Consider the ratio,   

𝑅𝑖1, 𝑖𝑛 = 
 𝑑(𝑇𝑥𝑖1 , 𝑇𝑥𝑖2) + 𝑑(𝑇𝑥𝑖2 , 𝑇𝑥𝑖3) + …+ 𝑑(𝑇𝑥𝑖𝑛 , 𝑇𝑥𝑖1)

𝑑(𝑥𝑖1 , 𝑥𝑖2) + 𝑑(𝑥𝑖2 , 𝑥𝑖3) + …+ 𝑑(𝑥𝑖𝑛 , 𝑥𝑖1)
 

= 

2 ∑
𝑎

2⌊
𝑐

𝑛−1⌋

𝑖𝑛− 1 
𝑐= 𝑖1

− 2(
𝑎

2⌊
𝑖1
𝑛−1⌋

−
𝑎

2
⌊
𝑖𝑛
𝑛−1⌋

)

2 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖𝑛− 1 
𝑐= 𝑖1
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=  1 −

(
𝑎

2⌊
𝑖1
𝑛−1⌋

−
𝑎

2
⌊
𝑖𝑛
𝑛−1⌋

)

 ∑
𝑎

2⌊
𝑐

𝑛−1
⌋

𝑖𝑛− 1 
𝑐= 𝑖1

. 

It is to be noted that  𝑖𝑛 ≥ 𝑖1 + (𝑛 − 1). Therefore  

⌊
𝑖𝑛

𝑛 − 1
⌋ ≥ ⌊

𝑖1
𝑛 − 1

⌋ +  1  

⇒   2
⌊
𝑖𝑛
𝑛−1⌋ ≥ 2. 2⌊

𝑖1
𝑛−1

⌋
 

⇒  
1

2
⌊
𝑖𝑛
𝑛−1⌋

 ≤
1

2. 2⌊
𝑖1
𝑛−1

⌋
  

                                                           ⇒  
𝑎

2
⌊
𝑖𝑛
𝑛−1⌋

 ≤
𝑎

2.2
⌊
𝑖1
𝑛−1⌋

.                                             (2.6) 

Now from (2.5), we can write,  

     𝑑(𝑥𝑖𝑚 , 𝑥
∗) =

{
 
 
 

 
 
 

2(𝑛−1)𝑎

2𝑝
,          𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝,

2(𝑛−1)𝑎

2𝑝
+

𝑎

2𝑝−1
 ,          𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − 1,    

2(𝑛−1)𝑎

2𝑝
+

𝑎

2𝑝−2
,        𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − 2,

⋮
2(𝑛−1)𝑎

2𝑝
+

𝑎

2𝑝−(𝑛−2)
, 𝑖𝑓 𝑖𝑚 = (𝑛 − 1)𝑝 − (𝑛 − 2).

                             (2.7) 

from above equation (2.7) we get,  

                                        𝑑(𝑥𝑖𝑚 , 𝑥
∗) ≤ 2(𝑛 − 1)𝑑(𝑥𝑖𝑚 , 𝑥𝑖𝑚+1)  

                                        ⇒  𝑑(𝑥𝑖1 , 𝑥
∗) ≤ 2(𝑛 − 1)𝑑(𝑥𝑖1 , 𝑥𝑖1+1)  

                                        ⇒    𝑑(𝑥𝑖1 , 𝑥𝑖𝑛)  ≤ 𝑑(𝑥𝑖1 , 𝑥
∗) ≤ 2(𝑛 − 1)𝑑(𝑥𝑖1 , 𝑥𝑖1+1) 

                                       ⇒     ∑
𝑎

2
⌊
𝑐

𝑛−1⌋

𝑖𝑛− 1 
𝑐= 𝑖1

≤ 2(𝑛 − 1)
𝑐

2
⌊
𝑖1
𝑛−1⌋

.      (2.8) 

Consequently, from (2.6) and (2.8) we have  

                                         𝑅𝑖1, 𝑖𝑛 = 1 − 

𝑎

2
⌊
𝑖1
𝑛−1⌋

−
1

2

𝑎

2
⌊
𝑖1
𝑛−1⌋

2(𝑛−1)
𝑎

2
⌊
𝑖1
𝑛−1⌋

= 
4𝑛−5

4𝑛−4
. 

Thus the inequality (2.1) holds for any n pairwise distinct points from 𝑋 with 

    𝛼 =  
4𝑛−5

4𝑛−4
= max = {

2𝑛−3

2𝑛−2
,
𝑛−1

𝑛
,
𝑛

𝑛+1
, … ,

(𝑛−2)+2𝑛−3

(𝑛−1)+2𝑛−3
,
4𝑛−5

4𝑛−4
} . 

Therefore, 𝑇 is a perimetric contraction on n- gon in 𝑋.                                                                                               
 

3. Conclusion 

 

The study introduced perimetric contraction mappings on n-gons and established a fixed-

point theorem that generalizes Banach’s classical contraction principle. Celebrated Banach 

Fixed Point Theorem can be proved has simple corollary of the theorem established in the 

paper. Key outcomes: 

a) Mappings contracting perimeters of n-gons are continuous. 

b) Under suitable conditions, such mappings possess at most (n – 1) fixed points. 



S. Darekar et al., J. Sci. Res. 18 (1), 43-52 (2026) 51 

 

Remark 2.5: If the limit of the iterative sequence 𝑥0 , 𝑥1 = 𝑇𝑥0 , 𝑥2 = 𝑇𝑥1 , …. does not 

belong to this sequence, then T has unique fixed point. 

c) It is  demonstrated that ordinary contractions are subclass of perimetric contractions. 
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