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Abstract 

This work aims to investigate the impact of couple stress on the thermosolutal convection of 

viscoelastic nanofluid saturated in the porous medium. The rheological behavior of a 

viscoelastic nanofluid is characterized by the Rivlin-Erickson model. We study the linear 

stability analysis using the normal mode analysis method and examined analytically and 

graphically using MATLAB the impact of non-dimensional factors such as the couple stress, 

the concentration Rayleigh number, the solutal Rayleigh number, the thermos-nanofluid 

Lewis number, the thermosolutal Lewis number, Dufour and the Soret parameters and found 

that the couple stress, nanofluid Lewis number and modified diffusivity ratio enhance the 

instability of thermosolutal convection. 

Keywords: Thermosolutal instability; Nanofluid; Rivlin-Erikson model; Porous medium; 

Couple stress. 
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1.   Introduction 

Nanofluids are colloidal suspensions of nanoparticles in a base fluid, characterized by 

particles with dimensions ranging from 1 to 100 nanometers. These fluids are composed of 

a base fluid, such as oil, glycol, water, or ethylene, with nanoparticles dispersed within. The 

term nanoparticle was initially proposed by Choi [1] and has since been widely used in the 

development of heat transfer fluids. Buongiorno [2] developed a model for nanofluids and 

studied the effects of Brownian diffusion and thermophoresis. Eastman et al. [3] observed 

thermal conductivity increases by 40 % when copper nanoparticles were added to ethylene 

glycol. Chandrashekhar examined the thermal instability of a newtonian fluid under a range 

of hydrodynamic and hydromagnetic assumptions [4]. 

 Due to its diverse range of applications, the study of thermosolutal convection in porous 

media has attracted significant attention from academics in recent decades. These 

applications include chemical research, oceanography, cancer therapy, bioengineering, 

engineering, food processing, and nuclear industries. Shivakumara et al. [5] investigated 

the impact of rotating couple stress fluid on the electrohydrodynamic convection and found 
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that the presence of couple stress causes the fluid layer to become unstable. Kuznetsov and 

Nield [6] conducted an analytical and numerical study of the thermosolutal instability in a 

horizontal layer of porous media saturated with nanofluid. Pundir et al. [7] examined the 

impact of rotation on thermosolutal convection in a visco-elastic nanofluid and observed 

that an increment in Taylor number enhances the stability of stationary convection. 

 Umawati and Beg [8] used a non-Newtonian nanofluid, explored the onset of 

thermosolutal convection with a porous medium, and observed that the couple stress 

parameter was stabilizing in both oscillatory and stationary convections. The study of 

thermosolutal convection of a couple stress rotatory fluid in porous media by Kumar and 

Mohan [9] was relevant to astrophysics and geophysics and posed intricate challenges as a 

double-diffusion phenomenon. Singh and Nisar [10] examined the thermal instability of 

magnetohydrodynamic couple stress nanofluid in a rotating porous medium. Kumar et al. 

[11] explored the effect of magnetic field, rotation, and suspended dust particles on the onset 

of double diffusive convection in a couple-stress fluid saturated with a porous medium. 

They established the conditions that determine whether overstability exists or not. Chand et 

al. [12] focused on the thermal instability of a couple stress nanofluid saturated in a 

horizontal layer of porous medium. Malashetty et al. [13] used linear and weak nonlinear 

stability analyses. They studied the onset of double-diffusive convection with a couple-

stress fluid in a porous medium. They discovered that the solute Rayleigh number and the 

couple stress parameter were critical in stabilizing stationary and oscillatory convection. 

 Devi et al. [14] examined the impact of variable gravity fields on the convective 

stability of a coupled stress fluid for three different combinations of bounding surfaces. 

They observed that variable gravity can either enhance or reduce the stability of the system, 

depending on the direction of the gravity variation. Choudhary et al. [15] investigated the 

effect of variable viscosity on the stability of couple stress fluid layers for different 

conducting boundaries and found that the couple stress has a stabilizing effect, while the 

viscosity variation has a destabilizing effect on the system. Bishnoi and Kumar [16] studied 

the combined impact of Hall currents and salt gradients on an elastic-viscous nanofluid and 

discovered that Hall currents possess a dual influence on the system in the presence of salt. 

Kumar et al. [17] studied the effect of a magnetic field on the onset of thermal convection 

in a porous layer saturated with Jeffrey nanofluid and found that the Chandrasekhar number 

delayed the onset of convection, while the Jeffrey parameter accelerated it. Sharma et al. 

[18] explored how variable gravity affects the thermal instability of rotating Jeffrey 

nanofluids in porous media and discovered the necessary condition for overstability of 

oscillatory convection. Sharma and Kumar [19] explored the combined effect of rotation 

and magnetic field on the onset of convection of Jeffery nanofluid saturated in a porous 

medium. Arora et al. [20] examined the combined impact of magnetic field, viscosity, and 

rotation on the onset of convection in magnetic nanofluids and found that increasing the 

Taylor number stabilizes the system. Yadav et al. [21] conducted a study using two types 

of boundaries: in the first, the top plane is isothermal and the bottom boundary plane is 

insulated, and in second, lower and upper boundary planes are isothermal, and rotation on 

the Casson fluid generated by purely internal heating in a porous layer. They noticed that 
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the Casson parameter exhibits a dual impact on the system, and the Taylor Darcy number 

has a stabilizing effect; they also observed that if both boundary planes are isothermal, then 

the structure is more stable.  

 Kuiry and Vishwakarma [22] investigated the effect of MHD flow of viscous, 

incompressible fluid with small electrical conductivity in porous medium and found that 

the fluid velocity decreases due to the increasing value of kinematic viscosity and constant 

suction velocity. Munshi et al. [23] studied the physical properties of water as the base fluid 

and copper as the nanoparticles. It has been found that the Darcy number is a good control 

parameter for heat transfer in fluid flow through a porous medium. Gani et al. [24] studied 

the effects on unsteady MHD flow of a nanofluid for free convection past an Inclined plate. 

 As per the above literature survey, no assessment has yet been conducted to assess the 

impact of couple stress on visco-elastic nanofluid. The present study focuses on exploring 

the impact of couple stress on thermosolutal convection of visco-elastic nanofluid in the 

presence of a porous medium and the Soret factor on Rivlin-Erickson nanofluid. Using 

MATLAB software, the stationary convection is discussed analytically and graphically.  

 

2. Methodology and Mathematical Model 

 

Rivlin and Erickson [25] proposed a constitutive equation given as: 

𝜏𝑖𝑗 = 2(𝜇 + 𝜇′ 𝜕

𝜕𝑡
) 𝑒𝑖𝑗; 𝑒𝑖𝑗 =

1

2
(

𝜕𝑞𝑖

𝜕𝑥𝑗
+

𝜕𝑞𝑗

𝜕𝑥𝑖
) where 𝜏𝑖𝑗 is a shearing stress, 𝑒𝑖𝑗 is the rate of 

strain tensor, 𝜇 is viscosity, 𝜇′ is viscoelasticity, 𝑞𝑖 is a velocity vector and 𝑥𝑖 is a position 

vector. 

 Here, an infinite horizontal layer of a Rivlin-Erikson nanofluid of width d considered 

and bounded by the planes 𝑧 = 0 and 𝑧 = 𝑑. The layer is solved and heated from below and 

acted upon by a gravitational force 𝒈 = (0,0, −𝑔) in z direction, 𝐶 is concentration, 𝑇 is 

temperature, and 𝜑 is volumetric fraction of nanoparticles. We assumed that the 

concentration, temperature, and volumetric fraction of nanoparticles at lower and upper 

boundaries are 𝐶0,  𝑇0, 𝜑0 and 𝐶1, 𝑇1 𝜑1 respectively. Following Nield and Kuznetsov [26], 

Chand [27], and Bishnoi et al. [28], the equations of conservation of mass, momentum, 

thermal energy, and nanoparticles for Rivlin-Ericksen fluid using the Boussinesq 

approximation are taken as 

∇𝒒 = 0      (1) 

𝜌

𝜀
(

𝜕

𝜕𝑡
+

1

𝜀
(𝒒. ∇)) 𝒒 = −∇𝑝 −

1

𝑘1
(𝜇 + 𝜇′ 𝜕

𝜕𝑡
)𝒒 +

1

𝑘1
(𝜇 + 𝜇𝑐

𝜕

𝜕𝑡
)𝒒  

       +𝒈(𝜑𝜌𝑝 + 𝜌𝑓(1 − 𝜑){ (1 − 𝛼𝑇(𝑇 − 𝑇0) − 𝛼𝐶(𝐶 − 𝐶0))}) (2) 

(
𝜕

𝜕𝑡
+

1

𝜀
𝒒. ∇)𝜑 = 𝐷𝐵∇2𝜑 +

𝐷𝑇

𝑇1
∇2𝑇                                            (3) 

((𝜌𝑐)𝑚

𝜕

𝜕𝑡
+ (𝜌𝑐)𝑓𝒒. ∇) 𝑇 = 𝑘∇2𝑇 + 𝜀(𝜌𝑐)𝑝 [𝐷𝐵∇φ. ∇𝑇 +

𝐷𝑇

𝑇1

∇𝑇. ∇𝑇] 

  + (𝜌𝑐)𝑓𝐷𝑇𝐶∇
2𝐶   (4) 
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(
𝜕

𝜕𝑡
+

1

𝜀
𝒒. ∇) 𝐶 = 𝐷𝑆∇

2𝐶 + 𝐷𝐶𝑇∇2𝑇                      (5) 

where 𝒒, 𝜀, 𝜌, 𝑝, 𝑘1, 𝜇, 𝜇′, 𝜇𝑐 , 𝒈, 𝜌𝑝, 𝜌𝑓 , 𝛼𝑇 , 𝛼𝑐 denote Darcy velocity vector, porosity of 

porous medium, the density, pressure, medium permeability of fluid, viscosity, 

viscoelasticity, couple stress viscosity, gravitational acceleration, density of nanoparticles, 

reference density of nanofluid, coefficient of thermal expansion, coefficient of solute 

concentration, respectively. 𝑘 is the thermal conductivity of the fluid, 𝐷𝑇  is the 

thermoporetic diffusion coefficient, 𝐷𝐵 is the Brownian diffusion coefficient, 𝐷𝑆 is the 

solutal diffusivity, (𝜌𝑐)𝑝 is the heat capacity of nanoparticles, (𝜌𝑐)𝑓 is the heat capacity of 

the fluid, (𝜌𝑐)𝑚 is the heat capacity of the fluid in a porous medium, 𝐷𝑇𝐶  is the Dufour 

diffusivity of the porous medium and 𝐷𝐶𝑇  is the Soret diffusivity of the porous medium. 

We assume that the volumetric fraction and temperature of the nanoparticles are 

constant on the boundaries, given by Nield and Kuznetsov [29]. 

𝑤 = 0,        𝑇 = 𝑇0,        𝐶 = 𝐶0,          𝐷𝐵
𝜕𝜑

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0            at 𝑧 = 0  (6) 

𝑤 = 0,       𝑇 = 𝑇1,        𝐶 = 𝐶1,         𝐷𝐵
𝜕𝜑

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0            at 𝑧 = 𝑑  (7) 

Introducing non-dimensional parameters as follows: 

(𝑥′, 𝑦′, 𝑧′) =
(𝑥,𝑦,𝑧)

𝑑
,   (𝑢′, 𝑣′ , 𝑤′) =

(𝑢,𝑣,𝑤)

𝑘𝑓
𝑑,  𝑡′ =

𝑘𝑓

𝜎𝑑2 𝑡,  𝑝′ =
𝑘1

𝜇𝑘𝑓
𝑝,  

𝐶′ =
𝐶−𝐶1

𝐶0−𝐶1
,              𝜑′ =

𝜑−𝜑0

𝜑1−𝜑0
,  𝑇′ =

𝑇−𝑇1

𝑇0−𝑇1
,                                         (8) 

where 𝜎 =
(𝜌𝑐)𝑚

(𝜌𝑐)𝑓
  is the thermal capacity ratio and 𝑘𝑚 =

𝑘

(𝜌𝑐)𝑓
 is the thermal diffusivity of 

the fluid. 

Equations (1) to (5) are obtained in a non-dimensional form (dash has been dropped for 

simplicity), as follows: 

∇𝒒 = 0 (9) 

1

𝜎𝑉𝑎
(

𝜕𝒒

𝜕𝑡
) = −∇𝑝 − (1 + 𝐹

𝜕

𝜕𝑡
)𝒒 − (1 + 𝜂∇2)𝒒 − 𝑅𝑚𝑘̂ − 𝑅𝑛𝜑𝑘̂ + 𝑅𝑎𝑇𝑘̂ +

𝑅𝑠

𝐿𝑛
𝐶𝑘̂ (10) 

1

𝜎

𝜕𝜑

𝜕𝑡
+

1

𝜀
𝒒. ∇𝜑 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐴

𝐿𝑛
∇2𝑇 (11) 

𝜕𝑇

𝜕𝑡
+ 𝒒. ∇𝑇 = ∇2𝑇 +

𝑁𝐵

𝐿𝑛
∇𝜑∇𝑇 +

𝑁𝐴𝑁𝐵

𝐿𝑛
∇𝑇∇𝑇 + 𝑁𝑇𝐶∇

2𝐶       (12) 

 
1

𝜎

𝜕𝐶

𝜕𝑡
+

1

𝜀
𝒒. ∇𝐶 =

1

𝐿𝑒
∇2𝐶 + 𝑁𝐶𝑇∇2𝑇  (13) 

The following boundary conditions are in their non-dimensional form: 

  𝑤 = 0,    
𝜕𝑤

𝜕𝑧
= 0,     𝑇 = 1,        𝐶 = 1,          𝐷𝐵

𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0    at 𝑧 = 0  (14) 

  𝑤 = 0,    
𝜕𝑤

𝜕𝑧
= 0,     𝑇 = 0,        𝐶 = 0,          𝐷𝐵

𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0     at 𝑧 = 1        (15) 

The non-dimensional numbers are used in the equations. (9) to (13) are given as: 



S. K. Pundir et al., J. Sci. Res. 17 (3), 703-716 (2025) 707 

 

𝐿𝑛 =
𝑘𝑓

𝐷𝐵
 is the nanofluid Lewis number, 𝐹 =

𝜇′𝑘𝑓

𝜇𝜎𝑑2 is a kinematic viscoelastic parameter, 

𝐿𝑒 =
𝑘𝑓

𝐷𝑠
 is the thermosolutal Lewis number, 𝑁𝐴 =

𝐷𝑇(𝑇0−𝑇1)

𝐷𝐵𝑇1(𝜑1−𝜑0)
 is the modified diffusivity 

ratio number, 𝑁𝐵 =
𝜀(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
(𝜑1 − 𝜑0) is the modified particle density increment number, 

𝑅𝑚 = (𝜌𝑝𝜑0 + (1 − 𝜑0)𝜌𝑓)
𝑔𝑘1𝑑

𝜇𝑘𝑓
 is the basic density Rayleigh number, 𝑅𝑛 = (𝜌𝑝 −

𝜌𝑓)(𝜑1 − 𝜑0)
𝑔𝑘1𝑑

𝜇𝑘𝑓
 is the concentration Rayleigh number, 𝑅𝑎 = 𝜌𝑓(𝑇0 − 𝑇1)𝛼𝑇

𝑔𝑘1𝑑

𝜇𝑘𝑓
 is the 

Rayleigh number, 𝑅𝑠 = 𝜌𝑓(𝐶0 − 𝐶1)𝛼𝑐
𝑔𝑘1𝑑

𝜇𝐷𝑠
 is the solutal Rayleigh number, 𝑁𝑇𝐶 =

𝐷𝐶𝑇(𝐶0−𝐶1)

𝑘𝑓(𝑇0−𝑇1)
 is the Soret parameter, 𝑁𝐶𝑇 =

𝐷𝐶𝑇(𝑇0−𝑇1)

𝑘𝑓(𝐶0−𝐶1)
 is Dufour parameter, 𝐷𝑎 =

𝑘1

𝑑2 is the 

Darcy number and 𝑉𝑎 =
𝜀𝑃𝑟

𝐷𝑎
 is Vadasz's number. 

 

2.1. Basic solution 

 

Suppose that the basic state of 𝐶, 𝑇, and 𝜑 are not dependent on time, given as follows: 

𝒒 = 0,     𝑝 = 𝑝𝑏(𝑧),  𝑇 = 𝑇𝑏(𝑧),  𝜑 = 𝜑𝑏(𝑧),  𝐶 = 𝐶𝑏(𝑧) 

By using boundary conditions, and get the approximation solution is given as follows:  

𝑇𝑏(𝑧) = (1 − 𝑧),   𝜑𝑏(𝑧) = 𝜑0 + 𝑁𝐴𝑧 and 𝐶𝑏(𝑧) = (1 − 𝑧)            (16) 

 

2.2. Perturbation solution 

 

Introducing perturbations which dependent on time onto the basic state and given as: 

𝒒 = 𝒒∗,  𝑇 = 𝑇𝑏 + 𝑇∗,  𝜑 = 𝜑𝑏 + 𝜑∗,   𝐶 = 𝐶𝑏 + 𝐶∗,   𝑝 = 𝑝𝑏 + 𝑝∗ (17) 

Using equation (17) in eqs. (9) to (13) under linear stability theory, neglecting the product 

of prime quantities. After dropping asterisks, we get the subsequent equations: 

∇𝒒 = 0                                                                                                                      (18) 

1

𝜎𝑉𝑎
(

𝜕𝒒

𝜕𝑡
) = −∇𝑝 − (1 + 𝐹

𝜕

𝜕𝑡
)𝒒 − (1 + 𝜂∇2)𝒒 − 𝑅𝑛𝜑𝑘̂ + 𝑅𝑎𝑇𝑘̂ +

𝑅𝑠

𝐿𝑒
𝐶𝑘̂   (19) 

1

𝜎

𝜕𝜑

𝜕𝑡
+

𝑁𝐴

𝜀
𝑤 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐴

𝐿𝑛
∇2𝑇                                                                           (20) 

𝜕𝑇

𝜕𝑡
+ 𝑤 = ∇2𝑇 −

𝜀𝑁𝐵

𝐿𝑛
[𝑁𝐴

𝜕𝑇

𝜕𝑧
+

𝜕𝜑

𝜕𝑧
] + 𝑁𝑇𝐶∇

2𝐶   (21) 

1

𝜎

𝜕𝐶

𝜕𝑡
+

1

𝜀
𝑤 =

1

𝐿𝑒
∇2𝐶 + 𝑁𝐶𝑇∇2𝑇         (22) 

The boundary conditions are: 

𝑤 = 0,  𝑇 = 0, 𝐶 = 0,  
𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0  at 𝑧 = 0 and 𝑧 = 1                         (23) 

Using the identity 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 = 𝑔𝑟𝑎𝑑 (𝑑𝑖𝑣)  −  𝛻2 for operate 𝑘̂. 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 on eq. (19), we 

get 

[
1

𝜎𝑉𝑎

𝜕

𝜕𝑡
+ (1 + 𝐹

𝜕

𝜕𝑡
) + (1 + 𝜂∇2)] ∇2𝑤 = 𝑅𝑎∇𝐻

2 𝑇 +
𝑅𝑠

𝐿𝑛
∇𝐻

2 𝐶 − 𝑅𝑛∇𝐻
2 𝜑  (24) 
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Where ∇𝐻
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2. 

 

3. Normal Mode Analysis 

 

The normal mode approach is applied by assuming that minor perturbations are represented 

by wave-like components with amplitudes in the z-direction, as follows: 

(𝑤, 𝑇, 𝐶, 𝜑) = [𝑊(𝑧), Θ(𝑧), Γ(𝑧), Φ(𝑧)]𝑒𝑥𝑝(𝑖𝑙𝑥 + 𝑖𝑚𝑦 + 𝑛𝑡)  (25) 

where 𝑛 is the disturbance growth rate, 𝑎2 = 𝑙2 + 𝑚2 is the resulting wave number, 𝑙 and 

𝑚 are the wave numbers along the 𝑥 and 𝑦 directions, respectively. 

Using equation (25) in equations (24), (20), (21), and (22) becomes  

[
𝑛

𝜎𝑉𝑎
+ (1 + 𝐹𝑛) + (1 + 𝜂(D2 − a2))] (D2 − a2)𝑊 + a2𝑅𝑎Θ + a2 𝑅𝑠

𝐿𝑒
Γ − a2𝑅𝑛Φ = 0 (26) 

𝑁𝐴

𝜀
𝑊 −

𝑁𝐴

𝐿𝑛
(D2 − a2)Θ − (

(D2−a2)

𝐿𝑛
−

𝑛

𝜎
)Φ = 0 (27) 

𝑊 + [(D2 − a2) − 𝑛 −
𝜀𝑁𝐴𝑁𝐵

𝐿𝑛
𝐷] Θ + 𝑁𝑇𝐶(D

2 − a2) Γ −
𝜀𝑁𝐵

𝐿𝑒
𝐷 Φ = 0  (28) 

1

𝜀
𝑊 + 𝑁𝐶𝑇(D2 − a2) Θ + [

1

𝐿𝑒
(D2 − a2) −

𝑛

𝜎
] Γ = 0 (29) 

𝑊 = 0,       Θ = 0,       Γ = 0,     𝐷Φ + 𝑁𝐴DΘ = 0 at 𝑧 = 0 and 𝑧 = 1.  (30) 

Where 𝐷 =
𝑑

𝑑𝑧
 and 𝑎2 = 𝑙2 + 𝑚2. 

After normal mode analysis, the solutions 𝑊,Θ, Φ, and Γ consider in the form as follows: 

𝑊 = 𝑊0𝑠𝑖𝑛𝜋𝑧,  Θ = Θ0𝑠𝑖𝑛𝜋𝑧, Φ = Φ0𝑠𝑖𝑛𝜋𝑧, Γ = Γ0𝑠𝑖𝑛𝜋𝑧  (31) 

Substituting equation (31) into the equations (26) – (29) and integrating with respect to 𝑧 

from 𝑧 = 0 to 𝑧 = 1. We obtain the following matrix: 

[
 
 
 
 
 (1 + 𝑛 (𝐹 +

1

𝜎𝑉𝑎
) − 𝜂𝐽2) 𝐽2       − a2𝑅𝑎             − a2 𝑅𝑠

𝐿𝑒
                    a2𝑅𝑛 

                           
𝑁𝐴

𝜀
                                 

𝑁𝐴

𝐿𝑛
𝐽2                    0                   

𝐽2

𝐿𝑛
+

𝑛

𝜎
 

                        −1                             𝐽2 + 𝑛                  𝐽2𝑁𝑇𝐶                     0     

                   −
1

𝜀
                             𝑁𝐶𝑇𝐽

2                  
𝐽2

𝐿𝑒
+

𝑛

𝜎
                  0 ]

 
 
 
 
 

[

𝑊0

Θ0

Γ0

Φ0

] = [

0
0
0
0

]          (32) 

Where 𝐽2 = 𝜋2 + 𝑎2 is the wave number. 

After putting the above matrix equal to zero, get a non-trivial solution, so obtained the 

eigenvalue equation as follows: 

𝑅𝑎 =
1

(𝐽2𝜎𝜀+𝑛𝜀𝐿𝑒−𝑁𝑇𝐶𝐽2𝜎𝐿𝑒)
[

𝜀

a2 (1 + 𝑛 (𝐹 +
1

𝜎𝑉𝑎
) − 𝜂𝐽2) ((𝐽2 + 𝑛)(𝐽2𝜎 + 𝑛𝐿𝑒) −

𝐽4𝜎𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇) + 𝜎𝑅𝑠(𝐽
2𝜀𝑁𝐶𝑇 − (𝐽2 + 𝑛)) −

𝜎𝑅𝑛

(𝐽2𝜎+𝑛𝐿𝑛)
{(𝐽2𝜎 + 𝑛𝐿𝑒)(𝑁𝐴𝐿𝑛(𝐽2 +

𝑛) + 𝜀𝑁𝐴𝐽2) − 𝑁𝐴𝐽4𝜎𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀)}]  (33) 
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4. Stationary Convection 

 

 Putting 𝑛 = 0 in equation (33), we get 

𝑅𝑎 =
1

(𝜀−𝑁𝑇𝐶𝐿𝑒)
[
𝜀(𝜋2+𝑎2)

a2 (1 − 𝜂(𝜋2 + 𝑎2))(1 − 𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇) + 𝑅𝑠(𝜀𝑁𝐶𝑇 − 1) −

𝑅𝑛(𝑁𝐴𝐿𝑛 + 𝜀𝑁𝐴 − 𝑁𝐴𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀))]  (34) 

Equation (34) contains the kinematic viscoelastic parameter 𝐹. This equation is expressed 

in terms of the thermal Rayleigh number, which is an expression of 

𝑎, 𝑁𝐶𝑇 , 𝑁𝑇𝐶 , 𝐿𝑒, 𝑁𝐴, 𝑅𝑠, 𝑅𝑛, 𝐿𝑛,  and 𝜀. 

Substitute 𝑎2 = 𝑥𝜋2 in equation (33), in the absence of Soret and Dufour parameters, we 

get: 

𝑅𝑎 =
(1+𝑥)

𝑥
(1 − 𝜂(1 + 𝑥)𝜋2) −

𝑅𝑠

𝜀
−

𝑅𝑛

𝜀
(𝑁𝐴𝐿𝑛 + 𝜀𝑁𝐴)                (35) 

We examine the derivative of 𝑅𝑎 with respect to 𝜂 

𝜕𝑅𝑎

𝜕𝜂
=

−𝜀(1 − 𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇)

(𝜀 − 𝑁𝑇𝐶𝐿𝑒)
(
(𝜋2 + 𝑎2)2

a2
) 

is positive if 1 − 𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇  and 𝜀 − 𝑁𝑇𝐶𝐿𝑒 both have opposite signs, then couple stress 

increases the stability. 

The derivative 𝑅𝑎 with respect to 𝑅𝑠 examine 

𝜕𝑅𝑎

𝜕𝑅𝑠

=
(𝜀𝑁𝐶𝑇 − 1)

(𝜀 − 𝑁𝑇𝐶𝐿𝑒)
 

is positive if (𝜀𝑁𝐶𝑇 − 1) and(𝜀 − 𝑁𝑇𝐶𝐿𝑒) both have the same sign then 𝑅𝑠 increase the 

stability. 

The derivative 𝑅𝑎 with respect to 𝑅𝑛 examine 

𝜕𝑅𝑎

𝜕𝑅𝑛

=
−(𝑁𝐴𝐿𝑛 + 𝜀𝑁𝐴 − 𝑁𝐴𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀))

(𝜀 − 𝑁𝑇𝐶𝐿𝑒)
 

is negative if 𝑁𝐴𝐿𝑛 + 𝜀𝑁𝐴 − 𝑁𝐴𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀) and 𝜀 − 𝑁𝑇𝐶𝐿𝑒 both have the same sign 

then 𝑅𝑛 decrease the instability. 

The derivative 𝑅𝑎 with respect to 𝐿𝑛 examine 

𝜕𝑅𝑎

𝜕𝐿𝑛
=

𝑅𝑛𝑁𝐴(𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇 − 1)

(𝜀 − 𝑁𝑇𝐶𝐿𝑒)
 

is positive if 𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇 − 1 and 𝜀 − 𝑁𝑇𝐶𝐿𝑒 both have the same sign, then 𝐿𝑛 increases the 

instability. 

We examine the derivative 𝑅𝑎 with respect to 𝑁𝐴 

𝜕𝑅𝑎

𝜕𝑁𝐴

=
𝑅𝑛(𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀) − 𝐿𝑛 − 𝜀)

(𝜀 − 𝑁𝑇𝐶𝐿𝑒)
 

is positive if 𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀) − 𝐿𝑛 − 𝜀 and 𝜀 − 𝑁𝑇𝐶𝐿𝑒 both have the same sign then 𝑁𝐴 

increase the instability. 

 



710 Thermosolutal Instability of Visco-Elastic Nanofluids 

 

5. Oscillatory Convection 

 

In equation (33) put 𝑛 = 𝑖𝜔 and get 

𝑅𝑎 =
1

(𝐽2𝜎𝜀−𝑁𝑇𝐶𝐽2𝜎𝐿𝑒+𝑖𝜔𝜀𝐿𝑒)
[

𝜀

a2 (1 + 𝑖𝜔 (𝐹 +
1

𝜎𝑉𝑎
) − 𝜂𝐽2) ((𝐽2 + 𝑖𝜔)(𝐽2𝜎 + 𝑖𝜔𝐿𝑒) −

𝐽4𝜎𝐿𝑒𝑁𝑇𝐶𝑁𝐶𝑇) + 𝜎𝑅𝑠(𝐽
2𝜀𝑁𝐶𝑇 − (𝐽2 + 𝑖𝜔)) −

𝜎𝑅𝑛

(𝐽2𝜎+𝑖𝜔𝐿𝑛)
{(𝐽2𝜎 + 𝑖𝜔𝐿𝑒)(𝑁𝐴𝐿𝑛(𝐽2 +

𝑖𝜔) + 𝜀𝑁𝐴𝐽2) − 𝑁𝐴𝐽4𝜎𝐿𝑒𝑁𝑇𝐶(𝐿𝑛𝑁𝐶𝑇 + 𝜀)}] (36) 

In the absence of Soret and Dufour parameters, taking heat capacity ratio 𝜎 as unity, we get 

𝑅𝑎 =
1

(𝐽2𝜀+𝑖𝜔𝜀𝐿𝑒)
[

𝜀

a2 (1 + 𝑖𝜔 (𝐹 +
1

𝑉𝑎
) − 𝜂𝐽2) (𝐽2 + 𝑖𝜔)(𝐽2𝜎 + 𝑖𝜔𝐿𝑒) − 𝑅𝑠(𝐽

2 +

𝑖𝜔) −
𝑅𝑛

(𝐽2+𝑖𝜔𝐿𝑛)
{(𝐽2 + 𝑖𝜔𝐿𝑒)(𝑁𝐴𝐿𝑛(𝐽2 + 𝑖𝜔) + 𝜀𝑁𝐴𝐽2)}]   (37) 

After separating real and imaginary parts of equation (36), we get in the form 

𝑅𝑎 = ∆1 + 𝑖𝜔∆2  

where ∆1= 𝐽2 [
𝜀

a2 {(1 − 𝜂𝐽2)(𝐽4 − 𝜔2𝐿𝑒) − 𝜔2 (𝐹 +
1

𝑉𝑎
) (1 + 𝐿𝑒)𝐽2} − 𝑅𝑠𝐽

2 −

𝑅𝑛𝑁𝐴𝐽2

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) − 𝜔2𝐿𝑒𝐿𝑛} −

𝑅𝑛𝑁𝐴𝐽2𝐿𝑛𝜔2

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) + 𝐿𝑛}] +

𝜔2𝐿𝑒 [
𝜀

a2 {(𝐹 +
1

𝑉𝑎
) (𝐽4 − 𝜔2𝐿𝑒) + (1 − 𝜂𝐽2)(1 + 𝐿𝑒)𝐽2} − 𝑅𝑠 +

𝑅𝑛𝑁𝐴𝐿𝑛

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) − 𝜔2𝐿𝑒𝐿𝑛} −

𝑅𝑛𝑁𝐴𝐽4

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) + 𝐿𝑛}] and  

∆2= −𝐿𝑒 [
𝜀

a2 {(1 − 𝜂𝐽2)(𝐽4 − 𝜔2𝐿𝑒) − 𝜔2 (𝐹 +
1

𝑉𝑎
) (1 + 𝐿𝑒)𝐽2} − 𝑅𝑠𝐽

2 −

𝑅𝑛𝑁𝐴𝐽2

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) − 𝜔2𝐿𝑒𝐿𝑛} −

𝑅𝑛𝑁𝐴𝐽2𝐿𝑛𝜔2

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) − 𝐿𝑛}] + 𝐽2 [

𝜀

a2 {(𝐹 +

1

𝑉𝑎
) (𝐽4 − 𝜔2𝐿𝑒) + (1 − 𝜂𝐽2)(1 + 𝐿𝑒)𝐽2} − 𝑅𝑠 +

𝑅𝑛𝑁𝐴𝐿𝑛

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) −

𝜔2𝐿𝑒𝐿𝑛} −
𝑅𝑛𝑁𝐴𝐽4

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) − 𝐿𝑛}]  

With oscillatory onset ∆2= 0 and 𝜔 ≠ 0,  this gives the relation 

𝑎1(𝜔
2)2 + 𝑎2𝜔

2 + 𝑎3 = 0     (38) 

where 𝑎1 =
𝜀𝐿𝑒𝐿𝑛2

a2
{𝐿𝑒(1 − 𝜂𝐽2) + (1 + 𝐿𝑒)𝐽2},  

𝑎2 =
𝜀𝐽2

a2 [𝐽2 {(1 − 𝜂𝐽2) + (𝐹 +
1

𝑉𝑎
) (1 + 𝐿𝑒)𝐽2} + 𝐿𝑛2 {(𝐹 +

1

𝑉𝑎
) 𝐽4 + (1 −

𝜂𝐽2)(1 + 𝐿𝑒)𝐽2} − 𝐿𝑒𝐿𝑛2(1 − 𝜂𝐽2)𝐽2 − 𝐿𝑒 (𝐹 +
1

𝑉𝑎
) 𝐽4] + 𝑅𝑠𝐿𝑛2𝐽2(𝐿𝑒 − 1 +

𝑅𝑛𝑁𝐴𝐽2𝐿𝑒2𝐿𝑛(−𝐿𝑒 + (𝐿𝑒 + 𝜀) − 𝐿𝑛),   
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𝑎3 = −
𝜀𝐿𝑒𝐽8

a2
(1 − 𝜂𝐽2) + 𝑅𝑠𝐽

2(𝐿𝑒 − 1) + 𝑅𝑛𝐽6𝑁𝐴{(𝐿𝑛 + 𝜀)(1 + 𝐿𝑛) − 𝐿𝑒(𝐿𝑛 +

𝜀) + 𝐿𝑛} +
𝜀𝐽6

a2 {(𝐹 +
1

𝑉𝑎
) 𝐽4 + (1 − 𝜂𝐽2)(1 + 𝐿𝑒)𝐽2}. 

Then  

𝑅𝑜𝑠𝑐 = 𝐽2 [
𝜀

a2 {(1 − 𝜂𝐽2)(𝐽4 − 𝜔2𝐿𝑒) − 𝜔2 (𝐹 +
1

𝑉𝑎
) (1 + 𝐿𝑒)𝐽2} − 𝑅𝑠𝐽

2 −

𝑅𝑛𝑁𝐴𝐽2

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) − 𝜔2𝐿𝑒𝐿𝑛} −

𝑅𝑛𝑁𝐴𝐽2𝐿𝑛𝜔2

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) + 𝐿𝑛}] +

𝜔2𝐿𝑒 [
𝜀

a2 {(𝐹 +
1

𝑉𝑎
) (𝐽4 − 𝜔2𝐿𝑒) + (1 − 𝜂𝐽2)(1 + 𝐿𝑒)𝐽2} − 𝑅𝑠 +

𝑅𝑛𝑁𝐴𝐿𝑛

(𝐽4+𝜔2𝐿𝑛2)
{𝐽4(𝐿𝑛 + 𝜀) − 𝜔2𝐿𝑒𝐿𝑛} −

𝑅𝑛𝑁𝐴𝐽4

(𝐽4+𝜔2𝐿𝑛2)
{𝐿𝑒(𝐿𝑛 + 𝜀) + 𝐿𝑛}]  (39) 

For an oscillatory neutral solution, the positive root of 𝜔2 exits. If positive roots exist, then 

the critical thermal Rayleigh number for oscillatory convection can be derived by 

numerically minimizing (38) with respect to wave number, and if positive roots do not exist, 

then oscillatory convection is not possible. 

 

6. Results and Discussion 

 

Here, the stationary convection and the impact of various parameters in the nanofluid 

discussed as follows: 

Fig. 1 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝐿𝑒 = 500, 𝑅𝑠 =

500,𝑁𝑇𝐶 = 5,𝑁𝐶𝑇 = 10, 𝑅𝑛 = −1,𝑁𝐴 = 5, 𝐿𝑛 = 100 and varying 𝜂 = 0.2, 𝜂 = 0.4, 𝜂 =

0.6, and observed that the curve of the Rayleigh number 𝑅𝑎 is increasing by 𝜂 is increasing. 

Thus, couple stress has a stabilizing effect. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Rayleigh number variation with wave number for various pair stress η values. 

 

Fig. 2 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2, 𝐿𝑒 =

500, 𝑁𝑇𝐶 = 5,𝑁𝐶𝑇 = 10, 𝑅𝑛 = −1,𝑁𝐴 = 5, 𝐿𝑛 = 100 and varying 𝑅𝑠 = 1000, 𝑅𝑠 =

1500, 𝑅𝑠 = 2000, and observed that the curve of the Rayleigh number 𝑅𝑎 is decreasing by 

𝑅𝑠 is increasing. So, the solutal Rayleigh number has a destabilizing effect. 
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Fig. 2. Rayleigh number variation with wave number for various pairs of solutal Rayleigh numbers 

𝑅𝑠 values. 

 

Fig. 3 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2 𝐿𝑒 =

500, 𝑁𝑇𝐶 = 5,𝑁𝐶𝑇 = 10, 𝑅𝑛 = −1,𝑁𝐴 = 5, 𝑅𝑠 = 500 and varying 𝐿𝑛 = 100, 𝐿𝑛 =

200, 𝐿𝑛 = 300, and observed that the curve of the Rayleigh number 𝑅𝑎 is increasing by 𝐿𝑛 

is increasing. So, the nanofluid Lewis number has a stabilizing effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Rayleigh number variation with wave number for various pair nanofluid Lewis number 𝐿𝑛 values. 

 

Fig. 4 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2 𝐿𝑒 =

500, 𝑁𝑇𝐶 = 5,𝑁𝐶𝑇 = 10,𝑁𝐴 = 5, 𝑅𝑠 = 500, 𝐿𝑛 = 100 and varying 𝑅𝑛 = −1, 𝑅𝑛 =

0, 𝑅𝑛 = 1, and observed that the curve of the Rayleigh number 𝑅𝑎 is decreasing by 𝑅𝑛 is 

increasing. So, the concentration Rayleigh number has a destabilizing effect. 
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Fig. 4. Rayleigh number variation with wave number for various pair concentrations. Rayleigh number  𝑅𝑛 values. 

 

Fig. 5 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2, 𝑁𝑇𝐶 =

5,𝑁𝐶𝑇 = 10,𝑁𝐴 = 5, 𝑅𝑛 = −1, 𝑅𝑠 = 500, 𝐿𝑛 = 100 and varying 𝐿𝑒 = 10, 𝐿𝑒 = 50, 𝐿𝑒 =

100, and observed that the curve of the Rayleigh number 𝑅𝑎 is decreasing by 𝑅𝑛 is 

increasing. So thermosolutal Lewis number has a destabilizing effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Rayleigh number variation with wave number for various pair thermosolutal Lewis number 𝐿𝑒 values. 

 

Fig. 6 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2, 𝑁𝑇𝐶 =

5,𝑁𝐶𝑇 = 10, 𝐿𝑒 = 500, 𝑅𝑛 = −1, 𝑅𝑠 = 500, 𝐿𝑛 = 100 and varying 𝑁𝐴 = 5,𝑁𝐴 =

10,𝑁𝐴 = 15, and observed that the curve of the Rayleigh number 𝑅𝑎 is increasing by 𝑁𝐴 is 

increasing. So modified diffusivity ratio number 𝑁𝐴 has a stabilizing effect. 
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Fig. 6. Rayleigh number variation with wave number for various pairs of modified diffusivity ratio 

numbers 𝑁𝐴 values. 

 

Fig. 7 for the critical Rayleigh number vs wave number 𝑎 for 𝜀 = 0.5, 𝜂 = 0.2, 𝑁𝐴 =

5,𝑁𝐶𝑇 = 10, 𝐿𝑒 = 500, 𝑅𝑛 = −1, 𝑅𝑠 = 500, 𝐿𝑛 = 100 and varying 𝑁𝑇𝐶 = 1,𝑁𝑇𝐶 =

5,𝑁𝑇𝐶 = 10, and observed that the curve of the Rayleigh number 𝑅𝑎 is decreasing by 𝑁𝑇𝐶 

is increasing. So, the Soret parameter number 𝑁𝑇𝐶 has a destabilizing effect. 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Rayleigh number variation with wave number for various pair Soret parameter number 𝑁𝑇𝐶 values. 

 

7. Conclusion 

 

The effect of couple stress, Thermosolutal instability of Rivlin-Erikson nanofluids saturated 

in a horizontal layer with a porous medium heated from below, was studied under the 

boundary conditions. In linear stability analysis, and examined the effect of various 

parameters. 
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(i) The Rayleigh number depends on concentration, temperature, couple stress, and 

nanoparticle parameters but does not depend on the kinematic viscoelasticity 

parameter. 

(ii) The Rayleigh number does not depend on the modified particle density number. 

(iii) The couple stress 𝜂, nanofluid Lewis number 𝐿𝑛, and modified diffusivity ratio 𝑁𝐴 

enhance the instability of thermosolutal convection. 

(iv) Solutal Rayleigh number 𝑅𝑠, concentration Rayleigh number 𝑅𝑛, thermosolutal Lewis 

number 𝐿𝑒 has a destabilizing effect on the system. 

(v) Soret parameter 𝑁𝑇𝐶 has destabilized the system. 
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