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Abstract 

Agriculture encompasses soil nurturing, crop cultivation, and influencing human life and the 

environment for global economic growth. Effective irrigation and soil moisture management 

directly impact crop yields. To optimize productivity, an IoT-based soil monitoring system 

analyses soil parameters and weather conditions, generating substantial data stored on cloud 

platforms for predictive analytics. However, traditional methods face challenges in accurate 

and timely predictions. Addressing this, a novel Proximity Scaling Laplace Kernelized 

Extreme Learning Classifier (PSLKELC) is proposed. It consists of three stages: 

preprocessing, dimensionality reduction, and classification. Preprocessing involves data 

cleaning and transformation. Dimensionality reduction utilizes McNemar statistic 

multidimensional scaling to select relevant variables. Finally, the Laplace kernelized Extreme 

Learning classifier predicts soil moisture using the reduced dataset. The experimental 

evaluation compares the PSLKELC method with conventional techniques, considering 

metrics like accuracy, mean absolute error, time, and space complexity across various data 

sample sizes. Results demonstrate that PSLKELC enhances soil moisture prediction accuracy 

with reduced time and space complexity compared to traditional methods. 
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1. Introduction 

 

Integration of Internet of Things (IoT) technology and cloud-based systems is an 

efficient approach to improving crop productivity by enabling farmers to monitor and 

manage soil moisture levels, make informed decisions for irrigation, and implement 

other agricultural practices. This technology allows farmers to collect data from the field, 

including soil moisture and weather conditions. Numerous deep learning and machine 
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learning techniques have been developed in the agricultural domain for predictive 

analytics.  

A multihead Long Short-Term Memory (LSTM) model was introduced by Datta et 

al. [1] to successfully forecast soil moisture by minimizing the time required for 

prediction. The designed model reduces both the mean absolute error and mean square 

error. However, the space complexity of the prediction remained a major challenging 

issue. A new encoder-decoder deep learning approach that depends on Long Short-Term 

Memory (EDT-LSTM) through residual learning was introduced by Li et al. [2] for 

predicting the variation of soil moisture. However, the approach did not demonstrate a 

significant improvement in accuracy level. 

The Multiscale Extrapolative Learning Algorithm (MELA), designed by 

Chakraborty et al. [3], aims to predict soil moisture. However, the dimensionality 

reduction process was not implemented in this approach, leading to increased 

complexity in the prediction process. An intelligent system was introduced by Singh et 

al. [4] for precision irrigation, utilizing Machine Learning techniques. However, deep 

learning was not implemented to enhance prediction accuracy. 

A new deep learning model based on LSTM was introduced by Patrizi et al. [5] to 

provide a virtual soil moisture prediction. However, the time required for prediction was 

not significantly minimized. An LSTM network was introduced by Filipovic et al. [6] 

for predicting the regional soil moisture with reduced error.   

But this approach did not include dimensionality reduction techniques in the analysis 

of regional soil moisture. An improved spatiotemporal soil moisture modeling approach 

was developed by Chandrappa et al. [7] to enhance the prediction of soil moisture and 

its inconsistency, aiming to support sustainable irrigation practices. However, this 

approach did not account for the influence of various environmental conditions on soil 

moisture prediction.  A stacked machine learning algorithm was introduced by Granata 

et al. [8] for detecting multi-step soil moisture with lesser computational time. However, 

the algorithm did not achieve higher accuracy in predicting soil moisture.  

Existing deep learning and machine learning techniques consider several drawbacks 

such as lower accuracy of soil moisture prediction, higher prediction time, failure to 

consider error rate, and dimensionality reduction techniques were not carried out. To 

overcome the problem, the proposed PSLKELC Model is developed to enhance the 

accuracy and minimize time and error.  

The novel contributions or innovation/originality of the proposed PSLKELC Model 

is described by, the novel PSLKELC Model is introduced to improve the soil moisture 

prediction from the cloud, based on three major processes namely preprocessing, 

dimensionality reduction, and classification. The data preprocessing is performed to 

handle missing and noisy data. Novel Proximity interpolation is applied in data 

preprocessing to generate new data points for filling in missing values. Noisy data was 

identified and eradicated by using a novel Tversky coefficient with less time. The novel 

McNemar statistical test is applied to perform dimensionality reduction to select the 

most relevant variables with minimum space complexity. To improve the prediction 
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accuracy of the soil moisture, the Laplace kernelized Extreme Learning classifier is used. 

Testing and training data are examined with a novel Laplace kernel function. The mean 

absolute error in the prediction process is reduced via the novel Nelder-Mead method. 

Experiment evaluations are carried out to estimate the performance of our PSLKELC 

Model and other techniques along with the various metrics.  

The paper is structured as follows: Section 2 provides the related works section 

reviews the related literature and previous research in the field. Section 3 presents a 

concise description of the PSLKELC Model with an architecture diagram. In section 4, 

the experimentation process and details of the dataset used are described. The 

performance results of the proposed technique and existing methods are discussed in 5 

using different metrics. Section 6 concludes the paper.  

 

2. Related Works  

 

A fast-learning technique called Extreme Learning Machine (ELM) was developed by 

Suchithra and Pai [9] for soil moisture prediction.  However, the designed model was not 

efficient in analyzing the soil parameters with higher accuracy. An integration of the linear 

mixed models and random forests was developed by Makungwe et al. [10] for spatial 

prediction of soil pH. However, the model failed to estimate the parameters of the error.    

Machine learning (ML) algorithms using IoT devices were introduced by Ikram et al. [11] 

to efficiently and accurately predict crop maximal yield by leveraging IoT devices. 

However, deep learning-based methods have not been utilized to maintain crop data. The 

global soil moisture was estimated using machine learning (ML) regression by Jia et al. 

[12]. But, the complexity of the soil moisture estimation was higher.  

 An attention-based convolutional long short-term memory approach was introduced by 

Li et al. [13] for multistep prediction of soil moisture. Short-term soil moisture prediction 

was attempted by Dubois et al. [14] using a machine learning technique. However, it failed 

to provide accurate results when tested with additional data. The naive Accumulative 

Representation model introduced by Basak et al. [15] aims to improve the prediction of 

soil moisture with reduced loss. However, it does not examine the timing and magnitude 

of responses at different soil moistures over longer time periods. 

Sensor based classification and evaluation methods were developed by Florence et al. 

[16] for estimating every churna depending on color, moisture content value, and pH value. 

But the accuracy was lesser. Deep learning was developed by Wang et al. [17] for soil 

moisture prediction with higher accuracy. Residual-EnDecode-Feedforward Attention 

Mechanism-LSTM performed by Li et al. [18] to obtain water resource utilization.  Deep 

learning regression network (DNNR) was investigated by Cai et al. [19] with higher 

accuracy. A hybrid modeling approach was employed by Zheng et al. [20] for forecasting 

soil moisture content. However, the space complexity was not considered. 
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3. Methodology 

 

Soil moisture prediction is a significant step in the agriculture domain. Soil moisture 

prediction refers to the process of forecasting the amount of water content present in the 

soil. This prediction is crucial in agriculture and environmental sciences since it directly 

impacts crop growth and irrigation management. By accurately predicting soil moisture 

levels, farmers can make necessary decisions about irrigation, leading to efficient crop 

productivity. Internet of Things (IoT) devices are equipped in fields to collect real-time 

data on soil moisture levels. With the above-said model, PSLKELC is developed to 

improve soil moisture prediction for precision agriculture. 

Fig. 1 given below shows the architecture diagram of the proposed PSLKELC model 

for accurate soil moisture prediction to assist farmers in crop cultivation.  The proposed 

technique consists of three major processes preprocessing, dimensionality reduction, and 

classification for improving the accuracy of soil moisture prediction to improve the crop 

yield.  The IoT device is used for collecting the soil parameters and weather conditions soil 

temperature, soil humidity, soil pressure, soil luminosity, rainfall per day, etc.  The 

collected data are transferred into the cloud for data storage and predictive analytics.    

 

 
Fig. 1. Architecture of proposed PSLKELC model. 

 

3.1. Materials and methods 

 

To perform the soil moisture prediction, the SMART FASAL (Smart Irrigation and 

Fertilization System for Precision Agriculture using Internet of Things and Cloud 

Infrastructure) dataset is taken from http://smartfasal.in/ftp-dataset-portal/. This portal 

stores the real-time soil data and the climate data for three types of crops namely Capsicum, 

http://smartfasal.in/ftp-dataset-portal/
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Wheat Dataset, and Rice Dataset. Among them, the rice dataset is considered to perform 

the soil moisture prediction for precision agriculture using IoT and Cloud. The dataset 

comprises 13 variables or features and 42666 instances. The aim is to effectively improve 

soil moisture prediction using the proposed technique.  

 

3.2. Data preprocessing  

 

Data preprocessing is a fundamental step in predictive data analysis where raw data is 

organized and cleaned to make it appropriate for further processing. It involves several 

essential tasks noisy data removal and missing data handling to ensure data quality and 

improve the effectiveness of subsequent analysis.  

To start with the raw input dataset ‘𝐷’ and formulated in the form of a matrix as given 

below.  

     𝐷 =

[
 
 
 
 

𝑓1 𝑓2 … 𝑓𝑛
𝑋11 𝑋12 … 𝑋1𝑛

𝑋21 𝑋22 … 𝑋2𝑛

⋮ ⋮ …  ⋮
𝑋𝑚1 𝑋𝑚2 … 𝑋𝑚𝑛]

 
 
 
 

,𝑚 = 𝑟𝑜𝑤𝑠, 𝑛 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑠                                          (1) 

From the above input matrix formulation as given in (1), ‘𝑛’ column features or 

variables {𝑓1, 𝑓2, … 𝑓𝑛} are present with overall sample instances of ‘𝑚 row respectively, 

𝑋11, 𝑋12. . 𝑋𝑚𝑛  are data points.  

With the above set of features matrix, the first missing data problem is solved by 

applying a Proximity interpolation. It is a method of finding new data points based on the 

distance of a discrete set of known data points.  

The formula for finding the data points is given below, 

    𝑄 =
|𝑋𝑎−𝑋𝑏|

𝑀𝑣+1
                                                                                                                           (2) 

Where 𝑄  denotes the output of the interpolation method,𝑋𝑎 denotes a data point after 

the missing data to be filled, 𝑋𝑏 denotes a data points before the missing data to be filled, 

𝑀𝑣  denotes a number of missing value between the two data points, |𝑋𝑎 − 𝑋𝑏|  denotes a 

distance between the data points after the missing data is filled and the data points before 

the missing data is filled.  

The noisy data removal process is performed to minimize the error of the data 

classification process. Noisy data is meaningless data that is generated due to faulty data 

collection, data entry errors etc. It is handled by applying a Tversky relationship is a way 

of measuring how data samples are related or close to each other.  

       𝑇 =
[𝑋𝑖 ∩ 𝑋𝑗]

  𝑝 (𝑋𝑖 ∩ 𝑋𝑗)+𝑞 (𝑋𝑖− 𝑋𝑗)
                                                                                               (3) 

Where,  𝑇 indicates a similarity coefficient, 𝑋𝑖  and 𝑋𝑗 denotes two data points in the 

particular column, 𝑋𝑖  ∩  𝑋𝑗  indicates a mutual dependence between the two data points, 

𝑋𝑖 − 𝑋𝑗 indicates a variance between the two data points. From (3), 𝑝 and  𝑞 indicates a 

parameter (𝑝, 𝑞 ≥ 0). The coefficient provides the output ranges between [0, 1]. If the 

coefficient provides an output value of '1,' it denotes a correct data point. On the other hand, 
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if the coefficient provides an output value of '0,' it denotes a noisy data point. These data 

points are removed to improve the accuracy of the data classification.  

 

3.3. McNemar statistic multidimensional scaling-based dimensionality reduction 

 

Dimensionality reduction is a process used in data analytics to reduce the number of 

variables in a dataset while preserving essential information. McNemar statistic 

multidimensional scaling is a dimensionality reduction technique by visualizing the level 

of similarity of individual cases of a dataset using the McNemar statistical test. It is used 

to measure the pairwise relationship among a set of variables in the dataset. 

Let us consider the number of features or variables. {𝑓1, 𝑓2, … 𝑓𝑛} . The McNemar statistical 

test is measured between the variables is estimated as follows,  

          𝛽 =
(𝑓𝑖−𝑓𝑗)

2

𝑓𝑖+𝑓𝑗
                                                                                                                (4) 

Where 𝛽 denotes a McNemar statistical test to measure the relationship between the 

variables 𝑓𝑖 and 𝑓𝑗. The McNemar statistical test provides the output ranges between 0 and 

1.  

         𝑍 = {
𝛽 > 0.5 ; 𝑠𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝛽 < 0.5 ; 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
                                                                     (5) 

Where 𝑍 denotes a multidimensional scaling output, 𝛽 indicates a statistical test.  If the 

statistical results provide an outcome greater than 0.5, then the variable is selected as 

relevant. If the statistical results provide an outcome lesser than 0.5, then the variable is 

selected as irrelevant.  In this way, relevant variables are selected for accurate classification, 

and other features are removed from the dataset. The selected variables are given to the 

next process resulting in minimizing the time and space complexity of soil moisture 

prediction. 

Algorithm 1, as described above, demonstrates the various processing steps for relevant 

variable selection based on a similarity measure. Initially, the number of variables is 

obtained from the dataset. Then, the relationships between variables are measured to 

determine their relevance. If the similarity coefficient is greater than 0.5, the variable is 

considered relevant; otherwise, it is considered irrelevant. The relevant variables are then 

chosen for soil moisture prediction, and the remaining variables are removed from 

consideration. This process helps to reduce both time and space complexity. 

 

Algorithm 1: McNemar statistic multidimensional scaling-based dimensionality 

reduction  

Input: Pre-processed dataset, number of variables {𝑓1, 𝑓2, … 𝑓𝑛} 
Output: Select relevant variables     

Begin 

1. Collect the number of variables 𝑓1, 𝑓2, … 𝑓𝑛 

2. For each variable ‘𝑓𝑖’  
3.           For each variable ‘𝑓𝑗’ 

4.       Measure the relationship ‘𝛽 ’ 
5. 𝒊𝒇 (𝛽 > 0.5)then 

6.                  Variable is said to be relevant  
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7. Select relevant variables 

8. else 

9.                Variable is said to be irrelevant 

10. Remove irrelevant variables  

11. end if 

12.  end for 

13.  End for  

End  

3.4. Laplace kernelized Extreme Learning classifier-based soil moisture prediction    

Finally, the classification process is performed to achieve accurate soil moisture prediction 

using the Laplace kernelized Extreme Learning classifier. The proposed classifier is a 

machine learning algorithm based on a single hidden layer feedforward neural network, 

offering better performance with an extremely fast learning speed. Unlike conventional 

ELM, this classifier does not require any iterative training. Instead, the Laplace radial 

kernel function is applied for data analysis to enhance the classification performance and 

minimize errors. 

 
Fig. 2. Construction of Laplace kernelized Extreme Learning classifier. 

 

Fig. 2 illustrates the structure of an Extreme Learning classifier, which is a type of feed-

forward neural network used for soil moisture detection through data categorization. The 

structure consists of an input layer, a hidden layer, and an output layer. The input layer of 

the Extreme Learning classifier receives the input data (i.e., selected variables) and passes 

it to the subsequent layers of artificial neurons for further processing. The input layer is 

located at the beginning of the Extreme Learning classifier. The output of one layer is fully 

connected to the next successive layer with an equivalent set of weights, forming the entire 

network. 

Let us consider that the training set {𝑋, 𝑌} where ‘𝑋1, 𝑋2, … , 𝑋𝑛’ indicates training data 

with the selected variables ‘{𝑓1, 𝑓2, … , 𝑓𝑘}’ and a label or output ‘𝑌’ representing output.  

The input layer in ELM only receives the input data without performing any computations. 

On the other hand, the output layer is linear. The important computation process is 

performed by the hidden layer, which provides results to the output layer. 
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The weights are fixed and have a straightforward solution that does not require any 

updating process. 

      𝐼𝑖 = ∑ [𝑋𝑖(𝑡) ∗𝑛
𝑖=1 𝑤𝑡𝑖𝑗] + 𝑅𝑏                                                                                                 (6) 

Where, 𝐼𝑖 denotes an activity of neurons at the input layer ‘𝑋𝑖(𝑡)’ denotes that the data 

with weight ‘𝑤𝑡𝑖𝑗’, and bias function 𝑅𝑏, ‘𝑤𝑡𝑖𝑗’ denotes a weight between the𝑗𝑡ℎ  input 

layer neuron and the 𝑖𝑡ℎ  hidden layer neuron.  

The input is transferred into the hidden layer where the training and testing data are 

analyzed by applying the Laplace RBF kernel. The Laplace RBF kernel ‘(𝐿𝐾)’ is expressed 

as follows, 

        𝐿𝐾 = 𝑒𝑥𝑝 (−
‖𝑋𝑡−𝑋𝑠‖

2

𝐷
)                                                                                              (7) 

Where ‘𝐷’ indicates a deviation, 𝑋𝑡 denotes training data which is more similar to the 

testing data ‘𝑋𝑠’ is classified as a particular class.  In other words, the computed training 

data is closer to the testing value being classified as a particular class. The kernel provides 

the outcomes in the ranges from 0 to 1. Therefore, the hidden layer output is given below. 

ℎ = ∑ 𝑤𝑡𝑖𝑗   𝜎 (𝑤𝑡𝑗𝑘ℎ𝑜 + 𝑅𝑏) 
𝐿
𝑖=1                                                                               (8) 

Where, ‘h’ represents the result of the hidden layer output, 𝜎 indicates an activation 

function, ‘𝑤𝑡𝑗𝑘’ denotes the 𝑗𝑡ℎ hidden layer neuron and 𝑘𝑡ℎ output layer neuron, 𝑤𝑡𝑖𝑗  

denotes a weight between input and hidden layer, ℎ𝑜 denotes an output of the previous 

hidden layer, 𝐿  denotes the number of hidden units.  

In order to attain higher accuracy and reduce minimum-error, Nelder–Mead method is 

applied. It is a numerical method is used to find the minimum of an objective function, such 

as the error rate in a classification problem.  

𝑃 = 𝑎𝑟𝑔 𝑚𝑖𝑛[𝑎𝑐𝑡 − 𝑜𝑏𝑠𝑟]2                                                                                                (9)                                                                                                                        

Where, 𝑃 denotes an output of the Nelder–Mead method, arg𝑚𝑖𝑛 denotes an argument 

of minimum function to minim the error, 𝑎𝑐𝑡 denotes actual results and  𝑜𝑏𝑠𝑟 denotes an 

observed result. Finally, accurate classification results are obtained at the output layer with 

minimal error. Based on these classification results, soil moisture prediction is performed 

for agricultural purposes. 

 

Algorithm 2: Laplace kernelized ELM-based soil moisture prediction    

Input:  selected variables with training data samples, and testing data samples 

Output: Increase the prediction accuracy 

Begin 

1. Number of variables with training data 

samples taken at the input layer 

2.    Foreach training data𝑋𝑡// [ hidden layer] 

3.         Foreach testing feature𝑋𝑠 

4.             Apply Laplace kernel function ‘𝐿𝐾’ 

5.        end for 

6.  end for 

7.     Classify data samples into particular class 

8.     Apply Nelder–Mead method to minimize the error rate using (9)   

9.    Obtain the classification results at the output layer  

End 
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Algorithm 2 describes the process of soil moisture prediction using a Laplace kernelized 

ELM, which aims to achieve higher accuracy and minimize time consumption. The 

proposed learning classifier involves multiple layers to analyze the soil data. The training 

data samples are fed into the input layer, where random weights and biases are assigned. 

Next, the hidden layer conducts data analysis using the Laplace Radial Basis Function 

(RBF) kernel. Based on the kernel output, the classification is performed. Finally, the 

Nelder-Mead method is applied to minimize the error and obtain the final prediction results 

at the output layer. 

 

4. Experimental Evaluation  

Experimental assessments of the PSLKELC and existing multihead LSTM model [1] and 

EDT-LSTM [2] are implemented in Python with SMART FASAL (Smart Irrigation and 

Fertilization System for Precision Agriculture using Internet of Things and Cloud 

Infrastructure) dataset. The dataset collected from http://smartfasal.in/ftp-dataset-portal/. 

The soil information about the rice dataset is considered to conduct the experiment. The 

number of features or variables description is listed in Table 1. 

 
Table.1. Feature description. 

S. No Feature  Description 

1 Sensor ID - 

2 Soil_moisture 1 Acquires information from the sensors installed within the soil at a 

depth level 15cms 

3 Soil_moisture 2 Acquires information from the sensors installed within the soil at a 

depth level 45cms 

4 Soil_moisture 3 Acquires information from the sensors installed within the soil at a 

depth level 80cms 

5 TEMP Soil temperature   

6 HUMD Soil humidity 

7 PRSR Soil pressure 

8 LMNS Soil Luminosity   

9 Rainfall Rainfall per day (mm) 

10 week cycle count Week cycle count of recording 

11 Day   day of recording 

12 Date  Date of recording (DD: MM;YY) 

13 Time IST  Time of recording 

 

5. Comparative Analysis  

 

In this section, the comparative analysis of the proposed PSLKELC and existing multihead 

LSTM model [1] and EDT-LSTM [2] are discussed with different evaluation metrics such 

as accuracy, mean absolute error, time complexity, and space complexity.  

 

 

 

http://smartfasal.in/ftp-dataset-portal/
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5.1. Metrics to evaluate the results 

 

Prediction Accuracy: It is defined as the ratio of the number of data samples that are 

correctly predicted to the total number of data samples. Accuracy is formulated as given 

below, 

𝑃𝑅_𝐴𝐶𝐶 = ∑ [
𝐶𝐶𝑆

𝑋𝑖
]𝑛

𝑖=1 ∗ 100                                                                                 (10) 

Where ‘𝑃𝑅_𝐴𝐶𝐶’ denotes the prediction accuracy, ‘𝐶𝐶𝑆’ represents the number of data 

samples correctly predicted and ‘𝑋𝑖’ indicates the total number of data samples. The 

accuracy is measured in percentage (%).  

Mean absolute error:  It is a metric used to measure the error of a predictive model. It 

quantifies the average difference between the predicted values and the actual values. Mean 

absolute error is formulated as follows: 

       𝐸𝑅𝑀𝐴 =
1

𝑛
|𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟𝑒𝑑|                (11)  

Where ‘𝐸𝑅𝑀𝐴denotes the mean absolute error, ‘𝑦𝑎𝑐𝑡represents the number of actual results,  

𝑦𝑝𝑟𝑒𝑑 indicates a predicted value 

Time complexity:   It is formulated as the time taken to accurately predict soil moisture 

through data sample classification. The time is calculated as follows: 

       𝑇𝐶𝑜𝑚𝑝 = ∑ 𝑋𝑖 ∗ 𝑡(𝑃)𝑛
𝑖=1                (12) 

Where ‘𝑇𝐶𝑜𝑚𝑝’ indicates the time complexity, 𝑋𝑖 represents the number of data 

samples ‘𝑡(𝑃)]’ denotes the time for predicting the single data samples. Therefore, the time 

is measured in terms of milliseconds (ms).  

Space complexity:  It is formulated as the amount of memory space required to accurately 

predict soil moisture through data sample classification. The calculation of space 

complexity is as follows: 

       𝑆𝑃𝐶𝑜𝑚𝑝 = ∑ 𝑋𝑖 ∗ 𝑀𝑒𝑚(𝑃)𝑛
𝑖=1                (13) 

Where ‘𝑆𝑃𝐶𝑜𝑚𝑝’ indicates the space complexity, 𝑋𝑖 represents the number of data samples 

‘𝑀𝑒𝑚(𝑃)’ denotes the memory for predicting the single data samples. Therefore, the time 

is measured in terms of Mega Bytes (MB).  

 
Table 2. Comparing existing and proposed system values. 

 

 

 

 

 

 

 

Table 2 presented above illustrates the comparative performance analysis of soil 

moisture prediction accuracy concerning the number of data samples taken from the 

dataset. The results reveal different performance metrics for all three methods, namely 

PSLKELC, the existing multihead LSTM model [1], and EDT-LSTM [2]. The observed 

Metrics Methods 

PSLKELC Multihead 

LSTM model 

EDT-

LSTM 

Prediction accuracy (%) 96.5 94.2 92.7 

Mean absolute error  0.035 0.058 0.073 

Time complexity (ms) 115 128 153 

Space complexity (MB) 135 165 185 
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values indicate that the PSLKELC technique outperforms the other two existing methods 

for all the metrics evaluated. The results are illustrated in the graphical analysis. 

Fig. 3 depicts a graphical comparison analysis of prediction accuracy for three methods: 

PSLKELC, the existing multihead LSTM model [1], and EDT-LSTM [2]. The x-axis 

represents the methods, and the y-axis represents the accuracy of soil moisture prediction. 

The graph shows a downward trend, indicating that the proposed method has higher 

accuracy than the existing models [1,2]. This improvement is achieved in the PSLKELC 

model, which utilizes a Laplace kernelized Extreme Learning classifier. The learning 

classifier uses the Laplace kernel function to perform data analysis in a cloud environment 

with the help of training data samples and testing data samples, enabling accurate 

predictions. As a result, the overall prediction accuracy of the PSLKELC model is 

increased by 2 % and 4 % when compared to models [1,2], respectively. 

 

 
 

Fig. 3. Comparison of prediction accuracy. 

 

 
 
Fig. 4. Comparison of mean absolute error. 
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Fig. 4 presents a performance analysis of mean absolute error using three different 

methods: PSLKELC, the existing multihead LSTM model [1], and EDT-LSTM [2]. As 

depicted in Figure 4, the PSLKELC model shows significantly minimized mean absolute 

error compared to the existing methods. This improvement is achieved through the 

utilization of the Laplace kernelized Extreme Learning classifier, which employs the 

Nelder-Mead method to minimize the error between actual and predicted classification 

results. Finally, the overall comparison results demonstrate that the mean absolute error 

performance of the PSLKELC is remarkably reduced by 39 % and 52 % when compared 

to the existing methods [1,2], respectively. 

 

 

Fig. 5. Comparison of time complexity.  

 

Fig. 5 illustrates the performance outcomes of time complexity involved in soil moisture 

prediction in the cloud. The graphical results demonstrate that the proposed PSLKELC 

model exhibits superior performance compared to conventional methods. As depicted in 

Fig. 5, the horizontal axis represents the methods used in the experimental process, while 

the vertical axis displays the time complexity of soil moisture prediction using three 

methods: PSLKELC model, multihead LSTM model [1], and EDT-LSTM [2]. This 

improvement is achieved through the data preprocessing and dimensionality reduction 

process of the PSLKELC model. Initially, data preprocessing is conducted to handle 

missing values and noisy data in the given dataset. Proximity imputation is applied to 

address the missing values, while a Tversky coefficient is used to measure the similarity 

between data points in the dataset. Noisy data is then removed based on the similarity value. 

Additionally, McNemar statistic multidimensional scaling-based dimensionality reduction 

is performed to select significant variables from the dataset for soil moisture prediction. 

Figure 6 presents a performance comparison of space complexity among different methods, 

including PSLKELC, the existing multihead LSTM model [1], and EDT-LSTM [2]. The 

horizontal axis represents the three different methods, while the vertical axis illustrates their 

respective space complexities. Especially, the proposed PSLKELC model demonstrates 

superior performance compared to the existing methods [1,2]. The PSLKELC model 
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achieved this by utilizing the McNemar statistic multidimensional scaling-based 

dimensionality reduction technique, which effectively minimizes the space complexity for 

soil moisture prediction. The McNemar statistical test is employed to measure the 

relationship between variables in the given dataset. The output of the test result greater than 

0.5 are considered relevant, while those with a result below 0.5 are considered irrelevant. 

The relevant variables are utilized for soil moisture prediction, and the remaining variables 

are removed, contributing to the overall reduction in space complexity. 

 

 
 
Fig. 6. Comparison of space complexity. 

6. Conclusion  

The manuscript has presented a novel IoT-aware PSLKELC model for soil moisture 

prediction in the cloud. The objective of the proposed PSLKELC model is to accurate 

longer-term soil moisture predictions for improving crop yield with less time. The proposed 

PSLKELC model is designed with preprocessing, dimensionality reduction, and 

classification. IoT device is employed to gather the soil parameters and weather conditions 

soil temperature, soil humidity, soil pressure, soil luminosity, rainfall per day, etc.  The 

gathered data are sent into the cloud for data storage and predictive analytics.  At first, the 

data preprocessing step is to clean and structure the dataset. Next, the most significant 

variables are chosen to perform the dimensionality reduction process for soil moisture 

prediction. Lastly, the data samples are classified by Laplace kernelized Extreme Learning 

Classifier for soil moisture prediction. Laplace kernel function is employed for examining 

testing and training data. Error is decreased via the Nelder–Mead method. In this way, the 

accurate prediction is achieved. The performance result of the proposed PSLKELC model 

and two existing methods are carried out using Python with the aid of the SMART FASAL 

dataset. The proposed PSLKELC model is compared with two existing algorithms namely 

the multihead LSTM model and EDT-LSTM based on numerous data samples. The 

simulation consequences validated that the PSLKELC model provides better results in 

performance metrics like accuracy, time, error, and space complexity compared to 

conventional methods. From the estimated result, the proposed PSLKELC model is to 
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provide better performance of higher prediction accuracy by 3%, and minimal error by 46% 

than compared to existing methods. Also, the time and space complexity are minimized 

when compared to state-of-art-works. The proposed PSLKELC model is based on a few 

parameters, is very accurate, and has very limited precision and recall. In the future, the 

proposed model is further extended to consider the precision and recall metrics for soil 

moisture prediction. 
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