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Abstract 

The Bianchi III anisotropic cosmological model has been examined within the context of f (T) 

gravity, where f (T) represents Teleparallel gravity. The Main objective is to investigate the 

instability of the universe by analyzing the derivative of the pressure function with respect to 

the matter density function. The accelerated expansion of the universe has been examined. 

The equation of state (EOS) is found to vary with time. To accomplish this derive exact 

solutions for the space-time field equations in an exponential form and consider a power-law 

approach with a non-dissipative anisotropic fluid distribution. By analyzing pressures in the 

spatial directions, obtained a set of energy condition equations, which are then used to 

formulate the Dark Energy equations. 
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1. Introduction 

 

For centuries, human curiosity has grown regarding the many mysteries of the Universe. 

The large-scale structure of the Universe is regarded as a fascinating area of study by 

researchers. Although substantial intellectual work has already been undertaken, the exact 

physical conditions at the Universe’s earliest stages remain unknown. According to 

previous findings, it has been clearly demonstrated that stable topological defects were 

formed during the initial phase of the Universe. As suggested by Kibble et al. [1], the 

spontaneous breaking of discrete symmetry leads to the creation of topological defects. 

Among the significant types of topological defects are monopoles, domain walls, and 

cosmic strings of which domain walls are thought to play an especially active role in the 

formation of galaxies within the Universe. 
Vilenkin [2] and Goetz [3] proposed that galaxies can form with the help of domain 

walls following the recombination of matter and radiation during a phase transition. One of 
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the most significant phase transitions is the conversion from quark-gluon plasma to hadrons 

gas, which occurs at a cosmic temperature of approximately 200 MeV. It is speculated that 

at such high temperatures, the color charge becomes screened - a state referred to as the 

quark-gluon plasma (QGP). Observations suggest a strong interaction between the electric 

charge and the color charges of quarks and gluons, and that these can interchangeably 

influence each other. 

The Universe is expanding and accelerating - a phenomenon well established by Riess 

et al. [4] and Perlmutter et al. [5]. This accelerating expansion of the Universe can be 

described using modified theories of gravity and dark energy (DE). Among these, one 

particularly intriguing theory offers an explanation for the current acceleration without 

invoking DE. Einstein [6] introduced a reformulation of gravitational theory known as 

Teleparallel Gravity (TG), specifically described as f (T) gravity. This is not an alternative 

to general relativity but rather a different formulation, in which gravity arises not from 

space-time curvature but from torsion. Böhmer et al. [7] investigated spherically symmetric 

solutions and the nature of relativistic stars within the f (T) framework. Setare et al. [8] 

explored real-valued and power-law solutions in f (T) gravity. The distinction between 

ΛCDM and f (T) gravity, based on symmetry considerations, was derived by Dong et al. 

[9]. The generalized second law of thermodynamics within f (T) gravity was discussed by 

Bamba [10]. Additionally, Setare et al. [11] examined finite-time future singularities in f 

(T) gravity, both with and without viscosity. Astashenok [12] explored effective DE models 

incorporating cosmological bounce scenarios within the f (T) framework. 

Furthermore, it has been shown that a combination of two f (T) models can replicate 

outcomes equivalent to those predicted by General Relativity during the pre-inflationary 

phase of the Universe. Relativistic effects within the context of f (T) gravity have been 

addressed by Tsung et al. [13]. Chawla et al. [14] examined Bianchi Type I models in the 

presence of a scattering fluid for time-dependent deceleration parameters. Chirde et al. [15] 

studied a spatially homogeneous and isotropic FRW cosmological model with a viscous 

baratropic fluid in the f (T) framework. This line of research is considered highly motivating 

for the study of various cosmological models, as experimental results appear to align closely 

with those predicted by General Relativity, particularly in relation to flat spatial sections. 

The homogeneous Bianchi model is viewed as one of the most simplified representations 

of the Universe. The evolution of the early Universe plays a significant role in 

understanding its overall dynamics. Katore et al. [16] analyzed the FRW metric under a 

constant deceleration parameter and found that domain walls disappeared over time, 

suggesting that the Universe could have existed during an earlier epoch with observable 

stability. The study of bulk viscous Bianchi-type cosmological models in f (T) gravity has 

been further explored by Agrawal and Nile [17]. Numerous investigations have been 

conducted in f (T) gravity, including studies on late-time cosmic acceleration [18–21], 

inflationary models [22], and analyses involving observational constraints, dynamical 

systems [23–25], and structure formation often assuming f (T) follows a power-law form. 

In Section 2, we derive the equations of motion for Teleparallel gravity f (T). Notably, 

when f (T) = (–T)ⁿ, the theory exhibits dynamics equivalent to those of General Relativity. 
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In Section 3, we formulate the field equations within the f (T) gravity framework, 

considering the pressures along the spatial directions x, y, and z. In Section 4, we analyze 

various cosmological solutions within f (T) gravity. These solutions demonstrate remarkable 

cosmological behavior, with a wide class of f (T) models contributing to late-time 

acceleration. In Section 5, we discuss the energy conditions related to cosmic expansion. In 

Section 6, we examine the standard stability function of the model. Finally, in Section 7, 

we summarized our findings and discuss their broader implications. 

 

2. Equation of Motion for Teleparallel Gravity f (T) 

 

The theory of Teleparallel gravity, along with the derivation of its corresponding field 

equations, has been presented. In this paper, Latin indices (as subscripts or superscripts) are 

used to denote components of the tetrad field, while Greek symbols represent space-time 

coordinates. The line element for a general space-time metric is given as follows: 

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣,                  (2.1) 

one can transform this line element in Minkowski’s description; the respective tetrads are 

as follows: 

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = 𝜂𝑖𝑗𝜃𝑖𝜃𝑗 , 𝑑𝑥𝜇 = 𝑒𝑖
µ
𝜃𝑖 , and 𝜃𝑖 = 𝑒𝜇

𝑖 𝑑𝑥𝜇 ,           (2.2) 

here Minkowski space time metric is 𝜂𝑖𝑗 and 𝜂𝑖𝑗 = 𝑑𝑖𝑎𝑔(1, −1, −1, −1) and 

𝑒𝑖
µ
𝑒𝑣

𝑖 = 𝛿𝑣
𝜇

𝑜𝑟 𝑒𝑖
µ
𝑒µ

𝑗
= 𝛿𝑖

𝑗
 ,                 (2.3) 

and  √−𝑔 = 𝑑𝑒𝑡[𝑒𝜇
𝑖 ] = 𝑎, is the root of metric determinant. 

The Weitzen-bocks connection of components for a manifold having Riemann tensor 

part deprived of torsion term is null and where only non-zero torsion terms exist which are 

defined as:  

𝛤𝜇𝑣
𝛼 = 𝑒𝑖

𝛼𝜕𝑣𝑒𝜇
𝑖 = −𝑒µ

𝑖 𝜕𝑣𝑒𝑖
𝛼  ,                (2.4) 

this is with zero curvature yet non zero torsion. So, one may describe various torsion tensors 

components as: 

𝑇𝜇𝑣
𝛼 = 𝛤𝜇𝑣

𝛼 − 𝛤𝑣𝜇
𝛼 = 𝑒𝑖

𝛼(𝜕µ𝑒𝑣
𝑖 − 𝜕µ𝑒µ

𝑖 ).              (2.5) 

Con-Tensor is a space time tensor which is a difference between the Weitzen-bock 

connections and Levi-Civita are given by: 

𝐾𝛼
𝜇𝑣

= (−
1

2
) (𝑇𝜇𝑣

𝛼 + 𝑇𝑣𝜇
𝛼 − 𝑇𝛼

µ𝑣
).              (2.6) 

Now another new tensor 𝑆𝛼
µ𝑣

is defined from the components of the torsion and con-torsion 

tensor as:  

𝑆𝛼
µ𝑣

= (
1

2
) (𝐾𝜇𝑣

𝛼 + 𝛿𝛼
𝜇

𝑇𝛽𝑣
𝛽 − 𝛿𝛼

𝑣𝑇𝛽
𝛽𝜇

,               (2.7)   

and  

𝑇 = 𝑇𝜇𝑣
𝛼 𝑆𝛼

µ𝑣
 , or  𝑇 =

1

4
 𝑇𝜌𝜇𝜐 𝑇𝜌𝜇𝜐 + 

1

2
 𝑇𝜌𝜇𝜐 𝑇𝜐𝜇𝜌 − 𝑇   𝜌𝜇

𝜌
 𝑇      𝜐

𝜐𝜇
 ,           (2.8) 

here T is a torsion scalar. 

Define the Teleparallel i.e., 𝑓(𝑇) theory as follows: 

𝑆 = ∫[𝑓(𝑇) + 𝐿𝑚𝑎𝑡𝑡𝑒𝑟]𝑎𝑑4𝑥 ,               (2.9) 

here  𝑓(𝑇)  is an algebraic function of torsion scalar T with respect to tetrads for 

𝑓(𝑇) gravity the equation of motion is given as follows: 
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4[𝑎−1𝜕𝜇(𝑎𝑆𝑖
𝜇𝜐

) − ℎ𝑖
𝜆𝑇 𝜇𝜆

𝜌
𝑆𝜌

𝜐𝜇
 ]𝑓𝑇 +  4𝑆𝑖

𝜇𝜐
𝜕𝜇(𝑇)𝑓𝑇𝑇 − ℎ𝑖

𝜐𝑓(𝑇) =  4𝜋ℎ𝑖
𝜌

𝑇 𝜌
𝜐 ,              (2.10)  

here 𝑆𝑖
𝜇𝜐

=  ℎ𝑖
𝜌

𝑆𝜌
𝜇𝜐

 , 𝑓𝑇 =
𝑑𝑓

𝑑𝑇
 , 𝑓𝑇𝑇 =  

𝑑2𝑓

𝑑𝑇2 , 𝑎 =  √−𝑔 ,  

𝑇𝜇
𝑣  is energy momentum tensor. In terms of tetrads and their partial derivatives above 

equation of motion appears different from Einstein’s equation, whereas for the value 

𝑓(𝑇) =  (−𝑇)𝑛 above equation behaves dynamically same as General Relativity. 

 

3. Basic Equations 

 

Assume Bianchi III type metric as: 

𝑑𝑠2 =  𝑑𝑡2 − 𝐷2𝑑𝑥2 − 𝐸2𝑒−2𝛼𝑥 𝑑𝑦2 − 𝐹2𝑑𝑧2,                    (3.1) 

here D, E, and F are the cosmic time functions and α is a constant.  

Consider the matter energy momentum tensor as: 

𝑇 𝜌
𝜐 = 𝑑𝑖𝑎𝑔(−𝑝𝑥, −𝑝𝑦, −𝑝𝑧, 𝜌𝑀) ,                                      (3.2) 

here 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 are defined the pressures along spatial directions x, y, z. 

𝑒 𝜌
𝜇

= 𝑑𝑖𝑎𝑔(𝐷, e−αx𝐸, 𝐹, 1) , 𝑎 =  √−𝑔 =  e−αx 𝐷𝐸𝐹 .             (3.3) 

Substitute the value in correspondingly value in torsion tensor tetrad (2.5), the contortion 

tensor (2.6) and super-potential tensor 𝑆𝜌
𝜇𝜐

 (2.7) obtained the non-vanishing components of 

torsion tensor from (2.5) as: 

𝑇14
1 = −

𝐷̇

𝐷
, 𝑇24

2 = −
𝐸̇

𝐸
, 𝑇34

3 = −
𝐹̇

𝐹
, 𝑇41

1 =
𝐷̇

𝐷
, 𝑇42

2 =
𝐸̇

𝐸
, 𝑇43

3 =
𝐹̇

𝐹
 .              (3.4) 

The non-vanishing components of super-potential tensor from (2.7) as: 

𝑆1
14 = −

1

2
(

𝐸̇

𝐸
+

𝐹̇

𝐹
) , 𝑆1

41 =
1

2
(

𝐸̇

𝐸
+

𝐹̇

𝐹
) , 𝑆2

24 = −
1

2
(

𝐷̇

𝐷
+

𝐹̇

𝐹
) , 𝑆2

24 =
1

2
(

𝐷̇

𝐷
+

𝐹̇

𝐹
) , 

 𝑆3
34 = −

1

2
(

𝐷̇

𝐷
+

𝐸̇

𝐸
) , 𝑆3

43 =
1

2
(

𝐷̇

𝐷
+

𝐸̇

𝐸
) , 𝑆1

22 =
𝛼

2𝐷2 ,              (3.5) 

using these values in torsion scalar (2.8) obtained as: 

𝑇 = −2 (
𝐷̇𝐸̇

𝐷𝐸
+

𝐷̇𝐹̇

𝐷𝐹
+

𝐸̇𝐹̇

𝐸𝐹
) ,                            (3.6) 

using these values in the equations of motion (2.10) yields as: 

𝑓 + 4𝑓𝑇 [
𝐷̇𝐸̇

𝐷𝐸
+

𝐷̇𝐹̇

𝐷𝐹
+

𝐸̇𝐹̇

𝐸𝐹
 −

𝛼2

2𝐷2]  =  16𝜋𝜌𝑀 ,                (3.7) 

𝑓 + 2𝑓𝑇 [
𝐸̈

𝐸
+

𝐹̈

𝐹
+ 

𝐷̇𝐸̇

𝐷𝐸
+

𝐷̇𝐹̇

𝐷𝐹
+ 2

𝐸̇𝐹̇

𝐸𝐹
 ] + 2𝑇̇𝑓𝑇𝑇 [

𝐸̇

𝐸
+

𝐹̇

𝐹
 ]  =  −16𝜋𝑝𝑥 ,             (3.8) 

𝑓 + 2𝑓𝑇 [
𝐷̈

𝐷
 +

𝐹̈

𝐹
+ 

𝐷̇𝐸̇

𝐷𝐸
+ 2

𝐷̇𝐹̇

𝐷𝐹
+

𝐸̇𝐹̇

𝐸𝐹
] + 2𝑇̇𝑓𝑇𝑇 [

𝐷̇

𝐷
+

𝐹̇

𝐹
 ]  =  −16𝜋𝑝𝑦 ,             (3.9) 

𝑓 + 2𝑓𝑇 [
𝐷̈

𝐷
 +

𝐸̈

𝐸
+  2

𝐷̇𝐸̇

𝐷𝐸
+

𝐷̇𝐹̇

𝐷𝐹
+

𝐸̇𝐹̇

𝐸𝐹
−

𝛼2

𝐷2] + 2𝑇̇𝑓𝑇𝑇 [
𝐷̇

𝐷
+

𝐸̇

𝐸
 ]  =  −16𝜋𝑝𝑧 ,             (3.10) 

𝛼2

2𝐷2 [  (
𝐷̇

𝐷
−

𝐸̇

𝐸
) 𝑓𝑇 − 𝑇̇𝑓𝑇𝑇] = 0 ,                (3.11) 

𝛼 [
𝐷̇

𝐷
−

𝐸̇

𝐸
 ] 𝑓𝑇 = 0 .               (3.12) 

 

4. Solution of the Field Equation 

 

The solution of Bianchi III type has observed complications. The complication has occurred 

from the constraint (3.11) and (3.12), because the Eq. (3.12) as:  

𝛼 [
𝐷̇

𝐷
−

𝐸̇

𝐸
 ] 𝑓𝑇 = 0 ,  
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𝐷̇

𝐷
=

𝐸̇

𝐸
 𝑠𝑜 𝐸 = 𝑚𝐷, and 𝑓𝑇 ≠ 0 ,                (4.1) 

using this condition in Eq.  
𝛼2

2𝐷2 [  (
𝐷̇

𝐷
−

𝐸̇

𝐸
) 𝑓𝑇 − 𝑇̇𝑓𝑇𝑇] = 0 ,     

𝑇̇𝑓𝑇𝑇 = 0 ,  this implies that either, 

𝑇̇ = 0 𝑜𝑟 𝑓𝑇𝑇 = 0.                  (4.2) 

Case I: If  𝑇̇ = 0 , and 𝑓𝑇𝑇 ≠ 0, then 

so 𝑇 = 𝐾,                  (4.3) 

here K is a constant.  

Using this relation in torsion scalar (3.6) obtained as: 

𝐾 =  (
𝐷̇2

𝐷2 + 2
𝐷̇𝐹̇

𝐷𝐹
) ,                  (4.4) 

consider 𝐷 = 𝐹𝑟,                  (4.5) 

using D in Eq. (4.4) yields as: 

𝐹 =  𝑐1 𝑒
(±√

𝐾

𝑟(𝑟+2)
 𝑡)

 , for 𝑟 >  0 𝑎𝑛𝑑 𝑟 < −2,              (4.6) 

here 𝑐1 is a constant.   

Taken +ve sign in Eq. (4.6) and using F in Eq. (4.5) and (4.1) obtained as:  

𝐹 =  𝑐1 𝑒
(√

𝐾

𝑟(𝑟+2)
 𝑡)

 , 𝐷 =  𝑐1
𝑟 𝑒

(𝑟√
𝐾

𝑟(𝑟+2)
 𝑡)

, and 𝐸 =  𝑚𝑐1
𝑟 𝑒

(𝑟√
𝐾

𝑟(𝑟+2)
 𝑡)

,            (4.7) 

 assume that 𝜉 = √
𝐾

𝑟(𝑟+2)
 ,  

𝐷 = 𝑐1
𝑟  𝑒𝑟 𝜉𝑡 , 𝐸 =  𝑚𝑐1

𝑟 𝑒𝑟 𝜉𝑡 , 𝐹 =  𝑐1 𝑒𝜉𝑡 .                           (4.8) 

Evaluate the values from Eq. (4.8) as: 
𝐷̇

𝐷
=

𝐸̇

𝐸
= 𝑟𝜉 ,

𝐹̇

𝐹
=  𝜉 , and 

𝐷̈

𝐷
=

𝐸̈

𝐸
= 𝑟2𝜉2 ,

𝐹̈

𝐹
 =  𝜉2.               (4.9) 

Consider 𝑓(𝑇) =  (−𝑇)𝑛, and 𝑓𝑇 =  𝑛(−𝑇)𝑛−1.             (4.10) 

Rest energy density:  

Using the values of D, E, and F from Eq. (4.8) and f (T) from Eq. (4.8) in the Eq. (3.7)   

obtained as: 

𝜌𝑀 =  
1

16𝜋
  [−𝐾 + 4𝑛 (𝑟2𝜉2 + 2𝑟𝜉2 −

𝛼2

2𝑐1
2𝑟 𝑒−2𝑟𝜉𝑡)].             (4.11) 

 

 
Fig. 1. Energy density with time. 
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As illustrated in Fig. 1, the energy density decreases over time, indicating that the 

Universe had a higher density in its early stages, which diminishes as it, continues to 

expand. 

 

Pressure P: 

Using the values of D, E, and F from Eq. (4.8) and f (T) from Eq. (4.8) in the Eqn’s (3.8), 

(3.9), and (3.10) found as: 

𝑝𝑥 =  
−1

16𝜋
  [−𝐾 + 2𝑛(2𝑟2𝜉2 + 3𝑟𝜉2 + 𝜉2)] ,            (4.12) 

𝑝𝑦 =  
−1

16𝜋
  [−𝐾 + 2𝑛(2𝑟2𝜉2 + 3𝑟𝜉2 + 𝜉2)],            (4.13) 

𝑝𝑧 =  
−1

16𝜋
  [−𝐾 + 2𝑛 (4𝑟2𝜉2 + 2𝑟𝜉2 −

𝛼2

𝑐1
2𝑟 𝑒−2𝑟𝜉𝑡)].           (4.14) 

 
Fig. 2. Variation of pressure against time. 

 

Equations (4.12) and (4.13) show that the pressure along the spatial directions px and py 

remains constant, indicating no directional change in pressure along the x and y axes. As 

illustrated in Fig. 2, pz increases with time, representing anisotropic pressure along the z-

axis. 

 

Spatial volume: 

𝑉 =  √−𝑔  , 

𝑉 =  𝐷𝐸𝐹 𝑒−𝛼𝑥 ,               (4.15) 

using the values of D, E, and F from Eq. (4.8) yield as: 

𝑉 =  𝑐1
(2𝑟+1) 𝑒((2𝑟+1)𝜉𝑡−𝛼𝑥).             (4.16) 

 

As shown in Fig. 3, the spatial volume decreases over time, indicating that the Universe is 

contracting rather than expanding a scenario commonly referred to as the Big Crunch. 
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Fig. 3. Change in volume with time. 

Average scale factor:  

 𝐻 =
1

3
[

𝐷̇

𝐷
+

𝐸̇

𝐸
+

𝐹̇

𝐹
] ,               (4.17) 

using the values of D, E, and F from Eq. (4.8) occurred as: 

𝐻 =
(2𝑟+1)𝜉

3
 .               (4.18) 

Since 𝜉 is constant in Equation (4.18), the average scale factor also remains constant, 

indicating that the Universe is neither expanding nor contracting. 

Expansion tensor:  

 𝜃 =  𝑈𝑗
𝑖 + 𝑈𝑖𝛤𝑘𝑖

𝑖  , 

 𝜃 =  [
𝐷̇

𝐷
+

𝐸̇

𝐸
+

𝐹̇

𝐹
] = 3𝐻,              (4.19) 

using the values of H from Eq. (4.15) found as: 

 𝜃 =  (2𝑟 + 1)𝜉.                 (4.20) 

Since 𝜉 is constant in Equation (4.20), the expansion tensor also remains constant, 

signifying a static Universe. 

 

Anisotropic parameter: 

𝐴𝑚 =
1

3
∑ (

𝐻𝑖−𝐻

𝐻
)

2

,3
𝑖=1          

𝐴𝑚 =
1

27𝐻2  [(
2𝐷̇

𝐷
−

𝐸̇

𝐸
−

𝐹̇

𝐹
)

2

+ (
2𝐸̇

𝐸
−

𝐷̇

𝐷
−

𝐹̇

𝐹
)

2

+ (
2𝐹̇

𝐹
 −

𝐷̇

𝐷
−

𝐸̇

𝐸
)

2

] ,           (4.21) 

using the values of D, E, and F from Eq. (4.8) and H from Eq. (4.18) got as: 

𝐴𝑚 =
2(𝑟−1)2

(2𝑟+1)2 .               (4.22) 

Since 𝑟 is constant in Equation (4.22), the anisotropic parameter also remains constant, 

indicating that the Universe is isotropic. 
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Shear scalar:  

𝜎2 =
3

2
𝐻2𝐴𝑚 ,                 (4.23) 

using the values of H from Eq. (4.18) and 𝐴𝑚 from Eq. (4.22) obtained as: 

 σ2 =
1

3
 𝜉2(𝑟 − 1)2.                  (4.24) 

Since r and ξ are constant in Equation (4.24), the shear scalar also remains constant, 

indicating that the Universe is isotropic. 

 

Deceleration parameter: 

Akarsu and Dereli [26] suggested a deceleration parameter in linear time with a negative 

slope. 

𝑞 = −
𝑅̈𝑅

𝑅̇2 = −1 +
𝑑

𝑑𝑡
(

1

𝐻
) .               (4.25) 

Using the values of H from Eq. (4.15) yielded as: 

𝑞 = −1,                 (4.26) 

 

A negative value of the deceleration parameter (𝑞) indicates that the expansion of the 

Universe is accelerating. 

When, using the values of 𝜃 from Eq. (4.20) and the values of 𝜎 from Eq. (4.24) obtained 

as: 

 𝑙𝑖𝑚
𝑡→∞ 

𝜎

𝜃
=  

1

√3

(𝑟−1)

(2𝑟+1)
  ≠ 0.                              (4.27) 

Equation (4.27) indicates that the model is anisotropic.  

 

Case II: If 𝑇̇ ≠ 0 , and 𝑓𝑇𝑇 = 0 , then 

𝑓𝑇 = 𝐾1, and 𝑓(𝑇) = 𝐾1𝑇 + 𝐾2.                 (4.28) 

Consider the power solution as: 

𝐷 = 𝐸 =   𝐷0 𝑡𝑙 , 𝐹 =  𝐹0 𝑡𝑚 ,               (4.29) 

here l, m, n and 𝐷0, 𝐸0, 𝐹0 are constants.  

 

Evaluate the values from Eq. (4.29) as: 
𝐷̇

𝐷
=

𝐸̇

𝐸
=

𝑙

𝑡
,

𝐹̇

𝐹
=

𝑚

𝑡
 , and  

𝐷̈

𝐷
=

𝐸̈

𝐸
=

𝑙(𝑙−1)

𝑡2  ,
𝐹̈

𝐹
 =  

𝑚(𝑚−1)

𝑡2  .    

Using these relations in torsion scalar Eq. (2.8) found as: 

𝑇 =  −2 (
𝑙2

𝑡2 + 
2𝑚𝑙

𝑡2 ).                (4.30) 

So, it is clear that the Torsion scalar is a function of cosmic time. 

 

Rest energy density:  

Using the values of D, E, and F from Eq. (4.29) and f (T) from Eq. (4.28) into the Eq. (3.7) 

occurred as: 

𝜌𝑀 =  
1

16𝜋
  [𝐾2 + 𝐾1 (

2𝑙2

𝑡2 +
4𝑙𝑚

𝑡2 −
2𝛼2𝑡−2𝑙

𝐷0
2 )] .               (4.31) 

As shown in Fig. 4, the energy density decreases over time, indicating that the Universe is 

expanding. 
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Fig. 4. Change in energy density with time. 

 

Pressure: 

Using the values of D, E, and F from Eq. (4.29) and f (T) from Eq. (4.28) in the Eq. (3.8), 

(3.9), and (3.10) obtained as: 

𝑝𝑥 =  
−1

16𝜋
  [𝐾2 + 𝐾1 (

2𝑙(𝑙−1)

𝑡2 +
2𝑚(𝑚−1)

𝑡2 +
2𝑙𝑚

𝑡2 )] ,             (4.32) 

𝑝𝑦 =  
−1

16𝜋
  [𝐾2 + 𝐾1 (

2𝑙(𝑙−1)

𝑡2 +
2𝑚(𝑚−1)

𝑡2 +
2𝑙𝑚

𝑡2 )] ,             (4.33) 

 𝑝𝑧 =  
−1

16𝜋
  [𝐾2 + 𝐾1 (

4𝑙(𝑙−1)

𝑡2 +
2𝑙2

𝑡2 −
𝛼2𝑡−2𝑙

𝐷0
2 )].            (4.34) 

 

 
Fig. 5. Pressure along the spatial direction with time. 

 

As illustrated in Fig. 5, the pressure along the spatial directions x, y and z decrease over 

time, indicating isotropic behaviour and supporting a dust-filled model of the Universe.  



830 Cosmological Instability in Expanding Universes 

 

Spatial volume: 

Using the values of D, E, and F from Eq. (4.29) into the Eq. (4.15) found as: 

𝑉 =  𝐷0
2  𝐹0 𝑡2𝑙+𝑚 𝑒−𝛼𝑥 .              (4.35) 

 
Fig. 6. Change in spatial volume with time 

 

As shown in Fig. 6, the spatial volume increases over time, indicating that the Universe is 

undergoing continuous expansion. 

 

Average scale factor:   

Using the values of D, E, and F from Eq. (4.29) into the Eq. (4.14) occurred as: 

𝐻 =
1

3
 (

(2𝑙+𝑚)

𝑡
 ).                (4.36) 

 
Fig. 7. Variation of Hubble parameter with time. 

 

As shown in Fig. 7, the average scale factor decreases over time, indicating a static 

Universe. 
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Expansion tensor:  

Using the values of H from Eq. (4.36) into the Eq. (4.19) found as: 

 𝜃 =  
(2𝑙+𝑚)

𝑡
 .                   (4.37) 

 
Fig. 8. Change in expansion tensor with time. 

 

As shown in Fig. 8, the expansion tensor decreases over time, suggesting a transition 

towards a static Universe. 

 

Anisotropic parameter: 

Using the values of D, E, and F from Eq. (4.29) and H from Eq. (4.36) into the Eq. (4.21) 

occurred as: 

𝐴𝑚 =
2(𝑙−𝑚)2

(2𝑙+𝑚)2 .                 (4.38) 

Since 𝑙 and 𝑚 are constant in Equation (4.38), the anisotropic parameter also remains 

constant, indicating that the Universe is isotropic. 

 

Shear scalar:  

Using the values of H from Eq. (4.36) and 𝐴𝑚 from Eq. (4.38) into the Eq. (4.23) found as: 

 σ2 =
(𝑙−𝑚)2

3𝑡2 .                   (4.39) 

Since 𝑙 and 𝑚 are constant in Equation (4.39), the shear scalar tends to zero as time becomes 

large, indicating that the Universe approaches isotropy. 

 

The deceleration parameter: 

Using the values of H from Eq. (4.36) into the Eq. (4.25) yielded as: 

𝑞 = −1 + 
3

(2𝑙+𝑚)
= −𝑣𝑒.                (4.40) 

A negative value of the deceleration parameter (𝑞) indicates that the expansion of the 

Universe is accelerating. 
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When, using the values of 𝜃 from Eq. (4.37) and the values of 𝜎 from Eq. (4.39) occurred 

as: 

𝑙𝑖𝑚
𝑡→∞ 

𝜎

𝜃
=  

1

√3

(𝑙−𝑚)

(2𝑙+𝑚)
  ≠ 0.                               (4.41) 

Equation (4.41) indicates that the model is anisotropic.  

 

5. Energy Conditions of the Universe 

 

All normal and Newtonian matter has strong energy condition between the particles but in 

vacuum, it cannot obey. The linear baratropic equation state classified as: 

𝑝 = 𝜔 𝜌 , 
where 𝜌 is the matter energy density, 𝑝 is the matter pressure, and 𝜔  is a constant. The 

strong energy condition involves  𝜔  ≥  −
1

3
 , but as a false vacuum for the state as 𝜔 =

 −1. 

Case I:  

Using the values of 𝜌𝑀 from Eq. (4.11), 𝑝𝑥,  𝑝𝑦, and 𝑝𝑧 from Eqs. (4.12), (4.13), and (4.14) 

obtained: 

𝜔𝑥 =
𝑝𝑥

𝜌𝑀
= − 

 −𝐾+2𝑛(2𝑟2𝜉2+3𝑟𝜉2+𝜉2)

−𝐾+4𝑛(𝑟2𝜉2+2𝑟𝜉2−
𝛼2

2𝑐3
2𝑟𝑒−2𝑟𝜉𝑡)

 ,                (5.1) 

𝜔𝑦 =
𝑝𝑦

𝜌𝑀
= − 

 −𝐾+2𝑛(2𝑟2𝜉2+3𝑟𝜉2+𝜉2)

−𝐾+4𝑛(𝑟2𝜉2+2𝑟𝜉2−
𝛼2

2𝑐3
2𝑟𝑒−2𝑟𝜉𝑡)

 ,               (5.2) 

so 𝜔𝑥 = 𝜔𝑦. 

𝜔𝑧 =
𝑝𝑧

𝜌𝑀
=  −

 −𝐾+2𝑛(4𝑟2𝜉2+2𝑟𝜉2−
𝛼2

𝑐3
2𝑟𝑒−2𝑟𝜉𝑡)

−𝐾+4𝑛(𝑟2𝜉2+2𝑟𝜉2−
𝛼2

2𝑐3
2𝑟𝑒−2𝑟𝜉𝑡)

 .              (5.3) 

 

 
Fig. 9. Change in energy (𝜔) with time 

 

As shown in Fig. 9, the energy parameters  𝜔𝑥 = 𝜔𝑦 =  𝜔𝑧 =  −1 at large time, indicating 

that the Universe is dominated by a cosmological constant or dark energy with isotropic 

negative pressure. 
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Case II:  

Using the values of 𝜌𝑀 from Eq. (4.31), 𝑝𝑥,  𝑝𝑦, and 𝑝𝑧 from Eqs. (4.32), (4.33), and (4.34) 

obtained: 

𝜔𝑥 =
𝑝𝑥

𝜌𝑀
= −

𝐾2+𝐾1(
2𝑙(𝑙−1)

𝑡2 +
2𝑚(𝑚−1)

𝑡2 +
2𝑙𝑚

𝑡2 )

𝐾2+𝐾1(
2𝑙2

𝑡2 +
4𝑙𝑚

𝑡2 −
2𝛼2𝑡−2𝑙

𝐷0
2 )

 ,                (5.4) 

𝜔𝑦 =
𝑝𝑦

𝜌𝑀
= −

𝐾2+𝐾1(
2𝑙(𝑙−1)

𝑡2 +
2𝑚(𝑚−1)

𝑡2 +
2𝑙𝑚

𝑡2 )

𝐾2+𝐾1(
2𝑙2

𝑡2 +
4𝑙𝑚

𝑡2 −
2𝛼2𝑡−2𝑙

𝐷0
2 )

 ,                (5.5) 

𝜔𝑧 =
𝑝𝑧

𝜌𝑀
= −

𝐾2+𝐾1(
4𝑙(𝑙−1)

𝑡2 +
2𝑙2

𝑡2 −
𝛼2𝑡−2𝑙

𝐷0
2 )

𝐾2+𝐾1(
2𝑙2

𝑡2 +
4𝑙𝑚

𝑡2 −
2𝛼2𝑡−2𝑙

𝐷0
2 )

 .                (5.6) 

From Equations (5.4), (5.5), and (5.6), it is observed that  𝜔𝑥 = 𝜔𝑦 =  𝜔𝑧 =  −1 as t 

becomes large, signifying that the Universe is dominated by a cosmological constant or dark 

energy with isotropic negative pressure. 

 

6. Stability 

 

The model stability is dependent upon the function  𝑐𝑠
2 =   

𝑑𝑃

𝑑𝜌
 . If the function 𝑐𝑠

2  is greater 

than zero then the model is stable otherwise the model is unstable.  

Case I: 

𝑐𝑠𝑥
2 =   

𝑑𝑝𝑥

𝑑𝜌𝑀
= 0 , 𝑐𝑠𝑦

2 =   
𝑑𝑝𝑦

𝑑𝜌𝑀
= 0, 𝑐𝑠𝑧

2 =   
𝑑𝑝𝑧

𝑑𝜌𝑀
= −1 < 0.               (6.1)  

From Equation (6.1), it is evident that the model is unstable along the z-direction. 

Case II: 

𝑐𝑠𝑥
2 =   

𝑑𝑝𝑥

𝑑𝜌𝑀
= −

1

2
< 0, 𝑐𝑠𝑦

2 =   
𝑑𝑝𝑦

𝑑𝜌𝑀
= −

1

2
< 0, 𝑐𝑠𝑧

2 =   
𝑑𝑝𝑧

𝑑𝜌𝑀
= −

1

2
< 0.             (6.2) 

From Equation (6.2), it follows that the model is unstable.  

 

7. Conclusion 

 

The results of the model are summarized as follows: In Case I, the energy density decreases 

over time, indicating a higher density in the early Universe and a declining trend as the 

Universe expand. The pressure along the spatial directions 𝑝𝑥 and 𝑝𝑦 remains constant, 

indicating no directional change in these directions, whereas 𝑝𝑧 increases with time, 

suggesting anisotropic pressure along the z-axis. The spatial volume decreases over time, 

implying that the Universe is contracting rather than expanding. Both the average scale 

factor and the expansion tensor remain constant, suggesting a static Universe. The 

anisotropic parameter and shear scalar are also constant, demonstrating that the Universe 

behaves isotropically. In Case II, the energy density again decreases with time, indicating 

that the Universe is expanding. The pressure along the spatial directions x, y and z are 

decreases with time, reflecting isotropic behaviour and a dust-filled Universe. The spatial 

volume increases over time, signifying continuous expansion. However, both the average 

scale factor and the expansion tensor decrease with time, which paradoxically implies a 

static Universe. The anisotropic parameter and shear scalar remain constant, again 
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indicating isotropic behaviour. In both cases presented here, the deceleration parameter is 

negative, indicating that the Universe is undergoing accelerated expansion. Furthermore, 

the condition 𝑙𝑖𝑚
𝑡→∞ 

𝜎

𝜃
 ≠ 0 suggests that the model remains anisotropic at late times. In both 

cases studied, it is found that 𝜔𝑥 = 𝜔𝑦 =  𝜔𝑧 =  −1, indicating the Universe is dominated 

by a cosmological constant or dark energy with isotropic negative pressure. At large values 

of time, the Universe is accelerating and remains anisotropic. In both scenarios, the value 

of the sound speed squared 𝑐𝑠
2 is found to be negative, implying that the Universe is 

unstable. The stability of the Universe plays a significant role in f (T) theory, and this aspect 

represents a novel contribution of the present work. According to the cosmological 

interpretation, the proposed model is not stable. 
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