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Abstract 

Singular boundary value problems (SBVPs) have become prevalent in scientific applications 

such as gas dynamics, chemical reactions, and structural mechanics. In review, the numerical 

approximation of solutions to differential equations serves as a crucial mechanism across 

various scientific and engineering fields, facilitating the assessment and analysis of complex 

systems that are not readily solvable through analytical methods.  Due to this, the numerical 

methods are very crucial. As a result, numerical methods are of significant importance.  So, 

the wavelet-based Galerkin method using Fibonacci wavelets for the numerical solution of 

SBVPs is introduced. The paper also provides illustrative examples to demonstrate the 

effectiveness and accuracy of the method. 
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1.   Introduction 

Singular boundary value problems (SBVPs) play a crucial role in various scientific 

disciplines and are commonly encountered in the mathematical modeling of practical 

problems such as the theory of three-layer beam, elastic stability, nuclear physics, and more. 

This study focuses on examining SBVPs in the following form; 

𝑑2𝑦

𝑑𝑥2
+ 𝑃(𝑥)

𝑑𝑦

𝑑𝑥
+ 𝑄(𝑥)𝑦 = 𝑓(𝑥)

With the boundary conditions       𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽

} 

Where the functions are analytic in 𝑥 ∈ 0,1and the functions 𝑃(𝑥)and 𝑄(𝑥)are not analytic 

𝑥 = 0 (One of the boundary point)i.e. Singularity at 𝑥 = 0. 

Lately, a range of numerical methods has been utilized to solve differential equations.  

These methods encompass the Numerical method [1], Legendre wavelet method [2], 

Laguerre Wavelet-Galerkin method [3]. and others. 

Wavelets have garnered considerable attention because of their robust mathematical 

properties and diverse applications in a variety of complex physical phenomena.  Due to the 
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properties of wavelets, viz., orthogonality, compact support, and ability to provide a precise 

representation of a variety of functions and operators at different levels of resolution, 

wavelet methods have attracted a lot of attention in the last three decades for the numerical 

solution of differential equations [4]. Recently, there has been a surge in interest in wavelet 

functions among scholars in both theoretical and practical domains. Some of them are the 

Fibonacci wavelet collocation method [5], Wavelet based lifting schemes [6], and the 

Fibonacci wavelet operational matrix approach [7]. 

Anticipate progress in numerical techniques using wavelet bases to attain high spatial 

and spectral resolutions. A key idea in approximation theory is to represent a smooth 

function as a series expansion using orthogonal polynomials.  This approach serves as the 

foundation for spectral methods in solving differential equations with functional arguments. 

The exploration of wavelet function bases is being examined as an alternative to traditional 

polynomial trail functions in the analysis of differential equations using finite element 

methods. The Galerkin method is widely recognized in the field of applied mathematics for 

its convenience and practicality [8,9]. 

The wavelet-Galerkin method offers significant advantages over both the finite 

difference and finite element methods, making it a widely utilized approach in various 

scientific and engineering fields.In some cases, the wavelet technique presents a compelling 

alternative to the finite element method, offering an effective means of numerically solving 

differential equations, especially boundary value problems.  

This research introduces the FWGM, which is based on Fibonacci wavelets, for 

numerically solving SBVPs. This method involves representing the solution using 

Fibonacci wavelets with unspecified coefficients, and using the characteristics of Fibonacci 

wavelets in combination with the Galerkin method to calculate these coefficients and obtain 

a numerical solution for the SBVPs.   

The organization of the paper is as follows: Section 2 introduces Fibonacci wavelets 

and their application in function approximation. Section 3 is dedicated to the Galerkin 

method based on Fibonacci wavelets for addressing SBVPs. Section 4 presents the 

numerical experiments conducted. Finally, Section 5 offers a discussion on the calculations 

drawn from the proposed research. 

 

2. Fibonacci Wavelets and Function Approximation 

 

Fibonacci Polynomials: The standard description of Fibonacci polynomials [10,11] is 

outlined as follows: 

𝐹̃𝑚(𝑥) = {

1,𝑚 = 0
𝑥,𝑚 = 1

𝑥𝐹̃𝑚−1(𝑥) + 𝐹̃𝑚−2(𝑥),𝑚 > 1
                             (2.1) 

Furthermore, these polynomials can be represented in the form of powers as demonstrated: 

𝐹̃𝑚(𝑥) = ∑ (
𝑚 − 𝑖
𝑖

)
𝑚

2
𝑖=0

𝑥𝑚−2𝑖 , 𝑚 > 0                             (2.2) 

Also, if 𝐹̃𝑚(𝑥),𝑚 = 0,1, . . . . 𝑀 − 1 are Fibonacci polynomials, then 
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(2.3) 

Fibonacci wavelets: Fibonacci wavelets [6,7] are defined in the following manner: 
1 1ˆ (2 ) 122 , < ,

( ) = 1 1, 2 2

0, otherwise,

m

k kF x n n nm x
x k kn m W

− − − + 
− −


                         

(2.4)  

In which   ( ) ( )
1ˆ

m

F x F xm m
W

= with  ( ) 
1

2

0

( ) =mW x F x d xm  

where 𝑊𝑚, for = 0,1,2,..., 1m M − are obtained by equation (2.3), and m  

denotes the order of the Fibonacci polynomials and 1, =1,2,...,2 ,kn k N−  .  

For instance, for 1k =   and 3M = , the Fibonacci wavelet bases as given below:  

𝜓1,0(𝑥) = 1   ,      

𝜓1,1(𝑥) = √3𝑥   ,   

𝜓1,2(𝑥) =
1

2
√
15

7
(1 + 𝑥2)  and so on. 

 

Function approximation: 

Let us consider  ( 2( ) 0 , 1y x L  that can be represented through Fibonacci wavelets in 

the subsequent way: 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
∞
𝑚=0

∞
𝑛=1 𝜓𝑛,𝑚(𝑥)                                    (2.5) 

By truncating the infinite series referenced earlier, we have 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀−1
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                    (2.6) 

 

3. Method of Solution 

 

Consider the SBVP in the following form, 

( ) ( ) ( )
2

2

d y d y
P x Q x y f x

d xd x
+ + =                             (3.1) 

With boundary conditions        ( ) ( ),y a y b = =
                                   

(3.2) 

Where the functions 𝑃(𝑥), 𝑄(𝑥)and 𝑓(𝑥)are analytic in 𝑥 ∈ 0,1and the functions 

𝑃(𝑥) and 𝑄(𝑥)are not analytic 𝑥 = 0 i.e. Singularity at 𝑥 = 0. 

Rewrite the Eq. (3.1) as    

( ) ( ) ( )
2

2
( )

d y d y
R x P x Q x y f x

d xd x
= + + −

                

(3.3) 

In cases where  𝑅(𝑥)the residual of Eq. (3.1) equals zero, the exact solution is identified, 

and the boundary conditions are satisfied. 
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The trial series solution of Eq. (3.1), within the range of ( 0 , 1  meets the specified 

boundary conditions and can be expanded to a modified Fibonacci wavelet by introducing 

unknown parameters in the process as follows: 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀−1
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                                 (3.4) 

The unknown coefficients
, 'n mc s , which are to be determined,  

The precision of the solution is improved by choosing higher-degree Fibonacci wavelet 

polynomials. 

Now, differentating Eq. (3.4) w.r.t. x  twice in order to obtain the values of 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
 

and substitute these values in Eq. (3.3). Solve the unknown parameters 𝑐𝑛,𝑚′𝑠 by using 

weight functions as the assumed basis elements and integrating the boundary values along 

with the residual to achieve zero [12]. 

i.e.  ∫ 𝜓1,𝑚(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0,   𝑚 = 0,1,2, . . . . . . ..

 
on solving the system of linear algebraic equations, which can be solved by the unknown 

parameters and then the unkwon parameters are obtained. Substitute these into the trial 

solution, referred to as Eq. (3.4), to calculate the numerical solution for Eq. (3.1). 

In order to assess the accuracy of the FWGM in the test cases, the maximum absolute error 

is considered to calculate the error. The maximum absolute error is defined as: 

max max ( ) ( )e nE y x y x= − , 

where ( )ey x  and ( )ny x  are exact and numerical solution. 

 

4. Numerical Experiment 

 

Problem 4.1 First, consider the SBVP(In Eq. (3.1) 𝑃(𝑥) =
1

𝑥
, 𝑄(𝑥) = 1,  

𝑎𝑛𝑑 𝑓(𝑥) = 𝑥2 − 𝑥3 − 9𝑥 + 4)i.e. 

2
2 3

2

1
9 4 , 0 1

d y d y
y x x x x

d x x d x
+ + = − − +                 (4.1) 

With boundary conditions:     ( ) ( )0 0 , 1 0y y= =
                                       

(4.2) 

The Eq. (4.1) is implemented according to the procedure outlined in Section 3 in the 

following manner: 

The residual of Eq. (4.1) can be written as:   

𝑅(𝑥) = 𝑥
𝑑2𝑦

𝑑𝑥2
+

𝑑𝑦

𝑑𝑥
+ 𝑥𝑦 − (𝑥3 − 𝑥4 − 9𝑥2 + 4𝑥)                      (4.3) 

Subsequently, the appropriate weight function 𝑤(𝑥) = 𝑥(1 − 𝑥) must be chosen for 

Fibonacci wavelet bases to satisfy the prescribed boundary conditions in Eq. (4.2). 

i.e. 𝜓(𝑥) = 𝑤(𝑥) × 𝜓(𝑥) 
𝜓1,0(𝑥) = 𝜓1,0(𝑥) × 𝑥(1 − 𝑥) = 𝑥(1 − 𝑥) 

𝜓1,1(𝑥) = 𝜓1,1(𝑥) × 𝑥(1 − 𝑥) = (√3𝑥)𝑥(1 − 𝑥) 
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𝜓1,2(𝑥) = 𝜓1,2(𝑥) × 𝑥(1 − 𝑥) =
1

2
√
15

7
(1 + 𝑥2)𝑥(1 − 𝑥) 

The trail solution of Eq. (4.1) for   𝑘 = 1 and 𝑚 = 2 is given by 

𝑦(𝑥) = 𝑐1,0𝜓1,0(𝑥) + 𝑐1,1𝜓1,1(𝑥) + 𝑐1,2𝜓1,2(𝑥)                         (4.4) 

Now, Eq. (4.4) becomes          

𝑦(𝑥) = 𝑐1,0{𝑥(1 − 𝑥)} + 𝑐1,1{(√3𝑥)𝑥(1 − 𝑥)} + 

𝑐1,2 {
1

2
√
15

7
(1 + 𝑥2)𝑥(1 − 𝑥)}                             (4.5) 

By differentiating Eq. (4.5) twice with respect to the specified variable and substituting the 

corresponding values into Eq. (4.3), we obtain the residual of Eq. (4.1). The "weight 

functions" utilized are identical to the basis functions.  

Subsequently, employing the weighted Galerkin method, we examine the following:             

∫ 𝜓1,𝑗(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0, 𝑗 = 0,1,2                                (4.6) 

For 𝑗 = 0,1,2 in Eq. (4.6),  

i.e. 

∫ 𝜓1,0(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,1(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,2(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

}
 
 

 
 

                                      (4.7) 

From Eq. (4.7), a system of algebraic equations with unknown coefficients, namely  𝑐1,0, 

𝑐1,1and 𝑐1,2 can be determined.  By applying the Gauss elimination method, the values of  

𝑐1,0 = −0.0269, 𝑐1,1 = 0.5516, and 𝑐1,2 = 0.0526 can be obtained. Substituting these 

values in Eq. (4.5) yields the numerical solution. The comparison of the numerical solution 

and the absolute errors is displayed in Table 1, while the numerical solution is depicted in 

Fig. 1 alongside the exact solution of Eq. (4.1)𝑦(𝑥) = 𝑥2 − 𝑥3 [3]. 
 

Table 1. Comparison of numerical solution and absolute error in relation to the exact solution for 

problem 4.1. 

 

x 
Numerical solution Exact solution Absolute error 

FDM Ref [3] FWGM  FDM Ref [3] FWGM 

0.1 -0.014709 0.010673 0.009677 0.009000 2.37e-02 1.67e-03 6.77e-04 

0.2 -0.013726 0.033159 0.032675 0.032000 4.57e-02 1.16e-03 6.75e-04 

0.3 -0.002584 0.063290 0.063354 0.063000 6.56e-02 2.90e-04 3.54e-04 

0.4 0.015387 0.095881 0.095981 0.096000 8.06e-02 1.19e-04 1.90e-05 

0.5 0.036564 0.125034 0.124731 0.125000 8.84e-02 3.40e-05 2.69e-04 

0.6 0.056572 0.144429 0.143688 0.144000 8.74e-02 4.29e-04 3.12e-04 

0.7 0.070066 0.147623 0.146841 0.147000 7.69e-02 6.23e-04 1.59e-04 

0.8 0.070568 0.128350 0.128089 0.128000 5.74e-02 3.50e-04 8.90e-05 

0.9 0.050294 0.080816 0.080862 0.081000 3.07e-02 1.84e-04 1.38e-04 
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Fig. 1. Comparison of numerical solution with exact solution of the problem 4.1. 

 

Problem 4.2 Next, consider another SBVP(In Eq. (3.1) 𝑃(𝑥) =
8

𝑥
, 𝑄(𝑥) = 𝑥 and 

𝑓(𝑥) = 𝑥5 − 𝑥4 + 44𝑥2 − 30𝑥)i.e.                 
2

5 4 2

2

8
44 30 , 0 1

d y d y
x y x x x x x

d x x d x
+ + = − + −  

         

(4.8) 

With boundary conditions:  ( ) ( )0 0 , 1 0y y= =
                                           

(4.9) 

In section and in the preceding problem, the values of 𝑐1,0 = 1.0036, 𝑐1,1 = 0.0022 and 

𝑐1,2 = −1.3722 are derived. By substituting these values into Eq. (4.5), we arrive at the 

numerical solution. The comparison between the numerical solution and the absolute errors 

is outlined in Table 2, and the numerical solution with the exact solution of Eq. (4.8) is 

𝑦(𝑥) = 𝑥4 − 𝑥3 [3] depicted in Fig. 2. 
 

Table 2. Comparison of numerical solution and absolute error in relation to the exact solution for 

problem 4.2. 
 

x 
Numerical solution Exact solution Absolute error 

FDM Ref [3] FWGM  FDM Ref [3] FWGM 

0.1 0.024647 -0.000823 -0.000937 -0.000900 2.55e-02 7.70e-05 3.70e-05 

0.2 0.024538 -0.004844 -0.006426 -0.006400 3.09e-02 1.56e-03 2.60e-05 

0.3 0.016024 -0.016861 -0.018899 -0.018900 3.40e-02 2.04e-03 1.00e-06 

0.4 -0.000072 -0.037304 -0.038381 -0.038400 3.83e-02 1.10e-03 1.90e-05 

0.5 -0.022021 -0.062986 -0.062482 -0.062500 4.05e-02 4.86e-04 1.80e-05 

0.6 -0.045926 -0.087854 -0.086406 -0.086400 4.05e-02 1.45e-03 6.00e-06 

0.7 -0.065532 -0.103744 -0.102944 -0.102900 3.74e-02 8.44e-04 4.40e-05 

0.8 -0.072190 -0.101131 -0.102477 -0.102400 3.02e-02 1.27e-03 7.70e-05 

0.9 -0.054840 -0.069880 -0.072976 -0.072900 1.81e-02 3.02e-03 7.60e-05 
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Fig. 2. Comparison of numerical solution with exact solution of the problem 4.2. 

 

5. Conclusions 

 

This paper explores the Fibonanci wavelets-based Galerkin method for the solution of 

SBVPs numerically. The advancement of new research in numerical analysis is 

significantly enhanced by this, proving advantageous for emerging researchers. The method 

introduced has been applied to some examples, yielding results that are notably satisfactory 

when compared to other established numerical methods.The data presented in the tables and 

figures above indicate that the presented method yields numerical solutions that surpass 

those obtained by finite difference method (FDM) and other existing methods, approaching 

the exact solution more closely. And, the margin of error resulting from this approach is 

notably reduced in comparison to FDM and the existing method. Therefore, the use of 

Fibonacci wavelets in the Galerkin method has proven to be highly effective in solving 

singular boundary value problems (SBVPs).  
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