

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 4 (2), 327-336 (2012)

www.banglajol.info/index.php/JSR

Some Remarks on Fuzzy R₀, R₁ and Regular Topological Spaces

D. M. Ali¹ and F. A. Azam^{2*}

¹Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh ²Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh

Received 12 December 2010, accepted in revised form 18 February 2012

Abstract

In this paper, five *regular*-axioms, eighteen R_1 -axioms and nine R_0 -axioms for fuzzy topological spaces are recalled. A complete answer is given with regard to all possible $(R_1 \Rightarrow R_0)$ -type implications for fuzzy topological spaces. It is also shown that, though the *regular*-axiom implies R_1 -axiom in 'general topological spaces', this is not true for 'fuzzy topological spaces', in general.

Keywords: Fuzzy Topological Space; Fuzzy R_1 -axiom; Fuzzy R_0 -axiom; Fuzzy *regular* axiom.

© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v4i2.6663 J. Sci. Res. 4 (2), 327-336 (2012)

1. Introduction

In 1965, Zadeh [1] defined fuzzy sets with a view to study and formulate mathematically those situations which are imprecise and vaguely defined. Since then, fuzzy set theory has been developed in many directions by many scholars. Chang [2] gave the concept of 'fuzzy topology'. He did the 'fuzzification' of topology by replacing 'subsets' in the definition of topology by 'fuzzy sets'. In 1976, Lowen [3] gave a modified definition of 'fuzzy topology'. Hutton and Reilly [4] introduced the concept of fuzzy R_0 and R_1 axioms. These studies were further carried out by many researchers [5-13]. In this paper we recall nine R_0 -axioms from [9], eighteen R_1 -axioms from [11] and five *regular* axioms from [7, 8] for fuzzy topological spaces (fts, in short). In analogy with the well known topological properties like (*regular* $\Rightarrow R_1$) and ($R_1 \Rightarrow R_0$), we study these types of properties for fts. We give a complete answer with regard to all possible ($R_1 \Rightarrow R_0$)-type implications for fts. It is also shown that, the property ($R_0 \neq R_1$) is also true for fts; however, the property (*regular* $\Rightarrow R_1$) is not true for fts, in general.

^{*} Corresponding author: faqruddinaliazam@gmail.com

1.1 Preliminaries

In this section, we recall some definitions on fuzzy sets and fts which will be needed in the sequel.

Definition-1.1.1. [1]: Let X be a non-empty set and I the unit closed interval [0, 1]. A fuzzy set is a function $u: X \to I$, $\forall x \in X$; u(x) denotes a degree or the grade of membership of x. The set of all fuzzy sets in X is denoted by I^X . Ordinary subsets of X (crisp sets) are also considered as the members of I^X which take the values 0 and 1 only. A crisp set which always takes the value 0 is denoted by 0; similarly a crisp set which always takes the value 1 is denoted by 1.

Definition-1.1.2. [10]: Let $u: X \to I$. Then the set $\{x \in X: u(x) > 0\}$ is called the support of u and is denoted by u_0 or supp(u). Let $A \subseteq X$, then by 1_A we denote the characteristic function A. The characteristic function of a singleton set $\{x\}$ is denoted by 1_X .

Definition-1.1.3. [10]: Let *u* be a fuzzy set in *X*. Then by u^c , we denote the complement of *u* which is defined as $u^c(x) = 1 - u(x) \forall x \in X$.

Definition-1.1.4. [1]: Let u and v be two fuzzy sets in X. We define

(i) u = v if and only if $u(x) = v(x) \forall x \in X$. (ii) $u \subseteq v$ if and only if $u(x) \le v(x) \forall x \in X$. (iii) $(u \lor v)(x) = \max\{u(x), v(x)\} \forall x \in X$. (iv) $(u \land v)(x) = \min\{u(x), v(x)\} \forall x \in X$.

Definition-1.1.5. [1]: For a family of fuzzy sets $\{u_i : i \in J\}$ in *X*. We define

(i)
$$\bigcup_{i \in J} u_i(x) = \sup\{u_i(x)\} \quad \forall x \in X. \text{ (ii)} \quad \bigcap_{i \in J} u_i(x) = \inf\{u_i(x)\} \quad \forall x \in X.$$

Definition-1.1.6. [14]: A fuzzy point x_{α} in X is a special type of fuzzy set in X with the membership function $x_{\alpha}(x) = \alpha$ and $x_{\alpha}(y) = 0$ if $x \neq y$, where $0 < \alpha < 1$ and $x, y \in X$. The fuzzy point x_{α} is said to have support x and value α . We also write this as $\alpha 1_x$.

Definition-1.1.7. [14]: Let $\alpha 1_x$ be a fuzzy point in X and $u \in I^X$. Then $\alpha 1_x \in u$ if and only if $\alpha \leq u(x)$.

Definition-1.1.8. [10]: Let $f: X \to Y$ be a mapping and $u \in I^X$. Then the image f(u) is a fuzzy set in *Y* which is defined as

$$f(u)(y) = \begin{cases} \sup\{u(x): f(x) = y\} & \text{if } f^{-1}(y) \neq \emptyset\\ 0 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

Definition-1.1.9. [10]: Let $f: X \to Y$ be a mapping and u be a fuzzy set in Y. Then the inverse image $f^{-1}(u)$ is a fuzzy set in X which is defined by $f^{-1}(u)(x) = u(f(x)) \quad \forall x \in X$.

Definition-1.1.10. [2]: Chang [2] defined an fts as follows:

Let X be a set. A class t of fuzzy sets in X is called a fuzzy topology on X if t satisfies the following conditions:

(i) 0, $1 \in t$, (ii) if $u, v \in t$ then $u \land v \in t$ and (iii) if $\{u_i : i \in K\}$ is a family of fuzzy sets in t, then $\bigvee_{i \in K} (u_i) \in t$.

The pair (X, t) is then called an fts. The members of t are called t-open sets (or open sets) and their complements are called t-closed set (or closed sets).

Definition-1.1.11. [3]: Lowen [3] modified the definition of an fts defined by Chang [2] by adding another condition. In the sense of R. Lowen [3], the definition of an fts is as follows:

Let *X* be a set and *t* a family of fuzzy sets in *X*. Then *t* is called a fuzzy topology of *X* if the following conditions hold:

(i) 0, 1 \in *t*, (ii) if *u*, *v* \in *t* then *u* \land *v* \in *t*, (iii) if $\{u_i : i \in K\}$ is a family of fuzzy sets in *t*, then $\bigvee_{i \in K} (u_i) \in t$ and $i \in K$

(iv) t contains all constant fuzzy sets in X.

The pair (X, t) is called an fts. Throughout this work, we use the concept of fts due to Lowen [3].

Definition-1.1.12. [10]: Let *u* be a fuzzy set in an fts (*X*, *t*). Then the fuzzy closure \overline{u} and the fuzzy interior u^o of *u* are defined as follows: $\overline{u} = \inf \left\{ \lambda : u \le \lambda \text{ and } \lambda \in t^c \right\}, u^o = \sup \{\lambda : \lambda \le u \text{ and } \lambda \in t \}.$

Definition-1.1.13. [2]: Let $f:(X, t) \to (Y, s)$ be a mapping between fts. Then f is called

(i) fuzzy continuous if and only if $f^{-1}(u) \in t$ for each $u \in s$.

(ii) fuzzy open if and only if $f(u) \in s$ for each $u \in t$.

(iii) fuzzy closed if and only if $f(u) \in s^c$ for each $u \in t^c$.

2. Fuzzy R_0 topological spaces

In this section, we recall nine R_0 -axioms of fts from [9].

Definitions-2.1. [9]: We define, for fts
$$(X, t)$$
, R_0 -axioms as follows:
 R_0^1 : For every pair $x, y \in X, x \neq y, \overline{1_y}(x) = 0 \Rightarrow \overline{1_x}(y) = 0$
 R_0^2 : For every pair
 $x, y \in X, x \neq y, (\forall \alpha \in I_0, \overline{\alpha 1_x}(y) = \alpha) \Leftrightarrow (\overline{\beta 1_y}(x) = \beta, \forall \beta \in I_0)$
 $R_0^3: \forall \lambda \in t, \forall x \in X \text{ and } \forall \alpha < \lambda(x), \overline{\alpha 1_x} \le \lambda$
 $R_0^4: \forall \lambda \in t, \forall x \in X \text{ and } \forall \alpha \le \lambda(x), \overline{\alpha 1_x} \le \lambda$
 $R_0^5:$ For every pair $x, y \in X, x \neq y, \overline{1_x}(y) = 1 \Rightarrow \overline{1_y}(x) = 1$
 $R_0^6:$ For every pair $x, y \in X, x \neq y, \overline{1_x}(y) = \overline{1_y}(x)$
 $R_0^7:$ For every pair $x, y \in X, x \neq y, \overline{1_x}(y) = \overline{1_y}(x) \in \{0, 1\}$
 $R_0^8:$ For every pair $x, y \in X, x \neq y$ and $\forall \alpha \in I_0, \overline{\alpha 1_x}(y) = \overline{\alpha 1_y}(x) = \alpha$
 $R_0^9:$ For every pair $x, y \in X, x \neq y$ and $\forall \alpha \in I_0, \overline{\alpha 1_x}(y) = \overline{\alpha 1_y}(x)$

Theorem-2.1 [9]: The accompanying diagram (Fig. 1) illustrates the interrelations among the R_0 -properties mentioned in the section 2:

Fig. 1. Interrelations among the R_0 -properties [9].

For proof see [9]. \Box

3. Fuzzy R₁-topological spaces

In this section, we recall eighteen definitions of fuzzy R_1 -topological spaces from [11].

Definitions-3.1 [11]: An fts (X, t) is said to have the property

- 1. **P1**, if $\forall x, y \in X, x \neq y, \exists w \in t$ such that $w(x) \neq w(y)$.
- 2. **P2**, if $\forall x, y \in X, x \neq y$, $\exists w \in t$ such that either w(x) = 0 < w(y) or w(x) > 0 = w(y).
- 3. **P3,** if $\forall x, y \in X, x \neq y, \exists w \in t$ such that either w(x) = 1, w(y) = 0 or w(x) = 0, w(y) = 1.
- 4. **Q1**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $\overline{1_x} \leq u, \overline{1_y} \leq v$ and $u \wedge v = 0$.
- 5. **Q2**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $\overline{1_x} \leq u, \overline{1_y} \leq v$ and $u \leq 1-v$.
- 6. Q3, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that u(x) = 1 = v(y) and $u \wedge v = 0$.
- 7. Q4, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that u(x) = 1 = v(y) and $u \leq 1 v$.
- 8. Q5, if $\forall x, y \in X, x \neq y$ and $\forall \alpha, \beta \in I_{0,1}, \exists u, v \in t$ such that $u(x) > \alpha$ and $v(y) > \beta$ and $u \land v = 0$.
- 9. **Q6**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that u(x) > 0, v(y) > 0 and $u \land v = 0$.

Definitions-3.2 [11]: An fts (X, t) is called an

- 1. $FR_1(i)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q1.
- 2. $FR_1(ii)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q2.
- 3. $FR_1(iii)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q3.
- 4. $FR_1(iv)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q4.
- 5. $FR_1(v)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q5.
- 6. $FR_1(vi)$ -fts, if (X, t) has $P1 \Longrightarrow (X, t)$ has Q6.
- 7. $FR_1(vii)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q1.
- 8. $FR_1(viii)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q2.
- 9. $FR_1(ix)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q3.
- 10. $FR_1(x)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q4.
- 11. $FR_1(xi)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q5.
- 12. $FR_1(xii)$ -fts, if (X, t) has $P2 \Longrightarrow (X, t)$ has Q6.
- 13. $FR_1(xiii)$ -fts, if (X, t) has **P3** \Rightarrow (X, t) has **Q1**.
- 14. $FR_1(xiv)$ -fts, if (X, t) has $P3 \Longrightarrow (X, t)$ has Q2.
- 15. $FR_1(xv)$ -fts, if (X, t) has $P3 \Longrightarrow (X, t)$ has Q3.

16. $FR_1(xvi)$ -fts, if (X, t) has $P3 \Longrightarrow (X, t)$ has Q4. 17. $FR_1(xvii)$ -fts, if (X, t) has $P3 \Longrightarrow (X, t)$ has Q5. 18. $FR_1(xviii)$ -fts, if (X, t) has $P3 \Longrightarrow (X, t)$ has Q6.

Theorem-3.3 [11]: The accompanying diagram (Fig. 2) illustrates the interrelations among the FR_1 -propertits mentioned in Section 3:

Fig. 2. Interrelations among the R_1 -properties [11].

For proof see [11]. \Box

4. Relations between fuzzy R₀ and R₁-axioms

In this section, we give a complete answer with regard to all possible $(R_1 \Rightarrow R_0)$ -type implications for fts.

Theorem-4.1: The following relations hold between the fuzzy R_0 -axioms and fuzzy R_1 -axioms:

(a) $FR_1(xvi) \Rightarrow R_0^1$, and so $FR_1(k) \Rightarrow R_0^1$, where $k \in \{i - iv, vii - x, xiii - xvi\}$.

(b) $FR_1(xiii) \Rightarrow R_0^5$, and so $FR_1(k) \Rightarrow R_0^m$, where $k \in \{xiii, xiv, \dots, xviii\}$ and $m \in \{5, 6, \dots, 9\}$.

(c)
$$FR_1(v) \Rightarrow R_0^8$$
, and so $FR_1(k) \Rightarrow R_0^m$ where $k \in \{i, iii, v\}$ and $m \in \{2, 5, 8\}$.

- (d) $FR_1(vi) \Rightarrow R_0^2$, and so $FR_1(k) \Rightarrow R_0^2$ where $k \in \{i, iii, v, vi\}$.
- (e) $FR_1(vi) \Rightarrow R_0^8$, and so $FR_1(k) \Rightarrow R_0^m$, where $k \in \{vi, xii, xviii\}$ and $m \in \{8, 9\}$.
- (f) $FR_1(vi) \Rightarrow R_0^3$, and so $FR_1(k) \Rightarrow R_0^m$, where $k \in \{vi, xii, xviii\}$ and $m \in \{3, 4\}$.

(g)
$$FR_1(iv) \Rightarrow R_0^4$$
, and so $FR_1(k) \Rightarrow R_0^m$ where $k \in \{i - iv\}$ and $m \in \{1, 2, 3, 4\}$
(h) $R_0^m \Rightarrow FR_1(k)$, where $k \in \{i, ii, \dots, xviii\}$ and $m \in \{1, 2, \dots, 9\}$.

Proof (a): Let (X, t) be an $FR_1(xvi)$ -fts and $x, y \in X, x \neq y$ such that $\overline{1_y}(x) = 0$. Therefore, $\exists \lambda \in t^c$ such that $\lambda(y) = 1$ and $\lambda(x) = 0$. Take $w = 1 - \lambda$. Now $w \in t$ such that w(x) = 1 and w(y) = 0. Since, (X, t) is an $FR_1(xvi)$ -fts, $\exists u, v \in t$ such that u(x) = 1 = v(y) and $u \leq 1 - v$. Put, $\kappa = 1 - v \in t^c$. Now $\kappa(y) = 0$ and $\kappa(x) = 1$. Consequently, $\overline{1_x}(y) = 0$. Hence (X, t) is R_0^1 .

Proof (b):

Example-1: Consider a fuzzy topological space (X, t), where $X = \{x, y\}$, u(x) = 0.5, u(y) = 0 and $t = \langle \{u\} \cup \{\text{constants}\} \rangle$. Clearly, (X, t) is $FR_1(xiii)$ but it is not R_0^5 . For $\overline{1_x}(y) = 1$ but $\overline{1_y}(x) < 1$. \Box

Proof (c): Let (X, t) be an $FR_1(v)$ -fts. Let $x, y \in X, x \neq y, \alpha \in I_0$ such that $\overline{\alpha 1_x}(y) < \alpha$. This implies that there exists $m \in t^c$ such that $m(x) = \alpha$ and $m(y) < \alpha$. Let $w = 1 - m \in t$. Then $w(x) \neq w(y)$. Since (X, t) is an $FR_1(v)$ -fts, there exist $u, v \in t$ such that $u(x) > \alpha_1, v(y) > \alpha_2$, and $u \land v = 0 \forall \alpha_1, \alpha_2 \in I_{0,1}$. Choose α_1, α_2 in such a way that $\alpha = \alpha_2$ and $\alpha_1 > 1 - \alpha$. Now $\alpha 1_y < v \le 1 - u$. Therefore, $\overline{\alpha 1_y} \le \overline{1 - u} = 1 - u$ and so $\overline{\alpha 1_y}(x) \le 1 - u(x) < 1 - \alpha_1 < \alpha$. Hence, (X, t) is R_0^8 . [Note [9]: $(\forall \alpha \in I_0, \overline{\alpha 1_x}(y) = \alpha \Rightarrow \overline{\alpha 1_y}(x) = \alpha) \Leftrightarrow (\forall \alpha \in I_0, \overline{\alpha 1_x}(y) < \alpha \Rightarrow \overline{\alpha 1_y}(x) < \alpha$]

Proof (d): Let (X, t) be an $FR_1(vi)$ -fts. Let $x, y \in X, x \neq y$ and $w \in t$ such that w(x) > w(y). Then, by $FR_1(vi)$ there exist $u, v \in t$ such that u(x) > 0, v(y) > 0 and $u \land v = 0$. Clearly, v(y) > v(x). Hence, (X, t) is R_0^2 . [Note [9]: {An fts (X, t) is R_0^2 } \Leftrightarrow { $\forall x, y \in X, x \neq y$, if \exists a *t*-open set λ such that $\lambda(y) < \lambda(x)$ then \exists a t-open set μ such that $\mu(x) < \mu(y)$.}

Proof (e):

Example-2: Consider an fts (X, t) where $X = \{x, y\}$, $t = \langle u_1, u_2, u_3, u_4 \} > \cup \{\text{constants}\}$, $u_1(x) = u_1(y) = u_2(x) = 0.6$, $u_2(y) = 0.7$, $u_3(x) = u_4(y) = 0$, $u_3(y) = 0.8$ and $u_4(x) = 0.4$. It can be checked that (X, t) is $FR_1(vi)$. Let $m_k = 1 - u_k$, k = 1, 2, 3, 4. Now $m_1(x) = 0.4 = m_2(x)$, $m_3(x) = 1$, $m_4(x) = 0.6$, $m_1(y) = 0.4$, $m_2(y) = 0.3$, $m_3(y) = 0.2$

and $m_4(y) = 1$. Take $\alpha = 0.4$. Then $\overline{\alpha 1_x}(y) = 0.2 < \alpha$. But $\overline{\alpha 1_y}(x) = 0.4 = \alpha$. Therefore, (X, t) is not R_0^8 . \Box

Proof (f):

Example-3: Consider an fts (X, t) where $X = \{x, y\}$, u(x) = 0.6, u(y) = 0 = v(x) and v(y) = 0.4. Clearly, (X, t) is $FR_1(vi)$. Let $\alpha = 0.5$. Now $\alpha < u(x)$. It can be checked that $\overline{\alpha 1_x}(y) = \alpha > u(y)$. Therefore, $\overline{\alpha 1_x}(y) \leq u$. Hence, (X, t) is not R_0^3 . \Box

Proof (g): Let (X, t) be an $FR_1(iv)$ -fts. Let $x \in X$, $\lambda \in t$ and $\alpha \in I_1$ such that $\alpha \leq \lambda(x)$. Suppose $\overline{\alpha 1_x} \leq \lambda$. This implies that there exist $y \in X$, $x \neq y$ such that $\overline{\alpha 1_x}(y) > \lambda(y)$. Thus $\lambda(x) \neq \lambda(y)$. Hence there exist $p, q \in t$ such that p(x) = 1 = q(y) and $p \leq 1 - q$. Put m = 1 - p and n = 1 - q. Now $m, n \in t^c$ such that m(x) = 0 = n(y) and m(y) = 1 = n(x). Therefore, $\overline{\alpha 1_x}(y) \leq \overline{1_x}(y) \leq n(y) = 0$, which is a contradiction. Therefore, $\overline{\alpha 1_x} \leq \lambda$. Hence (X, t) is R_0^4 . \Box

Proof (h):

Example-4 [13]: Let X be an infinite set. For x, $y \in X$, we define $U_{xy} \in I^X$ as follows:

$$U_{xy}(z) = \begin{cases} 0 & \text{if } z \in \{x, y\} \\ 1 & \text{if } z \notin \{x, y\} \end{cases}$$

Let *t* be the fuzzy topology on *X* generated by $\{U_{xy} : x, y \in X\}$. It can be checked that if $x \neq y$, $\overline{1_x}(y) = 0$. Therefore, (X, t) is R_0^4 , R_0^7 and R_0^9 . But (X, t) is neither $FR_1(xvi)$ nor $FR_1(xviii)$ as there exist no $u, v \in t$ such that $u \leq 1 - v$. Therefore, (X, t) is not $FR_1(k), k \in \{i, ii, ..., xviii\}$

5. Fuzzy regular axioms

In this section, we recall five definitions of fuzzy regular axioms from [7, 8], and we show that, the well known topological property $(regular \Rightarrow R_1)$ is not true, in general, for fts.

Definition-5.1: An fts (X, t) is called

- (a) *FR*(*i*) if and only if $\alpha \in I_0$, $\lambda \in t^c$, $x \in X$ and $\alpha \le 1 \lambda(x)$ imply that there exist *u*, $v \in t$ such that $\alpha \le u(x)$, $\lambda \le v$ and $u \le 1 v$.
- (b) FR(ii) if and only if $\alpha \in I_0$, $\lambda \in t^c$, $x \in X$ and $\alpha \leq 1 \lambda(x)$ imply that there exist $u, v \in t$ such that $\alpha \leq u(x)$, $\lambda \leq v$ and $u \leq 1 v$.

- (c) FR(iii) if and only if each $u \in t$ is a supremum of $u_j, j \in J$, where $\forall j, u_j \in t$ and $\overline{u_j} \leq u$.
- (d) FR(iv) if and only if $\lambda \in t^c$, $x \in X$ and $\lambda(x) = 0$ imply that there exist $u, v \in t$ such that u(x) = 1, $\lambda \leq v$ and $u \leq 1 v$.
- (e) FR(v) if and only if $\lambda \in t^c$, $x \in X$ and $1 \lambda(x) > 0$ imply that there exist $u, v \in t$ such that u(x) > 0, $\lambda \le v$ and $u \le 1 v$.

Note-1 [7, 8]: Let $x \in X$ and λ be a fuzzy set in X. Then for $\alpha \in I_0$, " $\alpha \leq \lambda(x)$ " means $\alpha < \lambda(x)$ if $\alpha \neq 1$ and $\lambda(x) = 1$ if $\alpha = 1$.

Note-2 [7, 8]: The following implications exist among FR(i), FR(ii), ..., FR(v):

$$FR(i) \Rightarrow FR(ii) \Rightarrow FR(iii) \Rightarrow FR(v)$$
$$\downarrow$$
$$FR(iv)$$

For proof see [7, 8, 10]. □

Example-5: Let $X = \{x, y, z\}$. For every pair $x, y \in X$ we define $U_{xy} \in I^X$ as follows: $U_{xy}(x) = 1, U_{xy}(y) = 0$ and $U_{xy}(z) = 0.5$. Let t be the fuzzy topology on X generated by $\langle U_{xy} \in I^X : x, y \in X \rangle$. Now it can be easily verified that (X, t) is FR(i). But (X, t)is neither $FR_i(xvi)$ nor $FR_i(xviii)$, since there exist no $u, v \in t$ such that $u \wedge v = 0$. Therefore, $FR(k) \Rightarrow FR_1(m), k \in \{i, ii, ..., v\}$ and $m \in \{i, ii, ..., xviii\}$. Thus we see that the property $(regular \Rightarrow R_1)$ is not true, in general, for fts. \Box

References

- L. A. Zadeh, Information and Control. 8, 338 (1965). http://dx.doi.org/10.1016/S0019-9958(65)90241-X
- C. L. Chang, J. Math. Anal. Appl. 24, 182 (1968). http://dx.doi.org/10.1016/0022-247X(68)90057-7
- R. Lowen, J. Math. Anal. Appl. 56, 621 (1976). http://dx.doi.org/10.1016/0022-247X(76)90029-9
- B. Hutton and I. Reilly, Fuzzy Sets and Systems 3, 93 (1980). http://dx.doi.org/10.1016/0165-0114(80)90007-X
- A. K. Srivastava, J. Math. Anal. Appl. 127, 151 (1987). http://dx.doi.org/10.1016/0022-247X(87)90147-8
- R. Srivastava, S. N. Lal, and A. K. Srivastava, J. Math. Anal. Appl. 136, 66 (1988). http://dx.doi.org/10.1016/0022-247X(88)90116-3

- 336 Some Remarks on Fuzzy
- 7. D. M. Ali, Proc. Math. Soc., B.H.U., 5, 147 (1989).
- D. M. Ali, Fuzzy Sets and Systems 35, 101 (1990). http://dx.doi.org/10.1016/0165-0114(90)90022-X
- D. M. Ali., P. Wuyts, A. K. Srivastava, Fuzzy Sets and Systems 38, 97 (1990). http://dx.doi.org/10.1016/0165-0114(90)90103-D
- 10. D. M. Ali, Ph. D. Thesis, B.H.U. Varanasi (1990).
- 11. D. M. Ali, Fuzzy Sets and Systems **50**, 97 (1992). http://dx.doi.org/10.1016/0165-0114(92)90207-K
- 12. F. A. Azam, D. M. Ali, Southeast Asian Bull. Math. 35 (5), 763 (2011).
- 13. D. M. Ali, F. A. Azam, J. Sci. Res. 4 (1), 21 (2012). doi:10.3329/jsr.v4i1.7044
- 14. G. Gerla, Fuzzy Sets and Systems **18**, 159 (1986). http://dx.doi.org/10.1016/0165-0114(86)90018-7