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Abstract 

In this paper, The Friedmann-Robertson-walker (FRW) cosmological model with bulk 

viscosity is investigated in the ( )Rf  theory of gravitation. For the Power and Exponential 

expansion, the field equations are solved. The functional form of the function ( )Rf  such as

( ) 2RRRf += is chosen for investigation. It is found that the bulk viscosity coefficient 

reacts similarly to the energy density; the model is viable only for 1−=k , which represents 

an open universe. The Phantom field potential and scalar field are obtained. 
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1.   Introduction 

The most remarkable achievement of cosmology is the accelerated expansion of the 

universe confirmed through various cosmological observations. After a century, Perlmutter 

et al. [1] have shown that the expansion is accelerating. Their significant work awarded 

them the Nobel Prize. It is thought that dark energy (DE), a type of unexplained energy with 

negative pressure may be responsible for the universe's accelerating expansion. To 

investigate and evaluate the cosmic behavior of the DE, a number of theoretical models has 

been developed. The simplest DE candidate is the cosmological constant. Quintessence [2], 

Phantom [3], Chaplygin gas [4] are models from the Bamba et al. [5], studied crossing of 

the phantom divide in modified gravity. The DE's equation of state (EoS) has not yet been 

precisely calculated because it is unknown. According to the observational data, the DE's 

EoS parameter (ꞷ) ranges from -1.46 to -0.78. Therefore, greater explanation is needed to 

comprehend the DE's nature. The Brans-Dicke theory of gravitation has solutions for dark 

energy, as shown by Katore et al. [6]. Recently Pawar et al. [7] have investigated 

accelerating expansion of dark matter and holographic DE in 𝑓(𝑇) gravity. Mete et al. [8] 

studied qualitative behavior of cosmological model with cosmic strings and minimally 

interacting dark energy.  
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A key alternative theory that can be used to explain the universe's accelerated 

expansion is the modification of the Einstein-Hilbert action of general relativity. When the

( )Rf , an arbitrary function of scalar curvature 𝑅, is replaced in the E-H action, we get the

( )Rf . Phantom crossing, equation-of-state singularities and local gravity constraints in

( )Rf  models studied by Amendola and Tsujikawa [9]. Hatkar and Katore [10] studied dark 

energy scenario in metric ( )Rf  formalism. Nozari and Azizi [11] investigated phantom-

like behavior in ( )Rf  gravity. Aktaş et al. [12] studied behaviors of dark energy and 

mesonic scalar field for anisotropic universe in ( )Rf   gravity. The FRW universe with two 

fluids in the ( )Rf  theory of gravitation has been examined by Katore and Hatkar [13]. 

Guarnizo et al. [14] have studied the geodesic deviation equation in the ( )Rf  gravity. 

Nzioki [15] has developed a new covariant formalism to treat spherically symmetric space–

time in the metric ( )Rf  theory.   

Viscosity is basically a measurement of the fluid’s resistance to flow and is classified 

into two types namely bulk and shear viscosity. Usually, bulk viscosity is related with 

isotropic universe while shear viscosity corresponds to anisotropic universe. Bulk viscosity 

plays an important role because it supports the universe's inflationary phase. Inflationary 

pressure caused by the gravity of the universe's matter distribution is defeated by negative 

bulk viscous pressure. Potential causes of the viscosity in the universe include the 

decoupling of neutrinos during the radiation era, the production of superstring during the 

quantum era, the origin of galaxies, particle collisions involving gravitation and the particle 

creation process. Above 10𝑘, neutrinos viscosity reduces the anisotropy. Therefore, bulk 

viscosity can be used to analyze the kinetics of dissipation. In another word, the presence 

of viscosity in the fluid introduces many interesting pictures in dynamics of homogeneous 

cosmological models, which is used to study the evolution of universe. Cosmologist study 

the viscous model to find an alternative model of the universe. The idea of viscous DE 

models has been presented in different ways to understand evolution of the universe. Singh 

[16] has investigated Observation on the Role of Bulk Viscosity in Present Scenario of the 

Evolution in FRW Model Universe. Mete et al. [17] have studied Bianchi type IX 

magnetized bulk viscous string cosmological Model in general relativity. Bhoyar et al. [18] 

explore accelerating universe with viscous cosmic string in quadratic form of teleparallel 

Gravity. Anisotropic LRS Bianchi type-V Cosmological models with bulk viscous string 

within the framework of saez-ballester theory in five-dimensional space-time shown by 

Daimary & Baruah [19]. Bianchi type-I cosmological model with perfect fluid in modified 

𝑓(𝑇) gravity studied by Mete et al. [20]. Five-dimensional Bianchi type- III metrics in the 

framework of Lyra geometry with matter source as a bulk viscous fluid with one-

dimensional cosmic string has been studied by Mete et al. [21]. Pawar and Dabre [22] 

investigated the Bianchi type VI0 space-time in the presence of string of clouds coupled 

with perfect fluid within the context of ),( TRf  gravity. Thick domain wall coupled with 

bulk viscous fluid in ( )2+n  dimensional flat FRW universe was initiated by Mete et al. 

[23]. Regular black holes universes without singularities and phantom scalar field 

transitions are discussed by Chataignier and Kamenshchik [24]. Sakti and Sulaksono [25] 



V. G. Mete et al., J. Sci. Res. 17 (1), 141-150 (2025) 143 

 

studied Dark energy stars with a phantom field. Gaikwad and Mule [26] have investigated 

Bianchi type-V Dark Energy Cosmological Model in 𝑓(𝑅, 𝑇) Theory of Gravitation. 

The above discussion and the investigation have motivated us to examine FRW space-

time with bulk viscosity within the framework of ( )Rf  gravity. As k  in the FRW space-

time represents a closed (𝑘 = 1), flat (𝑘 = 0) and open (𝑘 = −1) universe. In the present 

work, results are obtained in both the cases for 𝑘 = −1, which shows open universe. The 

paper is organized as follows: Preliminary definitions of 𝑓(𝑅) gravity are discussed in 

Section 2. Sections 3 and 4 deals with the derivation and solutions of the field equations. 

The conclusions are given in Section 5. 

  

2. Field Equations for FRW Model 

 

The current universe is isotropic and homogeneous, yet it is not static. There are only three 

prospective space-time metrics for an isotropic and homogeneous universe that are consistent 

with cosmological theories, as defined by Friedman-Robertson-Walker (FRW). The FRW 

line element represented by the following metric: 

( ) ,sin
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)( 2222
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tadtds                                       (1) 

where the 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑 ≤ 𝜋 are the azimuthal and polar angles of the spherical 

co-ordinate system. The curvature of the space is represented by k. Positive values 

correspond to real finite radius, while negative values suggest infinite radius and zero values 

indicate imaginary radius. The bulk viscous dark fluid is represented by the energy 

momentum tensor of the cosmic fluid, which is written [27] as 

      
𝑇𝜇𝜈 = (𝜌 + 𝑃)𝑢𝜇𝑢𝜈 − 𝑃𝑔𝜇𝜈    .                                                                                           (2)

                                            
Together with 𝑢𝜇𝑢𝜇 = 1 and 𝑃 = 𝑃 − 𝜂𝑢;𝜇

𝜇
  is the effective pressure where 𝜂 is the 

coefficient of bulk viscosity,  is the energy density. In co-moving coordinate from Eq. 

(2), we have 

       
𝑇1

1 = 𝑇2
2 = 𝑇3

3 = −𝑃,
   

𝑇4
4 = 𝜌 .                                                                                       (3) 

The most common easy method for explaining the relationship between energy density and 

pressure has been utilized. Here, we are interested in examining how bulk viscosity affects 

dark energy potential. The scalar field and potential are obtained by considering the relation 

𝑃 = 𝜌 in the EoS of Chaplygin gas, follow Chaubey [28]. So, implemented the technique 

with another dark energy field (Phantom field).                            

Now consider the action of the ( )Rf   theory of gravitation 

       
𝑆 =

1

𝑙2 ∫ 𝑑4𝑥√−𝑔 𝑓(𝑅) + 𝑆𝑚(𝑔𝜇𝜈 , 𝜓) ,                                                                         (4)
   

 

where 𝑙2 = 8𝜋𝐺,
 
𝜓 refers collectively denotes the matter fields. The field equations of 

theory of gravitation are 

       

𝐹(𝑅)𝑅𝜇𝜈 −
1

2
𝑓(𝑅)𝑔𝜇𝜈 − 𝛻𝜇𝛻𝜈𝐹(𝑅) + 𝑔𝜇𝜈𝛻𝜇𝛻𝜈𝐹(𝑅) = 𝑙2𝑇𝜇𝜈 ,                               (5)

    
where,  𝛻𝜇𝛻𝜈𝐹 =

1

√−𝑔
𝜕𝜇(√−𝑔𝑔𝜇𝜈𝜕𝜈) , 𝐹is the derivative of 𝑓 with respect to the real 

argument. It is generally known that when the Lagrangian is linear in 𝑅, i.e. when 𝑓(𝑅) =
𝑅, the General Relativity can be obtained from the ( )Rf . As a result of being of fourth 
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order, the field equation of the ( )Rf  is more complex than that of general relativity. A 

higher-order curvature effect is referred to as extra gravitational stress in the third and fourth 

terms in the left side of Eq. (5). The field Eq. (3) has the following form for the line element 

(1) using (5) 

       3𝐹 (
𝑎̈

𝑎
) + 3 (

𝑎̇

𝑎
) 𝐹̇ −

1

2
𝑓 = 𝑙2𝜌 ,                                                                                       (6)  

       𝐹 (−
𝑎̈

𝑎
− 2

𝑎̇2

𝑎2 − 2
𝑘

𝑎2) − 3 (
𝑎̇

𝑎
) 𝐹̇ +

1

2
𝑓 − 𝐹̈ = 𝑙2𝑃 ,                                        (7) 

where, the differentiation with respect to t  denoted by overdot. There are four unknowns 

(𝑎, 𝑓, 𝑃,  𝜌) and two equations. So, there need more conditions. As a first condition, we 

proceed by assuming the functional relation of the 𝑓(𝑅).The accelerated expansion of the 

universe can be achieved with the following function that was proposed by Starobinsky 

[29]. Temperature anisotropies in the CMB are acceptable with this possible inflationary 

idea. It is given by 𝑓(𝑅) = 𝑅 + 𝛼𝑅2 where 𝛼 > 0and in the second condition; consider the 

value of the scale factor. 

 

3. Case I Power Law Model 

 

In this section, the power law model of the following form is used to solve the field 

equations. The scale factor increases as time passes on. The universe is accelerating and 

expanding.                                                                                                    
          𝑎 = 𝑐1𝑡𝑛 ,                                                                                                                            (8)                                                                                                                                             
where 𝑐1and 𝑛 are positive constant.  

Using Eqns. (1) and (8), we get 

( ) .sin
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In the review of the ( )Rf  theory, Katore and Hatkar [6] have discussed some interesting 

features of this model and derived solution for the ( )Rf  gravity. Using Eqns. (6) – (8), we 

have expressions for energy density and pressure 

 𝜌 =
1

𝑙2 [
𝑘1𝑘

𝑡2𝑛+2 −
𝑘2

𝑡4 −
𝑘3

𝑡2 −
𝑘4𝑘

𝑡2𝑛 −
𝑘5𝑘2

𝑡4𝑛 ] ,                                                                          (10)

   𝑃 =
1

𝑙2 [
𝑘6

𝑡2 −
𝑘7

𝑡𝑛+2 +
𝑘8𝑘

𝑡2𝑛 +
𝑘9

𝑡4 −
𝑘10

𝑡𝑛+4 +
𝑘11𝑘

𝑡2𝑛+2 −
𝑘12

𝑡3𝑛+2 𝑘 −
𝑘13𝑘2

𝑡4𝑛 ],                                          (11)

                                

 

where, 

𝑘1 =
24𝛼𝑛 − 132𝛼𝑛2

𝑐1
2  , 𝑘2 = 36𝛼𝑛3 + 54𝛼𝑛2 + 72𝛼𝑛3 ,  𝑘3 = 3𝑛2 , 𝑘4 =

3

𝑐1
 , 𝑘5 =

18𝛼

𝑐1
4   , 

𝑘6 = 5𝑛2 − 2𝑛 , 𝑘7 = 2(𝑛2 − 𝑛) , 𝑘8 =
1

𝑐1
2   , 𝑘9 = 72𝑛𝛼 − 114𝑛2𝛼 + 108𝑛3𝛼 − 24𝑛4𝛼 ,  

𝑘10 =
4𝛼(𝑛2 − 𝑛)(12𝑛2 − 6𝑛)

𝑐1
 , 𝑘11 =

138𝛼𝑛2 + (24𝑛2𝛼 − 24𝑛𝛼)𝑐1

𝑐1
2  , 𝑘12 =

24𝛼(𝑛2 − 𝑛)

𝑐1
3   , 

𝑘13 =
6𝛼

𝑐1
4 .
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Fig. 1. Energy density v/s time. 

 

For 𝑃 = 𝜌 in the relation 𝑃 = 𝑃 − 𝜂𝑢;𝜇
𝜇

  and using Eqns. (10) – (11), we obtain 

 

𝜂 =
1

3𝑙2 {

96𝑘−588𝑛𝑘+2(𝑛−1)𝑡𝑛

𝑡2𝑛+1 +
48𝑛3−432𝑛2+180𝑛+144

𝑡3 −
2(4𝑛2−1)

𝑡

−
4𝑡𝑘

𝑛𝑡2𝑛 −
24𝑘2𝑡

𝑛𝑡4𝑛 +
48𝑛(1+2𝑛2−3𝑛)

𝑡𝑛+3 −
48𝑘(𝑛−1)

𝑡3𝑛+1

}.                                (12) 

 

 
Fig. 2. Coefficient of bulk viscosity v/s time. 

 

There are solutions of the field equations for 𝑐1 = 1 and 𝛼 = 2. When 𝑛 = 2 the energy 

density is negative for 𝑘 = 0 and 𝑘 = 1 and it is positive only for 𝑘 = −1 (Fig. 1). The 

coefficient of bulk viscosity is initially positive but quickly tends to be negative as the 

duration of time passes for 𝑛 = 2, 𝑘 = −1 (Fig. 2). As 𝑘 in the FRW space-time represents 

a closed (𝑘 = 1), flat (𝑘 = 0) and open (𝑘 = −1) universe. Negative energy density values 

are not of relevance to us. So, for 𝑛 = 2, the model is an open universe. 
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Phantom Field: The energy density and pressure of the Phantom field   are respectively 

given by  

            𝜌𝜑 = −
1

2
𝜑̇2 + 𝑉(𝜑) ,                                                                                         (13) 

              𝑃𝜑 = −
1

2
𝜑̇2 − 𝑉(𝜑) ,                                                                                        (14)

 where 𝑉(𝜑) is the Phantom field potential. To determine the scalar field and phantom field 

potential values, following Chaubey [28]. We consider the equation of state as 𝜔𝜌𝜑 = 𝑃𝜑 

in which we put𝜌𝜑 = 𝜌. So that from Eqns. (10), (13) – (14) and these relationships allow 

it to be easier to get the following expressions      

 𝑉(𝜑) = −
1

2
(𝑃𝜑 − 𝜌𝜑) 

𝑉(𝜑) = −
1

2
(𝜔𝜌𝜑 − 𝜌𝜑) 

𝑉(𝜑) = −
1

2
(𝜔 − 1)𝜌                                                                                                         (15)

 

 

𝑉(𝜑) = −
1

2
(𝜔 − 1)

1

𝑙2 [
𝑘1𝑘

𝑡2𝑛+2 −
𝑘2

𝑡4 −
𝑘3

𝑡2 −
𝑘4𝑘

𝑡2𝑛 −
𝑘5𝑘2

𝑡4𝑛 ] .                                         (16)        

From Eqns. (13) and (14)                                       

𝜑̇2 = −(𝑃𝜑 + 𝜌𝜑)
                                                                                         

 

𝜑̇2 = −(𝜔𝜌𝜑 + 𝜌𝜑) 

𝜑̇2 = −(1 + 𝜔)𝜌 

𝜑̇2 = −
(1 + 𝜔)

𝑙2
[

𝑘1𝑘

𝑡2𝑛+2
−

𝑘2

𝑡4
−

𝑘3

𝑡2
−

𝑘4𝑘

𝑡2𝑛
−

𝑘5𝑘2

𝑡4𝑛
] 

                               (17) 

The changing potential of the Phantom field across time is shown in Fig. 3. It is decreasing 

in time. When 𝑘 = −1 i.e. for the open universe, 𝑉(𝜑) is extremely large at 𝑡 = 0 which 

show that there was inflation during the universe's initial stages. Katore and Hatkar [10] 

have obtained the variation of phantom field potential with time.

 

 
Fig. 3. Phantom field potential v/s time. 
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4. Case II Exponential Expansion Law Model  

 

In this section, the exponential expansion law of the scale factor is used to solve the field 

equations. 

        𝑎 = 𝑐2𝑒𝑛𝑡 .
                                                                                                                                             (18) 

Using Eqns. (1) and (18), we get 

( ) .sin
1

2222

2

2
22

2

22









++
−

−=  ddr
kr

dr
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In this model, the universe is expanding and accelerating. The rate or expansion is constant. 

Singularities do not exist. We consider the functional form, as discussed in case I,  

𝑓(𝑅) = 𝑅 + 𝛼𝑅2 

𝜌 =
1

𝑙2 [−3𝑛2 −
(3+108𝛼𝑛2)𝑘

𝑐2
2𝑒2𝑛𝑡 −

6𝛼𝑘2

𝑐2
4𝑒4𝑛𝑡] ,                                                                                    (20)

                                                  𝑃 =
1

𝑙2 [𝑘1 −
𝑘2

𝑒𝑛𝑡 +
𝑘3𝑘

𝑒2𝑛𝑡 −
𝑘4𝑘

𝑒3𝑛𝑡 −
𝑘5𝑘2

𝑒4𝑛𝑡 ] ,                                                                                   (21)

                                                                    where,   

𝑘1 = (5𝑛2 + 48𝛼𝑛4) , 𝑘2 =
2𝑛2 + 48𝛼𝑛4

𝑐2
  , 𝑘3 =

(1 + 36𝛼𝑛2)

𝑐2
2   , 𝑘4 =

24𝛼𝑛2

𝑐2
3   , 𝑘5 =

18𝛼

𝑐2
4 .

 

 
Fig. 4. Energy density v/s time.

  

For 𝑃 = 𝜌 in the relation 𝑃 = 𝑃 − 𝜂𝑢;𝜇
𝜇

  and using Eqns. (20) and (21), we get coefficient 

of bulk viscosity η. 

( ) ( ) ( )
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For 𝑘 = 0, density is constant and negative. For 𝑘 = −1, it is positive and decreasing 

function of time. For 𝑘 = 1, it is negative. Thus, only for  𝑘 = −1 the model is viable, 

which shows an open universe (Fig. 4). The bulk viscosity coefficient behaves similarly to 

the energy density (Fig. 5).
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Fig. 5. Coefficient of bulk viscosity v/s time. 

 

Phantom field: 𝑉(𝜑) is the potential of the Phantom field. For determining the value of the 

scalar field and phantom field potential, follow Chaubey [28]. For that we anticipate 

equation of state as 𝜔𝜌𝜑 = 𝑃𝜑 in which we put 𝜌𝜑 = 𝜌. So that from Eqns. (20), (13) – (14), 

and We can easily obtain the following expressions using these relations 
 

𝑉(𝜑) = −
1

2
(𝜔 − 1)

1

𝑙2  [−3𝑛2 −
(3+108𝛼𝑛2)𝑘

𝑐2
2𝑒2𝑛𝑡 −

6𝛼𝑘2

𝑐2
4𝑒4𝑛𝑡] .                                                     (23)

                                                   

 

𝜑 =
√−(1+𝜔)

𝑙
∫ [−3𝑛2 −

(3+108𝛼𝑛2)𝑘

𝑐2
2𝑒2𝑛𝑡 −

6𝛼𝑘2

𝑐2
4𝑒4𝑛𝑡]

1

2
𝑑𝑡  .                                                             (24)

            For 𝑘 = −1, 𝑉(𝜑) is positive decreasing with increasing of time (Fig.6). The model is 

acceptable only for 𝑘 = −1, therefore for this open universe, the 𝑉(𝜑) dominates for 𝑡 = 0 

i.e. there is inflation near 𝑡 = 0. Katore and Hatkar [10] have obtained the variation of 

phantom field potential with time. 

 
Fig. 6. Phantom field potential v/s time. 
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6. Conclusion 

 

In this paper, we have studied Friedmann Robertson Walker space-time with bulk viscosity 

in the framework of the 𝑓(𝑅) theory of gravitation. Considering functional form 𝑓(𝑅) =

𝑅 + 𝛼𝑅2 to solve field equations, the phantom field potential and scalar fields are obtained. 

In the case I of the power law model, when 𝑛 = 2, the energy density is negative for 𝑘 = 0 

and 𝑘 = 1, but positive only for 𝑘 = −1. We found that the universe is open, and the nature 

of potential is decreasing. In case II of the exponential expansion model, if 𝑘 = 0 density 

is constant and negative, for 𝑘 = −1, it is a positive and decreasing function of time; for 

𝑘 = 1, it is negative. Thus, the model is viable only for 𝑘 = −1, which represents an open 

universe; here also, the nature of potential is decreasing. The bulk viscosity coefficient 

reacts similarly to the energy density in both cases. 
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