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Abstract 

In this paper, fractional holographic dark energy in self-creation theory and Lyra geometry 

have discussed the exact solution of Einstein's field equations for LRS Bianchi type- I 

cosmological model. In order to obtain a determinant solution, special law of variation for 

Hubble’s parameter proposed by Berman (1983) has been considered. For each model, we 

evaluate key dynamical parameters, including the equation of state (EoS) parameter, the 

deceleration parameter and the total energy density parameter of dark energy. Our findings 

indicate that these models describe an accelerated expansion of the universe, with theoretical 

results showing reasonable agreement with observational data.  
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1. Introduction 

The recent observational studies have given evidence for the accelerated expansion of the 

universe [1-5], suggesting the presence of a mysterious form of energy that drives this 

acceleration. This enigmatic force is commonly referred to as "dark energy." Observations 

indicate that over 70 % of the universe is composed of dark energy, which is responsible 

for the negative pressure that accelerates the cosmic expansion, while the remaining 30% 

consists of matter, most of which is dark matter-non-baryonic matter that does not emit or 

interact with electromagnetic radiation. There have been numerous other dark energy 

models proposed, including quintessence [6], phantom [7], quintom [8], tachyon [9], ghost 

[10], K-essence [11], phantom [12], chaplygin gas [13], polytropic gas [14] and holographic 

dark energy (HDE) [15] and many more to explain the accelerated expansion of the 

universe. The current understanding of the universe posits that it is predominantly made up 

of cosmic fluids consisting of dark matter and dark energy, evolving independently. 

A variety of cosmological models have been studied to understand the behavior of dark 

energy and the dynamics of the universe within the framework of modified gravitational 
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theories. Among these, the Self-Creation Theory (SCT) of gravitation, introduced by Barber 

[16], and Lyra Geometry, an extension of Riemannian geometry proposed by Lyra [17], 

have been extensively used in cosmological investigations. In SCT, a variable gravitational 

constant G is considered, which influences the evolution of the universe.  

Lyra geometry modifies the standard Riemannian geometry by introducing a gauge 

function, and as a result, the gravitational dynamics and the structure of space time differ 

from those predicted by general relativity (GR). This framework opens up new possibilities 

for modeling the evolution of the universe and the role of dark energy within it.  

Several studies have been dedicated to exploring cosmological models within these 

frameworks. For instance, Mahanta [18] studied locally rotationally symmetric Bianchi type 

I cosmological model. In the gravitational theory based on Lyra geometry and in the 

presence of a bulk viscous fluid, LRS Bianchi type I cosmological models were studied by 

Pradhan and Pandey [19] and Kandalkar and Samdurkar [20]. While Pradhan et al. [21] 

presented a new class of LRS Bianchi type-I cosmological model in the presence of bulk 

viscous fluid with variable deceleration parameter in the general relativity theory. Hegazy 

and Rahaman [22] studied Bianchi type VI0 cosmological model in the second self-creation 

theory in general relativity and in Lyra geometry. Pawar and Solanke [23] studied 

magnetized anisotropic dark energy models in Barber's second self-creation theory. 

Interacting two-fluid viscous dark energy models in self-creation cosmology was given by 

Chirde and Shekh [24]. Kaluza-Klein cosmological model with bulk viscosity in Barber's 

second self-creation cosmology was given by Kumar and Reddy [25] Reddy and Naidu [26] 

studied Kaluza-Klein cosmological models in self-creation cosmology. Evolution of 

spatially homogeneous and isotropic FRW cosmological model with bulk-viscosity in self-

creation theory of gravitation was analyzed by Katore et al. [27]. Pawar et al. [28] presented 

higher dimensional spherically symmetric string cosmological model with zero mass scalar 

field in Lyra geometry. Samanta and Mishra [29] studied anisotropic cosmological model 

in presence of holographic dark energy and quintessence. Kumawat et al. [30] investigated 

anisotropic Bianchi type VI0 space-Time with barotropic fluid in Saez - Ballester theory of 

gravitation. 

The concept of fractional holographic dark energy (FHDE) was proposed by Trivedi et 

al. [31] and explores a modification of the standard holographic dark energy (HDE) model 

by using fractional calculus. This modification leads to a power-law relationship between 

entropy and area, which is an important feature of the theory. The entropy is expressed as: 





2

2+

= CASh , (1) 

where  is a parameter that modifies the entropy-area relation, resembling the Barrow and 

Tsallis entropies. By applying the holographic inequality, a relationship between the 

cosmological parameters is derived: 
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and the energy density of FHDE is given by: 







32−

= Lf , (3) 

where  is a constant. In the limit where 2= , this gives us the standard HDE energy 

density. The proposed FHDE energy density is then written as: 







32

23

−

= Lcf , (4) 

where c is a free dimensionless )1( parameter say arbitrary parameter, for the remaining 

part of the paper we will consider 12 =c . 

With this in mind, the definition (5) with the Hubble Horizon cutoff 1−= HL  gives 







23

23

−

= Hcf , (5) 

Here we analyze the cosmological evolution at late times in the framework of the FHDE 

model using the Granda–Oliveros (G–O) cutoff.  

( ) 2/1

2
2

1

−
+= HHL  , (6) 

where 1 and 2 are arbitrary dimensionless parameters. Here, by considering Hubble 

horizon described in Equation (2) as a candidate for Granda-Oliveros IR cutoff, the FHDE 

density from Equation(6) comes out to be 

( ) 



 2

23

2
2

13

−

+= HHf
 . (7) 

The above discussion and investigations, we consider in this paper the fractional 

holographic dark energy model in LRS Bianchi type- I space-time in SCT and in gravity theory 

based on Lyra geometry. This work is organized as follows: In section 2, the Einstein’s field 

equations in SCT and in Lyra geometry are derived with the help of a LRS Bianchi type- I 

space time metric in the presence of two minimally A interacting fields: dark matter and 

fractional holographic dark energy. Section 3, is devoted to the solution of Einstein’s field 

equations in SCT and in Lyra geometry equations with the help of a special law of variation 

for Hubble's parameter proposed by Berman [32] and using physically relevant conditions. 

In section 4, kinematical parameters of the model are computed and discussed. The last 

section contains some concluding remarks. 

 

2. The Metric and Field Equations 

 

The spatially homogeneous LRS Bianchi type- 𝐼 space-time as 

][ 2222222 dzdyBdxAdtds +++−= , (8) 

where BA, are functions of cosmic time t only.  

The Einstein’s field equations in SCT and in Lyra geometry are given as: 

 

( )ijij
k
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and  
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□ ( )TT += 



3

8
. (10) 

Here □ k
k
;
; =  is invariant d'Alembertian and T is the trace of the energy momentum tensor 

describing all non-gravitational and non-scalar field matter and energy. Here   is a 

coupling constant to be determined from experiments. The Barber's second theory 

approaches the standard general relativity in every respect. The scalar field   will be 

considered as a function of t  only. 

In equation (9), i is the timelike displacement vector and takes the form: 

( )0,0,0),(ti  = . (11) 

ijT and ijT are energy momentum tensors for matter and holographic dark energy, 

respectively. Which are defined as 

.)(

,

fijjiffij

jimij

pguupT

uuT

++=

=




 (12) 

Here m and f  are the energy densities of matter and barrow holographic dark energy 

and fp is the pressure of holographic dark energy. 

Also, the energy conservation equation is 

( ijT + 0); =jijT . (13) 

The field equation (9), for the metric equation (8) with the help of equations (10), (12) and 

(12), can be written as 

fp
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The energy conservation equation (13) for matter and dark energy is given as 
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where overhead dot stands for ordinary differentiation with respect to 𝑡. 

The continuity equation of the matter is 
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The continuity equation of the holographic dark energy is 
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Using equations (19) and (20) and the barotropic equation of state fffp = , the 

equation of state Barrow HDE parameter is obtained as 

( )( )
( )HHH

HHH
f 



2
2

1
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
 . (21) 

Now the average scale factor and the volume of the universe are defined as 

( )3
1

2)( ABta = . (22) 

The spatial volume   
23 )( ABtaV == . (23) 

The directional Hubble parameters and average Hubble parameter 
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The dynamical scalar expansion   and shear scalar 2 are 
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The average anisotropic parameter is  
23
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Here iH represents the directional Hubble parameters )3,2,1( =i  

The deceleration parameter is 
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3. Solution of the Field Equations 

 

Now equations (14)-(17) are a system of five independent equations in six unknowns 

fmBA  ,,,, and fp . Hence, the following physically reasonable conditions are required 

to obtain a determinate solution (with over determinacy resolved by the field equations). 

(i) 

( ) 03 =−+=+ ffm pTT  . (29) 

which physically corresponds the vanishing of trace of both matter and dark energy tensors. 

This is analogous to the disordered radiation condition of general relativity. 

(ii) Consider the relation between H and a, which was proposed by Berman [32]. 

nnaH

1−

= . 
(30) 



854 Fractional Holographic Dark Energy 

 

 

where 0n  are constants. 

From equations (28) and (30) leads to 

n
q

1
1+−= . (31) 

Now, using equations (30) and (31), the solution of equation (28) gives the law of variation 

of the average scale factor of the form 

( ) 0,)( += nctta
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Now, from equations (14) and (15)  yields 
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On integration gives, 
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where 1c is constant of integration. 

Substituting equation (22) into equation (34) and integrating again leads to 
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The metric functions A  and B  in terms of average scale factor )(ta  are given by 
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Now, using equation (32) in equation (35) yields 
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4. Kinematical Parameters of the Model 

 

In this section, the kinematical parameters of model (8) are evaluated, as they play a 

significant role in the discussion of the cosmological model of the universe. 

 

The spatial volume of the metric is 

( ) ( ) n
cttaV

33 −
+== . (37) 

The directional and average Hubble parameter  
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And 

( )ct
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The dynamical scalar expansion   and shear scalar 2  are 
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The average anisotropic parameter is 
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Applying the conservation condition for the left-hand side of equation (9) yields 
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After integrating equation (43) gives 
nct 3

0 )( −+=  . (44) 

From equations (17) and (29), the scalar field   satisfies the equation 
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Using equation (40) in equation (35), the pressure of FHDE is given by 
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Fig. 1. Plot of pressure )( fp  of FHDE vs time (t). 
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Using equations (43), (44) and (49) in equation (13), the energy density of matter is 
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Fig. 2. Plot of energy density ( m ) of matter vs time (t). 

 

Using equation (39) in equation (7), the energy density of FHDE is given by 

( )






2

23

2

2
2

13

−















+

−
=

ct

nn
f


. (48) 

The density f of fractional HDE model in Granda-Oliveros cut-off increases uniformly 

with increasing red-shift at all times. 

 

 
Fig. 3. Plot of energy density ( f ) of Fractional holographic dark energy vs time (t). 
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The Figs. 2 and 3 represent the plots of energy density ( m ) of matter and FHDE with 

the Granda-Oliveros cutoff decreases respectively. It is observed that both m  and 𝜌𝑓 are 

positive and decrease as universe evolves. 

Using equations (43), (44) and (49) in equation (15), the EoS parameter for FHDE is given 

by 
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ct
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Equation (49) shows the f of fractional HDE model in Granda-Oliveros  cut-off  

gives -1, it is typically depend upon the vales of 1  and 2 associated with dark energy 

or a cosmological constant, which leads to the accelerated expansion of the universe. 

 

 
Fig. 4. Plot of EoS parameter ( f ) of Fractional HDE vs time (t). 

 

The above figure shows the EoS parameter of the fractional HDE model with the 

Granda–Oliveros cut-off approaching –1, indicating that the behavior of the field 

resembles that of a cosmological constant, characterized by constant energy density and 

negative pressure. 

Matter density parameter m and the holographic dark energy parameter f are given 

by 

23H

m
m


= and 

23H

f
f


= , 

 
(50) 

Using equations (39), (46), (47) and (50), the overall density parameter is  
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
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n
fm ct

c 
. (51) 

Therefore, the total energy density parameter ( ) of Fractional HDE model in Granda-

Oliveros cut-off as a function of time 𝑡 suggests that the universe could initially have a 

higher density (indicating a closed or high-density universe) but asymptotically 

approaches a flat universe as time progresses. This evolution could reflect the dominance 
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of different energy components over time (such as matter, radiation, and dark energy), 

with the universe eventually stabilizing toward a flat state. 

 

5. Conclusion 

 

The LRS Bianchi type-I cosmological model was studied within the framework of FHDE 

in SCT and Lyra geometry. Initially, the model exhibits a point singularity at 0=t , where 

the spatial volume 0→V   and physical parameters such as the Hubble parameter H , 

energy densities fm  ,  and pressure fp are infinite. As time progresses, V increases 

while these parameters decrease and tend to zero as →t , indicating an expanding 

universe. The anisotropy parameter   is zero at 0=t , showing isotropy initially, but the 

ratio 
2

2




does not vanish at late times, implying persistent anisotropy. The fractional 

holographic dark energy density f decreases over time, and the average density parameter 

approaches a constant, consistent with a flat universe supported by observations. The EoS 

parameter f evolves between 01 − f , indicating quintessence-like behavior driving 

accelerated expansion. As 1−→f , the model mimics a cosmological constant; as 

0→f , it suggests a possible transition from dark energy to matter domination. 
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