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Abstract 

The area of Human Emotion Recognition using EEG signals is rapidly evolving its 

dimensions at a more excellent pace and with time, it has become an important area of 

research for affective computing in the field of neuroscience. Neuro-computing has also 

shown its potential applications in the domain of mental health monitoring, brain-computer 

interface, and adaptive learning systems. The deep learning models have shown significant 

progress in producing effective results when implemented in analyzing different EEG signals. 

In this study, the efficiency of Convolutional Neural Network (CNN) models for emotion 

categorization is investigated on an EEG-based SEED dataset. Differential Entropy (DE) 

characteristics derived from five important EEG rhythms—delta, theta, alpha, beta, and 

gamma—are used as inputs to CNN classifiers. To enhance the performance, the model uses 

a two-dimensional (2D) tensor representation of the input, which allows the network to learn 

and use spatial correlations between different EEG channels. Experimental results show that 

the proposed CNN-based strategy outperforms previous methods with an average accuracy 

of 94.09 %. These findings highlight the potential of CNNs in developing robust and scalable 

solutions for EEG-based emotion recognition, providing a path for more intuitive and 

adaptive systems in future applications. 
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1.   Introduction 

Emotions are part and parcel of human life. They are compounds that help control our 

bodies and minds, assisting us in overcoming the challenges of interacting with people, 

making decisions, and navigating life. The modern concept of emotion was first introduced 

in the English language in the 1830s, but Thomas Brown coined the term "emotion" in the 

early 1800s. Emotion is a set of feelings, sensations, and perceptions that are associated 

with a set of thoughts and behaviors. Emotions are inevitable in everyone's day-to-day life. 

According to Paul Ekman's widely accepted theory of fundamental emotions and how they 

manifest, there are six basic emotions that humans experience. Sadness, surprise, happiness, 
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fear, anger, and disgust are among them [1]. For broad emotional reactions, Robert Plutchik 

offered a psycho-evolutionary categorization technique. Accordingly, there are eight 

fundamental emotions:  sadness, anger, fear, disgust, anticipation, surprise, joy, and trust 

[2,3] (Fig. 1). Plutchik considers that these eight basic emotions can give rise to all other 

emotions. EEG is proving to be a useful tool to study human emotions and cognitive 

processes from the perspective of its potential capabilities. The domain of affective 

computing, which tries to comprehend human mental states, is gaining prominence. As a 

result, the research on EEG signals is highly correlated with emotion. Since speech and 

facial expressions can be manipulated it poses many difficulties in creating real responses 

to a specific emotion. Therefore, they are considered ineffective predictors of emotion. It is 

evident from various studies that humans have no control over the automatically produced 

EEG signals which leads to creating a trust among the scientists working in this field that 

EEG signals for emotion detection are more accurate and reliable. After analyzing EEG-

based data, it has been observed that it is possible to achieve better classification accuracy 

for emotion detection even if there are situations that react faster to mood changes. 

Emotions are omnipresent and they are a necessary part of our lives. A person's actions can 

significantly affect how they communicate and how they go about their everyday lives. As 

a result, examining EEG signals for emotion classification is more trustworthy and 

effective. Although the EEG signal on the scalp has a limited spatial resolution, its high 

temporal resolution (in milliseconds) allows it to record both gradual and fast changes in 

brain activity. As a result, both temporal and spatial EEG correlation must be addressed 

when extracting characteristics associated with particular brain emotion dynamics. Due to 

the remarkable potential of end-to-end self-learning of complicated high-level feature 

representation, deep learning technology has made significant strides in identifying tasks in 

a variety of fields, including bioinformatics, computer vision, natural language processing, 

and automated speech recognition. Deep learning models have become a popular and 

effective approach for emotion recognition using EEG signals [4,5]. These models are good 

at automatically extracting complex features and patterns from raw EEG data, eliminating 

the need for extensive manual feature engineering. Transfer Learning models can also be 

used for feature extraction in the classification of Nematodes Species [6]. 

To classify different emotions, we employ the CNN model on the SEED Dataset, which 

has a greater accuracy value. The remainder of the study is organized as follows: In Section 

2, the associated work is described. The materials and suggested techniques are outlined in 

Section 3. Results and comparison with the other works are summarised in Section 4. 

Section 5 provides the conclusion and future scope of the work. 

 

2. Related Study 

 

With the help of different EEG signals, authors have detected four human dispositions such 

as crying, anger, happy, and sad by using machine learning algorithms. The Hidden Markov 

Model (HMM) classifier that uses the wavelet transform is employed to measure statistical 

characteristics based on features like mode, mean, median, skewness, etc., the study is 
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carried out to address the computing complexity and low efficiency of the SVM and KNN 

classifiers. By applying electrodes to human brain scalps for the disposition description 

approach, the database collects data from healthy males and girls between the ages of 20 

and 25. 

 

 
 

Fig. 1. Plutchik’s eight basic emotions. 

 

The different EEG signals recorded are contaminated with noise and to produce effective 

results they are filtered with the help of a low pass and notch filter. Due to the non-stationary 

behavior of EEG signals, the method adopted for feature extraction is Wavelet Transform 

which extracts features utilizing frequency as well as time domain technique. The Hidden 

Markov Model's Manhattan distance matrix approach determines the distinction between 

the trained and tested signals with an accuracy of 88.50 %, [7] identifies the subject's true 

disposition. EEG provides useful information for Ambient Assisted Living (AAL) by 

identifying the mental state of individuals who might need particular care. People who 

suffer from depression generally have worse physical and mental health than those who do 

not suffer from this deadly stage of human life. To detect the emotions of a patient, several 

features have been extracted from the EEG signals using the combination of wavelet energy, 

wavelet entropy, discrete wavelet transform, and other statistical features. Three distinct 

classifiers support vector machines, k-nearest neighbor, and quadratic discriminant analysis 

[8] are employed to create an effective emotion recognition model that achieves an accuracy 

of 60.78 %, 75.53 %, and 83.87 % respectively. Some researchers proposed a wavelet and 

scalogram transform-based pre-processing approach for recording multi-channel 

neurophysiological signals into grid-like frames that depict 2D frame representation. The 

study is carried out [9] with the primary goal of creating a hybrid deep learning model for 

emotion categorization using multi-channel EEG signals by combining CNN and RNN. The 
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proposed model also holds the capability of predicting at each time step, which plays an 

extremely important role in current-time emotion assessment situations. The study used 

EEG signals from the DEAP dataset to propose two distinct neural models for user emotion 

classification. The deep neural network has four completely connected layers, with 500 and 

1000 nodes after the first neural layer with 5000 neurons. All these layers employed the 

Rectified Linear unit as an activation function. The last neural layer reduces these 1000 

inputs to the final output of two or three classes. In the last layer, Softmax serves as the 

activation function, and its dropout probability is taken as 0.5. The second model effectively 

classifies pre-processed EEG data given in 2D format using a 2-dimensional CNN model. 

The CNN architecture involves 2 convolutional layers, 1 max. Pooling layer and a soft plus 

layer. Finding the best activation function and optimizer combination to apply for improved 

outcomes is the primary task in the convolutional neural network model.  

Additionally, the study also compared CNN and deep neural networks and found that 

CNN outperformed by showing better performance. The models [10] show classification 

accuracy of 81.41 % and 73.35 % for two classes and 66.79 % and 57.58 % for three classes 

while taking into consideration valence and arousal. The deep neural network records the 

classification accuracy as 75.78 % and 73.12 % for two classes and 58.44 % and 55.70 %, 

respectively, for three classes again in the case of valence and arousal.  

Deep learning models are prevalent in the research world and some researchers proposed 

a model that is developed using a recurrent neural network or long short-term memory 

which learns its characteristics from raw EEG data and to identify the emotions, the dense 

layer is utilized for classification. [11] uses the DEAP dataset for validation, has an average 

accuracy of 87.99 % for liking classes, 85.65 % for arousal, and 85.45 % for valence 

respectively. It compares the suggested model's output with the other four models that have 

made use of the DEAP dataset. The overall accuracy produced by the developed model is 

very promising. In neurology and psychiatry, automated real-time emotion detection based 

on multi-channel EEG data is becoming an essential computer-aided tool for diagnosing 

emotion disorders. Yang et al. [12] proposed a neural network that is hybrid integrating 

CNN and RNN to categorize human emotions in a single framework. To extract spatial 

information from data frames, CNN is applied, and to extract temporal information from an 

EEG sequence, an RNN is employed. Following the CNN and RNN processing, the spatial 

and temporal information are fused using a feature fusion approach. For valence and arousal 

classification tasks, the suggested models produced high accuracy of 90.80 % and 91.03 %, 

respectively. By applying machine learning and signal processing techniques, authors 

investigate the feasibility and effectiveness of employing EEG signals for emotion 

recognition tasks. Using the SVM Classifier, Jha et al. [13] showed noteworthy valence 

accuracy at 76.00 % and significant arousal efficiency at 70.88 %. The use of 

electroencephalography signals for more reliable and accurate emotion analysis has been 

the subject of increasing interest in recent years. Aslan and his group [14] examined three 

distinct data sets, and the brain regions were used to measure how well each dataset 

performed in emotion recognition. For the DEAP, SEED-V, and GAMEEMO datasets, the 

corresponding accuracy were 64.01 %, 57.42 %, and 82.83 %. The state-of-the-art in EEG-
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based emotion recognition is advanced by these contributions, which handle important 

issues including high dimensionality and variability. With classification accuracy values of 

90.04 % for arousal, 89.97 % for valence, 87.73 % for dominance, and 90.84 % for liking, 

the proposed approach by Henny et al. [15] showed remarkable performance in four-

category emotion classification. 

In this experimental study, the CNN model is used to classify the emotions of 15 

participants into neutral, positive, and negative. The computation of CNN classifier is 

carried out on Google Collaboratory, a cloud-based Jupyter notebook service that requires 

no setup and offers free access to computing resources, including GPUs. The CNN model 

is implemented using Python, TensorFlow framework, and the Keras API. 

 

3. Materials and Methodology 

 

3.1. Dataset and pre-processing 

 

This paper presents the publicly available EEG Dataset, SEED [16,17] published by 

Shanghai Jiao Tong University's BCMI Laboratory, and it includes EEG signals collected 

from 15 people (7 males and 8 females) while watching Chinese films expressing positive, 

neutral, and negative emotions. Every participant takes part in three distinct recording 

sessions executed on different days. The participants saw 15 Chinese cinema snippets 

during each session and each session lasted for about 4 minutes. These clips were carefully 

chosen to create three different emotional states: positive, neutral, and negative. The signals 

from an EEG are recorded using a 62-channel system that utilizes an original sampling 

frequency of 1000 Hz and then down-sampled to 200 Hz for further analysis. The dataset 

includes pre-processed features including Differential Entropy (DE), which are derived 

from five different EEG frequency bands. The DE characteristics are arranged in such a 

manner that the spatial layout of the 62 electrodes remains intact. Due to its 1-second non-

overlapping epochs, each trial can be used for in-depth temporal analysis of emotional 

reactions. The EEG data are broken down into EEG rhythms in the current work using a 

filter called Butterworth of order 3. Five EEG rhythms are extracted from the SEED 

dataset's EEG signals called delta (1-4 Hz), theta (4-8 Hz) alpha (8–14 Hz), beta (14–31 

Hz), and gamma (31–51 Hz. Each subject has an overall 3394 epochs after segmentation. 

 

3.2. Proposed methodology 

 

3.2.1. Feature extraction 

 

A metric that measures the complexity or uncertainty of continuous random variables is 

called Differential Entropy (DE), and it comes from information theory [18]. Because DE 

extends the idea to continuous domains, as opposed to standard entropy, which pertains to 

discrete variables, it is especially well-suited for analyzing physiological signals like EEG, 

which are by nature non-linear and non-stationary. DE is used in EEG-based recognition of 
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emotions to record variations in signal energy within specified frequency bands such as 

alpha, beta, delta, theta, and gamma. These characteristics provide an accurate depiction of 

brain activity, allowing for good distinction between emotional states. DE is calculated by 

calculating the signal's probability density function and incorporating its logarithmic 

representation in “Eq. (1)” which is defined as:             

 𝐻 = − ∫ 𝑝(𝑥) log 𝑝(𝑥) ⅆ𝑥
∞

−∞

                                                                                                        (1) 

The p(x) denotes the signal's probability density function. DE is a reliable and 

discriminative characteristic for emotion classification tasks due to its capacity to 

characterize the complexity and energy distribution of EEG signals. Differential Entropy 

(DE) is a feature used in this work to categorize different emotional states [19]. DE has 

proven to be useful in analyzing non-stationary and non-linear signals, including EEG, and 

it evaluates the complexity of the signal effectively. DE offers a reliable representation for 

classifying emotions by collecting energy differences between low and high frequencies. 

Five different EEG rhythms are used to calculate DE features for the SEED dataset. The 

final feature matrix obtained for each person and session has dimensions of (3394, 62, 5), 

where 5 stands for the five EEG rhythms, 62 represents EEG channels, and 3394 for the 

total number of epochs obtained from the 15 trials. Fig. 2 displays the overall methodology 

for the recommended procedure. 

 
 

Fig. 2. Proposed methodology. 

 
 

Fig. 3. Proposed CNN architecture.     

 

3.2.2. Convolution Neural Network model 

 

In the current era of data analytics, Convolutional Neural Networks (CNNs) are recognized 

as one of the most effective deep learning architectures for analyzing EEG signals due to 

their powerful tendency and capacity to automatically identify, extract, and learn spatial and 

temporal properties out of the complex information. EEG signals, which are non-linear, 
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non-stationary, and have a multi-channel structure, can be represented as spatially organized 

inputs that reflect electrode layouts or as spectro-temporal properties determined from 

frequency analysis [20]. CNNs take advantage of this structure by using convolutional 

layers to capture localized patterns across channels of EEG or frequency bands, pooling 

layers to reduce dimensionality and improve computational efficiency, and fully connected 

layers to incorporate high-level features for classification tasks. When used for emotion 

recognition with EEG, CNNs may successfully capture spatial dependencies between 

electrodes as well as hierarchical trends within neurons that correspond to various emotional 

states. CNNs can learn spatial correlations as well as frequency-specific patterns by 

organizing differential entropy characteristics from numerous EEG frequencies (e.g., delta, 

theta, alpha, beta, and gamma) in a spatial manner that corresponds to electrode placements. 

This capacity allows CNNs to manage the complexities of EEG inputs, making them ideal 

for emotion recognition tasks where subtle and dynamic patterns in brain activity are 

crucial. CNNs' automatic feature extraction reduces the need for traditional feature 

engineering, which increases their application in EEG-based research [21]. To represent the 

spatial layout of the electrodes, the CNN classifier organizes the Differential Entropy (DE) 

feature matrix in a two-dimensional feature space [22]. The suggested CNN model is 

divided into two different convolutional blocks, CB-1 and CB-2, each of which is intended 

to gradually extract relevant features from the input data. CB-1 uses two convolutional 

layers (CLrs) with 256 filters and a kernel size of 5×5, capturing spatial relationships 

between input features. Following these convolutional layers, a max-pooling layer reduces 

spatial dimensions while maintaining important characteristics, hence increasing computing 

efficiency. To further improve the feature extraction process, CB-2 has a single 

convolutional layer with 128 filters of size 4×4. Higher-level spatial patterns in the data can 

be captured by this layer due to its tendency to carry out optimization. The max-pooling 

layer in CB-2, which is similar to CB-1, down-samples the feature maps while preserving 

the key representations by employing a stride of 2 and a filter size of 2×2. To use it as an 

input to a dense layer, the result of the last pooling operation in CB-2 is subsequently 

flattened into a one-dimensional feature vector. This dense layer, which has 64 units, is in 

charge of learning intricate feature pairings and producing a brief summary of the features 

that were retrieved from the data. The architecture's last layer is a classification layer with 

a softmax activation function that allows multi-class classification by mapping the learned 

representations to the target classes' probability distribution. The diagrammatical 

representation of employed CNN architecture is given in Fig. 3. 

 

4. Results 

 

The study uses a 4-fold cross-validation approach to evaluate the model's performance. The 

average of the four phases is used to get the final classification accuracy. Each subject's 

performance is evaluated independently. As evident from the literature and continuous 

execution of our hypermeter tuning to the model, the CNN classifiers fixed to the maximum 

of 100 training iterations and a batch size of 128 [23] to improve upon the efficiency of the 
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model. The classification model is implemented using the Keras library, and the network is 

trained using its default learning rate using the Adam optimizer. The Rectified Linear Unit 

(ReLU) activation function adds nonlinearity to the network by applying it to all layers 

except the final classification layer. The output layer calculates the probability distribution 

in the emotion classes using the softmax activation function. Fig. 4 displays the mean 

training and validation accuracy curves. The training accuracy is recorded higher as 

compared to the validation accuracy and the curves demonstrate the same leading to no 

overfitting. Fig. 5 shows the validation accuracy of 4 folds on 100 epochs. Fig. 6 displays 

the confusion matrix for subject 1 (session 1) and shows how well the model performed 

across the three emotion classes. The class labels are represented as 0, 1, and 2, 

corresponding to neutral, positive, and negative emotions, respectively. In particular, 284 

samples were accurately identified as positive, 273 samples as negative, and 256 samples 

as neutral by the CNN model. Table 2 represents the classification result of the CNN Model. 

The efficiency of the suggested CNN-based method for subject 1 for emotion recognition 

tasks is demonstrated by the average accuracy of 96 %. This depicts how the proposed 

model can remain accurate in a variety of emotional states. Table 1 summarizes the 

comparison of the proposed model with existing work on the same dataset for emotion 

classification.       

 

 
Fig. 4. Mean training and Validation 

Accuracy.                                  

 
Fig. 5. Validation Accuracy of each fold. 
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Fig. 6. Confusion matrix.                                                   
 
Table 1. Comparison of the proposed model to classify emotions. 
 

 

 

 

 

 

 

 

 

 
 

Table 2.  Classification result of CNN model. 

 

 

 

5. Conclusion  

 

This paper evaluates a classification technique using Convolutional Neural Network (CNN) 

models to analyze a classification strategy and assess how well they perform on the publicly 

accessible SEED EEG emotion dataset. The classifiers are fed Differential Entropy (DE) 

characteristics, which are obtained from different EEG rhythms called alpha, beta, delta, 

theta, and gamma. In comparison to state-of-the-art methods, experimental results show that 

the CNN-based approach performs better on the SEED dataset when compared to all the 

existing studies conducted on the said dataset. The efficiency of the suggested CNN-based 

Authors Method Accuracy (%) 

Fu et al. [20] cGAN 82.14 

Asa et al. [21] RFE with SVM 93.10 

Joshi et al. [22] LFDE and BiLSTM 80.64 

Cheah et al. [23] ResNet 93.42 

Shen et al. [24] 4D-CRNN 94.74 

Sidharth et al. [25] ResNet 93.1 

Our Proposed Model CNN 94.09 

Model Mean Accuracy Mean Standard Deviation Mean F1 Score 

CNN 94.09 3.18 0.94 
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method for emotion recognition tasks is demonstrated by the average accuracy of 94.09% 

on the SEED dataset. The CNN classifier improves accuracy by using tensor (2D) input to 

better learn spatial relationships between EEG channels. In future work we plan to focus on 

cross-dataset validation, in which the suggested CNN model will be examined using several 

EEG datasets, such DEAP, DREAMER, or AMIGOS, in order to assess its generalisability 

across various participants. Additionally, we will also look into hybrid deep learning models 

that combine CNNs with RNNs, LSTMs, or Transformer architectures to improve feature 

extraction by efficiently identifying temporal and spatial dependencies in EEG signals. 

These developments will enhance the reliability, effectiveness, and practicality of EEG-

based emotion recognition systems.                  
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