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Abstract

This paper introduces a novel extension of the classical Banach Contraction Principle,
focusing on "perimetric contractions" in n-gon. Unlike traditional contractions that deal with
the distances between pairs of points, perimetric contractions are concerned with the
contraction of the entire perimeter of an n-gon, considering the distances between consecutive
points along the boundary. This new perspective enables the development of fixed-point
results in higher-dimensional metric spaces. The core objective is to establish a fixed-point
theorem for mappings that contract the perimeters of n-gon, providing a generalization of
Banach's original theorem. The paper demonstrates that such mappings are continuous and
presents conditions under which fixed points exist and are unique. Additionally, the
relationships between perimetric contractions and conventional contraction mappings are
examined, thus expanding the applicability of fixed-point theorems in more complex settings.
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1. Introduction

Banach developed the Contraction Mapping Principle in his 1920 dissertation, which was
later published in 1922 [1]. Banach was the first to formulate this result in an accurate
abstract form appropriate for a variety of applications, even though the concept of
successive approximations in a number of concrete situations (solution of differential and
integral equations, approximation theory) had previously been presented in the works of
Chebyshev, Picard, Caccioppoli, and others [1]. One hundred years later, fixed-point
theorems continue to pique the interest of mathematicians worldwide. This is supported by
the large number of articles and monographs that have been written about fixed point theory
and its applications in recent decades; for example, the monographs [2-4] for a survey on
fixed point results.
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Over time, there have been numerous generalizations of the Banach contraction
principle. The authors [5] pointed out that metric extensions are typically verified against
three classical fixed point theorems in addition to Banach's fixed point theorem. These are
Caristi's theorem [8], the extension of Banach's theorem to nonexpansive mappings [7], and
Nadler's famous set-valued extension of Banach's theorem [6]. At the same time, there are
at least two different kinds of generalizations of these theorems that may be distinguished:
the first weakens the contractive character of the mapping, as seen in [9-18]; the second
weakens the topology [19-32].

Assume that X is a metric space. It has been proved that the fixed point theorem for a
new class of mappings, T: X — X, in this work. These mappings can be generalized as
mappings contracting perimeters of n gon. This work's main theorem proof is based on the
concepts of the proof of Banach's classical theorem and generalized for perimetric
contraction of triangles. However, the key distinction is that our mappings' definition is
based on mapping n points of the space rather than three.

Additionally, it requires the necessary condition that T'(Tx) # x for any x € X such that
Tx # x, which stops the mapping T from having points with least period two [33]. A
significant subclass of these mappings are the ordinary contraction mappings, from which
we can quickly derive the classical Banach's theorem as a straightforward consequence. For
a space X with |X| = Ry, where |X| is the cardinality of the set X, an example of a mapping
that contracts the perimeters of n-gon but is not a contraction mapping is built.

The core of this paper is to establish a fixed-point theorem for mappings that contract
the perimeters of n-gon, thereby extending the established theory of Banach’s contraction
principle. This work addresses the properties of such mappings, investigates their
uniqueness and existence of fixed points, and provides conditions under which these
mappings exhibit interesting geometric behaviors. We will also explore the relationship
between these perimetric contractions and ordinary contraction mappings, highlighting their
connections and differences in the context of metric spaces. By introducing the perimetric
contraction of n-gon, this paper contributes to the ongoing research in metric space theory,
extending the applicability of fixed-point theorems to more complex and higher-
dimensional structures.

2. Mapping Contracting Perimeters of n—gon

Definition 2.1. Let (X, d) be a metric space with |[X| > n. We shall say that T: X - X isa
mapping contracting perimeters of n-gon on X if there exists a € [0,1) such that the
inequality

d(Tx;, Txy) + d(Txy, Txz)+ ...+ d(Txn, Tx) < a(d(xy, %) +
d(x3,x3)+ ...+ d(xp, x1)). 2.1
Holds for all n pairwise distinct points x4, X5, X3, ....., X, € X.
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Remark 2.2. Note that the requirement for x4, x5, X3, ....., X, € X to be pairwise distinct is
essential. One can see that otherwise this definition is equivalent to the definition of
contraction mapping.
Proposition 2.3. Mappings contracting perimeters of n-gon are continuous.
Proof. Let (X,d) be a metric space with |[X| = n, T:X - X be a mapping contracting
perimeters of n—gon on X and let x,, be an arbitrary. If x; is an isolated point of X, then it is
clearly T is continuous at x. Therefore it remains to show that for any € > 0 there exist a
6§ > 0 such that

d(Tx,,Tx) < € for all x € X satisfying d(xq,x) <96.
Let e > 0 be an arbitrary. Choose § > 0 be such that 0 < § <

€

(2n-2)a’
Since x, is a accumulation point of, there exist x;, X5, X3, ....., X_p € X with x; # x, #
X3 F * F Xp_p F Xo such that
d(xg,%1) < 8,d(xg,%5) <6,d(xg,%3) <6, veee, d( Xy, Xp—z) < 6.
Now, for all x € X with x # x, satisfying d( xy,x) < §. we have
d(Tx, Tx) < d(Txo,Tx) +d(Tx,Tx;) +d(Txy, Txy) + ... + d(Txp_z, Txg).
By using (2.1) and triangle inequality we have,
d(Txo, Tx) < a(d(xe,x) + d(x,%1) + d(xy, X3) + e oo +d(xp_2,%0))
d(Txe, Tx) < Za(d(xo,x) +d(xg, %) + d(xg, %) + cer e e + d(x,, xn_z))
<2a(6 +6 +6 + ... +6)
<2a(n—1)§8
<2(n-1as
<(2n-2)as

< € and hence the result follows.
Theorem 2.4. Let (X,d), |X| =n, be a complete metric space and let the mapping
T: X — X satisfy the following to conditions:
(i) T™(x) #x forallx € X withm = 2,3,4, ...... ,n — 1such that T(x) # x.
(ii) T is a mapping contracting perimeters of n-gon on X.
Then T has a fixed point. The number of fixed points is at mostn — 1.
Proof. Let xg € X, Txg = x1, Tx1 = X3, oo, TXy = Xpyq, e o . Suppose that x; is
not a fixed point of the mapping T for everyi = 0,1, 2, ........ Let us show that all x; are
different. Since x; is not fixed , then x; # x;,, = Tx;.
By condition (i) If m = 2, then T2(x;) = T(Tx;) = T(Xi41) = Xiy2 # X;.
Ifm =3, then T3(x;) = T(T?x;) = T(Xj42) = Xipg # Xi
Ifm = n—1,then T" (x;) = T(T" 2x;)
=T(T(T">x;))
=T(T(T(T"*x)))

=T(T (T (T ( e e e (T(xQ)))) ...(n — 2 times of T)
T" () = Xigno1 # %
Since, x; is not fixed point forallm = 2, 3,4, ...... ,n — 1 and by the supposition that x;

is not fixed point we have x;,1 # Xj12 = TX;41.
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By condition (i) If m = 2, then T?(x;41) = T(Tx;41) = T(Xj42) = Xjy3 F Xip1-
If m 3, then T3(xp41) = T(T%Xi41) = T(Xiy3) = Xipa # Xig1.

Ifm = n—1,then T" '(Xi41) = Xis14(m-1) # Xit1-
Since x;,; is not fixed point for all m = 2,3,4,.... ,n—1. Therefore
Xiy Xig1r Xig2y vee ven , X;+n—1 are pairwise distinct. Further, set

Po = d(xg,x1) +d(xq,x5) +d(xy, x3) + v e + d(x_q,%0),

p1 = d(xy,x;) +d(xy, x3) +d(xs, x4) + o o + d(xp, x1),

Py = d(xy, x3) +d(x3, x4) +d(xy, X5) + v + d(xpp1,X2),

p3 = d(xs, x4) + d(xy, x5) +d(xs, x6) + v en . + d(xp40,Xx3),

Pn = An, Xpi1) + d(Xny1, Xng2) + d(Xng2, Xpgz) + e + d(Xn4m-1, Xn)-
SINCe X, Xj 41, Xjg2 ) oe o ,Xitn—1 are pairwise distinct by (2.1) we have
P1 < APy, P2 < APgy e e e P S App_iandpy > p; >py > Sy > (2.2)
Suppose that j = n is a minimal natural number such that x; = x; for some i such that
0<i <] - (Tl - 1) Then Xj+1 = xi+1,x]~+2 = xi+2,xj+3 = Xjg3y eee een .,Xj+(n_1) =
Xi+(n—1). Hence p; = p; which contradict to (2.2).
Further, let us show that {x,,} is a Cauchy sequence. It is clear that
d(xy,x2) <o,
d(xz,x3) <p1 < apy,
d(x3, %) Sp, < ap; < @’ py,

d(Xn, Xn41) < Pnog < @™ 'y,

d(xn+1:xn+2) =< Pn <a" Po
By the triangle inequality,

d(xn'xnﬂ)) < d(xn' xn+1) + d(xn+1'xn+2) + d(xn+2:xn+3) + o + d(xn+p—1’xn+p)
< a"lpotatpyt+a™lpy+ oo +a®P2p,= a1 (1+a+a?+
p—1 — n-1(1=a?
wtaP T )py = «a ( — )po.
Since, by the supposition 0 < a <1, then d(xn,xn+p) < gt (;—a) po- Hence

d(x,, xn+p) —>0asn - o for every >0. Thus {x,} is a Cauchy sequence. By
completeness of (X, d) , this sequence has a limit x* € X.
Let us prove that Tx* = x*. By the triangle inequality and by inequality (2.1) we have
dx*Tx*) < d(x*,x,) +d(x, ,Tx*) = d(x*,x,) + d(Tx,_,,Tx")

< d(x",xp) +d(xy , xn41) + d(pgy , Xpg2) + o+ d(Xngio2, X7)
wherei = 1,2,3,...,n.

<d(x",x,) + a(d(pyy, 7)) + Ay, x7) + -+ d(Xpyi_ X))
Since all the terms in the previous sum tend to zero as n — oo, we obtain d(x*, Tx*) = 0.
Suppose that there exist at least n pairwise distinct fixed points xy, x5, X3, ....., X,. Then
Tx, = x1, Txy, = x,,Tx3 = X3, ..., TX,, = Xy, which contradicts to (2.1) .

Remark 2.5. Suppose that under the supposition of the theorem the mapping T has a fixed
point f; which is a limit of some iteration sequence xy, x; = TXy, X, = Txq, ... such that
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x, # fi foralln = 1,2,3,.... Then f; is a unique fixed point. Indeed suppose that T has
another fixed point f,, f3, fa, ..., fu_i suchthat 5, = fi, s # fo, o # f3, s frc1 * fa-

Itisclearthatx, # f,, x, # f3,...,%, # fp_q foralln = 1,2,3, ... Hence we have that
the points f3, f5, f3, fa, -, fn_1 and x,, are n pairwise distinct foralln = 1,2, 3, .... Consider

the ratio
A(Tf1,Tf2 )+d(Tfo,Tfz )+ +d(Tfn—1,Txn )+ d(Txn,Tf1)

R. =
n d(f1 . f2)+d(fz f3 ) ++d(fno1.%n )+ d(%n . f1)
_ d(fuf2)+d(fo.f3)++d(fn—1.Xn+1 )+ d(Xn+1,/1)

T A +d(fefs ) dUno1xn)+ d(nf)
Taking into consideration that d(f,,f3) = 0,d(f5,/2) =0, ....,d(fa_1, Xns1 ) = 0,

d(fr-1,%,) = 0and d(x,4q, f1) = d(f1, f2 ), d(xn, f1 ) = d(fi, f2 ), we obtain R, — 1
asn — oo which contradicts to condition (2.1).

Example 2.6. Let us construct an example of t he mapping T contracting perimeters of n-
gon which has exactly n-1 fixed points. Let X = {xq, %, X3, 0.0, X}, d (X1, x5) =
d(xy,x3) == d(xpx;) =1 andletT:X - X be such that Tx; = x;, Tx, = Xy,
Tx; = x3,...,Tx, = x,.0One can easily see that conditions (i) and (ii) of Theorem 2.4 are
fulfilled.

Example 2.7. Let us show that condition (i) of Theorem 2.4 is necessary. Let X =
{x1, %5, %3, e, X}, d(xg, %) = d(x5,%3) =+ = d(x,,x,) =1 and let T: X > X be
such that Tx; = x,,Tx, = x1,Tx3 = x4, TX4 = X3, ..., TXp_1 = %5, TXy = X,_1. One
can easily see that condition (ii) of Theorem 2.4 is fulfilled but T does not have any fixed
point.
Let (X,d) be a metric space. Then a mapping T: X — X is called a contraction mapping
on X if there exist « € [0,1) such that
d(Tx,Ty) < a(d(x,y)), forallx,y € X. (2.3)
Corollary 2.8. (Banach fixed point theorem) Let (X,d) be a nonempty complete metric
space with a contraction mapping : X = X . Then T admits a unique fixed point.
Proof. For |X| = 1,2 the proof is trivial. Let |X| = n. Suppose that there exist x € X such
that T™x = x for m = n . Consequently

d(x, T" 'x) = d(T™ 'x,x) = d(T" 'x, T(T" 'x) which contradicts to (2.3). Thus
condition (i) of Theorem 2.4 holds. Let x4, x5, X3, ....., X, € X be pairwise distinct. By (2.3)
we obtain d(Tx,, Tx,) < a d(xq,x,),

d(Tx,, Tx3) < a d(x,,x3),

d(Tx,, Tx,) < a d(x,, x,) which immediately implies
condition (ii) of Theorem (2.4). This completes the proof of existence of fixed point.
The uniqueness can be shown in a standard way.
Let (X,d) be a metric space and X4, X, X3, ....., X, € X . We shall say that the points
X3, X3, ..., Xp_q lies between x; and x;,, in the metric space (X, d) if the extremal version
of the triangle inequality
d(xy,xn) = d(xy,x2) + d(x2, %) + d(xy, x3) + d(x3,%,) + -+ d(xq, X5-1) +
d(xp_1, xn) (2.4) holds.
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Example 2.9. Let us construct an example of a mapping T: X — X contracting perimeters
of n- gon that is not contraction mapping for a metric space X with |X| = X,. Let X =

{x*, x4, x5, x5, ..... } and let a be a positive real number. Define a metric d on X as follows:
. ifx=x, Y=Xiy1,i=012,..
=
Y& ifx=x;, y=xj; i+1<)
d(x,y) = ===l

a
=
0, ifx=y
where |.] is the floor function. Then (X, d) is a complete metric space with a single limit
point x*.

2(n-1)a-yizh ifx=x;, y=x*

Y
¥
C
-in
»in
"

(=]
E=Y
=

-
.
L
L
L

X; e e Xp21 ¥psi Xap-y X3y T X

Fig. 1. The points of the space (X, d) with consecutive distances between them.

Define a mapping T: X — X as Tx;, = x;, .4, foralli = 0,1,2,......andm =1,2,...,

n—1Tx" = x*.

Since d(Tx(n—l)imv Tx(n—l)im+1) = d(x(n—l)im!x(n—l)im+1) for all im =0,1,2,.. and

m=1,2,...,n— 1,using (2.3) we see that T is not contraction mapping.

Let us show that inequality (2.1) holds for every n pairwise distinct points from the space

X. Consider the points x; , X;,, X, oo, X5, X" €EXWith 0 < iy < iy < i3 < <lp_g.

Then we have

d(xi, x,) + d(xiz,xis) + ...,+d(xl-n_1,x*) + d(x*,xil) = 2d((xl-1,x*)

=4(n-Da-2 ¥ -2

=

and
d(Tx;,, Tx;,) + d(Txiz,Txis) + ...,+d(Txin_1,Tx*) + d(Tx*,Txil) = 2d((Txi1,Tx*)
i1

= 2d(xi1+1,x*) =4(n—1a -2 Z

c=0

a
o=l
Now we have,

1 14
2(n—1a (1 - (E) ), if iy =(m—1Dp,

2(n - 1)a<1 - (%)p>— o fim==Dp-1,
dGoXi,) =1 2(n—1)a (1 - (%)p) -

=, fin=(-Dp-2

a
2p-

2(n—1a (1 - (%)p> _ 4 ifip=m-Dp-Mn-2).

T p-(n-2)’

wherep = 1,2,3, .... (2.5)
Consider the ratio,
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d(Tx;,, Tx;,) + d(Txiz,Txi3) + ...+ d(Txin_l,Tx*) + d(Tx*,Txil)

i1 d(xil'xiz) + d(xiz,xl3) + ...+ d(xln X ) + d(x*, xl_l)
4(n—1Da-2 Z
= Zln 1J
4n-1a-2 30"
Zln 1J
1 B Z 1] l l =(n— 1 ,
2(n—1)a—2(n—1)a( _(%)p> f 1 ( )p
o - ’ ifii=n-1Dp-1
2(n-1a-2(n- 1) ( )
Ri1 = 1 a f ' ( 1) 2
B )] Ifii =(n— _
2(n-1)a-2(n- 1)a< (;)p)+2pa_2 1 p
1-— 2;%1 > lfl]_:(n_l)p_(n_z)
2n-va-2eli-( et
2n—3 i = ( b
2n — 2’ I'f L= P,
n—1
n '’ fiu=m-1p-1
R~ = < n ) ]
! n+1’ ifiyuy=m-1p-2
(n—2)+2"3
g Su=@-Dp-n-2)
(n—1)+2n3’ ifiy=m-Dp—-(n—-2)

Now, let us consider the points x; , X;,, X, ., X;, € X with 0 < i; < i, < i3 <+ <lp.

Then, we have,
in—1

d(xil,xi2)+d(xi2,xi3)+ ...,+d(xin,xi1) = Zd((xil,xln 2 Z 2[
n— 1

and d(Tx;, Tx;,) + d(Txiz,Txl-3) + ...,+d(Txl-n,TxL-1) = Zd((Txll,Txln)
Zd(x11+1 'an+1)
Zd(xll' xln) Z[d(xll' Xig+1 ) d(xln xln+1)]

in—1

St LR 2(% } 21%0

o d(Txil,Txiz) + d(Txl-z,Txi3) + ...+ d(Txin,Txil)
ftn d(xl-l,xiz) + d(xiz,xi3) + ...+ d(xl-n, xil)
2 Zln— 1 a -2 (L _ L
bl g ]
a
2lz=l

Consider the ratio,

2 Zln— 1

c=iq
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in— a
Zln= '1
bS]
It is to be noted that i, = i; + (n — 1). Therefore

7252 [+

= 2[ J>22[n1]

1
2[ J 2 2 n-— 1
m (2.6)
zln 1 z.zlﬂJ
Now from (2.5), we can write,
2(n—1) g
%' if im=m—Dp,
2(n—1) g
nzp . zpa—1 ) if im=Mm-Dp-1,
d(x; ,x™) = 2(n-1) I 2.7
(i X7) = S nzp a+2pa_2. if im=0m-1Dp-2, @.7)
2(n—1) L
nzp a+ﬁ, ifin=mn—-1Dp—-(n-2).
from above equation (2.7) we get,
d(X,,, x7) < 2(n = Dd (X, X4 41)
= d(x;,x") < 2(n— D)d(x, Xi,4+1)
= d(xy,x,) <d(xg,x") <2(n—1)d(x, X +1)
'n— a c
> o) TS 2(n—1) o (2.8)
2ln-1 2ln-1
Consequently, from (2.6) and (2.8) we have
[ I 4n-5
Riy iy =1- 2(n— 1) T an-4
T
Thus the inequality (2.1) holds for any n pairwise distinct points from X with
__ 4n-5 _ {2n—3 n-1 n_ (n—-2)+2""3 4n—5}
&= e - M= 0 Tt " (n-1)+2n-3 an—4a)

Therefore, T is a perimetric contraction on n- gon in X.
3. Conclusion

The study introduced perimetric contraction mappings on n-gons and established a fixed-
point theorem that generalizes Banach’s classical contraction principle. Celebrated Banach
Fixed Point Theorem can be proved has simple corollary of the theorem established in the
paper. Key outcomes:

a) Mappings contracting perimeters of n-gons are continuous.

b) Under suitable conditions, such mappings possess at most (n — 1) fixed points.
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Remark 2.5: 1f the limit of the iterative sequence x,,x; = Txy,x, = Txq, .... does not
belong to this sequence, then T has unique fixed point.
c) Itis demonstrated that ordinary contractions are subclass of perimetric contractions.
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