Some Remarks on Fuzzy $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}$ and Regular Topological Spaces

D. M. Ali^{1} and F. A. Azam ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh
${ }^{2}$ Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh

Received 12 December 2010, accepted in revised form 18 February 2012

Abstract

In this paper, five regular-axioms, eighteen R_{1}-axioms and nine R_{0}-axioms for fuzzy topological spaces are recalled. A complete answer is given with regard to all possible $\left(R_{1} \Rightarrow R_{0}\right)$-type implications for fuzzy topological spaces. It is also shown that, though the regular-axiom implies R_{1}-axiom in 'general topological spaces', this is not true for 'fuzzy topological spaces', in general.

Keywords: Fuzzy Topological Space; Fuzzy R_{1}-axiom; Fuzzy R_{0}-axiom; Fuzzy regular axiom.
© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi: http://dx.doi.org/10.3329/jsr.v4i2.6663 J. Sci. Res. 4 (2), 327-336 (2012)

1. Introduction

In 1965, Zadeh [1] defined fuzzy sets with a view to study and formulate mathematically those situations which are imprecise and vaguely defined. Since then, fuzzy set theory has been developed in many directions by many scholars. Chang [2] gave the concept of 'fuzzy topology'. He did the 'fuzzification' of topology by replacing 'subsets' in the definition of topology by 'fuzzy sets'. In 1976, Lowen [3] gave a modified definition of 'fuzzy topology'. Hutton and Reilly [4] introduced the concept of fuzzy R_{0} and R_{1} axioms. These studies were further carried out by many researchers [5-13]. In this paper we recall nine R_{0}-axioms from [9], eighteen R_{1}-axioms from [11] and five regular axioms from [7, 8] for fuzzy topological spaces (fts, in short). In analogy with the well known topological properties like (regular $\left.\Rightarrow R_{1}\right)$ and $\left(R_{1} \Rightarrow R_{0}\right)$, we study these types of properties for fts . We give a complete answer with regard to all possible $\left(R_{1} \Rightarrow R_{0}\right)$ type implications for fts . It is also shown that, the property $\left(R_{0} \nRightarrow R_{1}\right)$ is also true for fts; however, the property (regular $\Rightarrow R_{1}$) is not true for fts , in general.

[^0]
1.1 Preliminaries

In this section, we recall some definitions on fuzzy sets and fts which will be needed in the sequel.

Definition-1.1.1. [1]: Let X be a non-empty set and I the unit closed interval [0, 1]. A fuzzy set is a function $u: X \rightarrow I, \forall x \in X ; u(x)$ denotes a degree or the grade of membership of x. The set of all fuzzy sets in X is denoted by I^{X}. Ordinary subsets of X (crisp sets) are also considered as the members of I^{X} which take the values 0 and 1 only. A crisp set which always takes the value 0 is denoted by 0 ; similarly a crisp set which always takes the value 1 is denoted by 1 .

Definition-1.1.2. [10]: Let $u: X \rightarrow I$. Then the set $\{x \in X: u(x)>0\}$ is called the support of u and is denoted by u_{0} or $\operatorname{supp}(u)$. Let $A \subseteq X$, then by 1_{A} we denote the characteristic function A. The characteristic function of a singleton set $\{x\}$ is denoted by 1_{X}.

Definition-1.1.3. [10]: Let u be a fuzzy set in X. Then by u^{c}, we denote the complement of u which is defined as $u^{C}(x)=1-u(x) \forall x \in X$.

Definition-1.1.4. [1]: Let u and v be two fuzzy sets in X. We define
(i) $u=v$ if and only if $u(x)=v(x) \forall x \in X$.
(ii) $u \subseteq v$ if and only if $u(x) \leq v(x) \forall x \in X$.
(iii) $(u \vee v)(x)=\max \{u(x), v(x)\} \forall x \in X$.
(iv) $(u \wedge v)(x)=\min \{u(x), v(x)\} \forall x \in X$.

Definition-1.1.5. [1]: For a family of fuzzy sets $\left\{u_{i}: i \in J\right\}$ in X. We define

$$
\text { (i) } \bigcup_{i \in J} u_{i}(x)=\sup \left\{u_{i}(x)\right\} \forall x \in X \text {. (ii) } \bigcap_{i \in J} u_{i}(x)=\inf \left\{u_{i}(x)\right\} \forall x \in X \text {. }
$$

Definition-1.1.6. [14]: A fuzzy point x_{α} in X is a special type of fuzzy set in X with the membership function $x_{\alpha}(x)=\alpha$ and $x_{\alpha}(y)=0$ if $x \neq y$, where $0<\alpha<1$ and $x, y \in X$. The fuzzy point x_{α} is said to have support x and value α. We also write this as $\alpha 1_{x}$.

Definition-1.1.7. [14]: Let $\alpha 1_{X}$ be a fuzzy point in X and $u \in I^{X}$. Then $\alpha 1_{X} \in u$ if and only if $\alpha \leq u(x)$.

Definition-1.1.8. [10]: Let $f: X \rightarrow Y$ be a mapping and $u \in I^{X}$. Then the image $f(u)$ is a fuzzy set in Y which is defined as

$$
f(u)(y)=\left\{\begin{array}{l}
\sup \{u(x): f(x)=y\} \text { if } f^{-1}(y) \neq \varnothing \\
0 \text { if } f^{-1}(y)=\varnothing
\end{array}\right.
$$

Definition-1.1.9. [10]: Let $f: X \rightarrow Y$ be a mapping and u be a fuzzy set in Y. Then the inverse image $f^{-1}(u)$ is a fuzzy set in X which is defined by $f^{-1}(u)(x)=u(f(x)) \quad \forall x \in X$.

Definition-1.1.10. [2]: Chang [2] defined an fts as follows:
Let X be a set. A class t of fuzzy sets in X is called a fuzzy topology on X if t satisfies the following conditions:
(i) $0,1 \in t$,
(ii) if $u, v \in t$ then $u \wedge v \in t$ and
(iii) if $\left\{u_{i}: i \in K\right\}$ is a family of fuzzy sets in t, then $\underset{i \in K}{\vee}\left(u_{i}\right) \in t$.

The pair (X, t) is then called an fts. The members of t are called t-open sets (or open sets) and their complements are called t-closed set (or closed sets).

Definition-1.1.11. [3]: Lowen [3] modified the definition of an fts defined by Chang [2] by adding another condition. In the sense of R. Lowen [3], the definition of an fts is as follows:

Let X be a set and t a family of fuzzy sets in X. Then t is called a fuzzy topology of X if the following conditions hold:
(i) $0,1 \in t$,
(ii) if $u, v \in t$ then $u \wedge v \in t$,
(iii) if $\left\{u_{i}: i \in K\right\}$ is a family of fuzzy sets in t, then $\underset{i \in K}{\vee}\left(u_{i}\right) \in t$ and
(iv) t contains all constant fuzzy sets in X .

The pair (X, t) is called an fts. Throughout this work, we use the concept of fts due to Lowen [3].

Definition-1.1.12. [10]: Let u be a fuzzy set in an $\mathrm{fts}(X, t)$. Then the fuzzy closure \bar{u} and the fuzzy interior u^{o} of u are defined as follows: $\bar{u}=\inf \left\{\lambda: u \leq \lambda\right.$ and $\left.\lambda \in t^{c}\right\}$, $u^{o}=\sup \{\lambda: \lambda \leq u$ and $\lambda \in t\}$.

Definition-1.1.13. [2]: Let $f:(X, t) \rightarrow(Y, s)$ be a mapping between fts . Then f is called
(i) fuzzy continuous if and only if $f^{-1}(u) \in t$ for each $u \in s$.
(ii) fuzzy open if and only if $f(u) \in s$ for each $u \in t$.
(iii) fuzzy closed if and only if $f(u) \in s^{c}$ for each $u \in t^{C}$.

2. Fuzzy \boldsymbol{R}_{0} topological spaces

In this section, we recall nine R_{0}-axioms of fts from [9].
Definitions-2.1. [9]: We define, for fts (X, t), R_{0}-axioms as follows:
R_{0}^{1} : For every pair $x, y \in X, x \neq y, \overline{1_{y}}(x)=0 \Rightarrow \overline{1_{x}}(y)=0$
R_{0}^{2} : For every pair
$x, y \in X, x \neq y,\left(\forall \alpha \in I_{0}, \overline{\alpha 1_{x}}(y)=\alpha\right) \Leftrightarrow\left(\overline{\beta 1_{y}}(x)=\beta, \forall \beta \in I_{0}\right)$
$R_{0}^{3}: \forall \lambda \in t, \forall x \in X$ and $\forall \alpha<\lambda(x), \overline{\alpha 1_{X}} \leq \lambda$
$R_{0}^{4}: \forall \lambda \in t, \forall x \in X$ and $\forall \alpha \leq \lambda(x), \overline{\alpha 1_{X}} \leq \lambda$
R_{0}^{5} : For every pair $x, y \in X, x \neq y, \overline{1_{x}}(y)=1 \Rightarrow \overline{1_{y}}(x)=1$
R_{0}^{6} : For every pair $x, y \in X, x \neq y, \overline{1_{x}}(y)=\overline{1_{y}}(x)$
$R_{0}^{7}:$ For every pair $x, y \in X, x \neq y, \overline{1_{x}}(y)=\overline{1_{y}}(x) \in\{0,1\}$
R_{0}^{8} : For every pair $x, y \in X, x \neq y$ and $\forall \alpha \in I_{0}, \overline{\alpha 1_{x}}(y)=\alpha \Rightarrow \overline{\alpha 1_{y}}(x)=\alpha$
R_{0}^{9} : For every pair $x, y \in X, x \neq y$ and $\forall \alpha \in I_{0}, \overline{\alpha 1_{x}}(y)=\overline{\alpha 1_{y}}(x)$
Theorem-2.1 [9]: The accompanying diagram (Fig. 1) illustrates the interrelations among the R_{0}-properties mentioned in the section 2 :

Fig. 1. Interrelations among the R_{0}-properties [9].

For proof see [9].

3. Fuzzy \boldsymbol{R}_{1}-topological spaces

In this section, we recall eighteen definitions of fuzzy R_{1}-topological spaces from [11].

Definitions-3.1 [11]: An $\mathrm{fts}(X, t)$ is said to have the property

1. P1, if $\forall x, y \in X, x \neq y, \exists w \in t$ such that $w(x) \neq w(y)$.
2. P2, if $\forall x, y \in X, x \neq y, \exists w \in t$ such that either $w(x)=0<w(y)$ or $w(x)>0=w(y)$.
3. P3, if $\forall x, y \in X, x \neq y, \exists w \in t$ such that either $w(x)=1, w(y)=0$ or $w(x)=0$, $w(y)=1$.
4. Q1, if $\forall x, y \in X, x \neq y, \exists u, v \in t$ such that $\overline{1_{x}} \leq u, \overline{1_{y}} \leq v$ and $u \wedge v=0$.
5. Q2, if $\forall x, y \in X, x \neq y, \exists u, v \in t$ such that $\overline{1_{x}} \leq u, \overline{1_{y}} \leq v$ and $u \leq 1-v$.
6. Q3, if $\forall x, y \in X, x \neq y, \exists u, v \in t$ such that $u(x)=1=v(y)$ and $u \wedge v=0$.
7. Q4, if $\forall x, y \in X, x \neq y, \exists u, v \in t$ such that $u(x)=1=v(y)$ and $u \leq 1-v$.
8. Q5, if $\forall x, y \in X, x \neq y$ and $\forall \alpha, \beta \in I_{0,1}, \exists u, v \in t$ such that $u(x)>\alpha$ and $v(y)>\beta$ and $u \wedge v=0$.
9. Q6, if $\forall x, y \in X, x \neq y, \exists u, v \in t$ such that $u(x)>0, v(y)>0$ and $u \wedge v=0$.

Definitions-3.2 [11]: An fts (X, t) is called an

1. $\quad F R_{1}(i)$ - fts , if (X, t) has $\mathbf{P} 1 \Rightarrow(X, t)$ has $\mathbf{Q 1}$.
2. $F R_{1}(i i)$-fts, if (X, t) has $\mathbf{P 1} \Rightarrow(X, t)$ has Q2.
3. $F R_{1}($ iii $)$-fts, if (X, t) has $\mathbf{P} 1 \Rightarrow(X, t)$ has $\mathbf{Q} 3$.
4. $F R_{1}(i v)$-fts, if (X, t) has $\mathbf{P} 1 \Rightarrow(X, t)$ has $\mathbf{Q 4}$.
5. $F R_{1}(v)$-fts, if (X, t) has $\mathbf{P 1} \Rightarrow(X, t)$ has $\mathbf{Q 5}$.
6. $F R_{1}(v i)$-fts, if (X, t) has $\mathbf{P} \mathbf{1} \Rightarrow(X, t)$ has $\mathbf{Q 6}$.
7. $F R_{1}(v i i)$-fts, if (X, t) has $\mathbf{P} 2 \Rightarrow(X, t)$ has $\mathbf{Q 1}$.
8. $\quad F R_{1}($ viii $)$ - fts , if (X, t) has $\mathbf{P} 2 \Rightarrow(X, t)$ has $\mathbf{Q 2}$.
9. $F R_{1}(i x)$-fts, if (X, t) has $\mathbf{P} 2 \Rightarrow(X, t)$ has $\mathbf{Q 3}$.
10. $F R_{1}(x)$-fts, if (X, t) has $\mathbf{P} 2 \Rightarrow(X, t)$ has Q4.
11. $F R_{1}(x i)$-fts, if (X, t) has $\mathbf{P 2} \Rightarrow(X, t)$ has Q5.
12. $F R_{1}(x i i)$ - fts , if (X, t) has $\mathbf{P} 2 \Rightarrow(X, t)$ has $\mathbf{Q 6}$.
13. $F R_{1}(x i i i)$ - fts , if (X, t) has $\mathbf{P} 3 \Rightarrow(X, t)$ has $\mathbf{Q 1}$.
14. $F R_{1}($ xiv $)$-fts, if (X, t) has $\mathbf{P} 3 \Rightarrow(X, t)$ has $\mathbf{Q} 2$.
15. $F R_{1}(x v)$-fts, if (X, t) has $\mathbf{P} 3 \Rightarrow(X, t)$ has $\mathbf{Q 3}$.
16. $F R_{1}(x v i)$ - fts , if (X, t) has $\mathbf{P} 3 \Rightarrow(X, t)$ has $\mathbf{Q 4}$.
17. $F R_{1}(x v i i)$-fts, if (X, t) has $\mathbf{P 3} \Rightarrow(X, t)$ has Q5.
18. $F R_{1}(x$ viii) $)$-fts, if (X, t) has $\mathbf{P 3} \Rightarrow(X, t)$ has $\mathbf{Q 6}$.

Theorem-3.3 [11]: The accompanying diagram (Fig. 2) illustrates the interrelations among the FR_{1}-propertits mentioned in Section 3:

Fig. 2. Interrelations among the R_{1}-properties [11].

For proof see [11].

4. Relations between fuzzy R_{0} and \boldsymbol{R}_{1}-axioms

In this section, we give a complete answer with regard to all possible $\left(R_{1} \Rightarrow R_{0}\right)$-type implications for fts.

Theorem-4.1: The following relations hold between the fuzzy R_{0}-axioms and fuzzy R_{1} axioms:
(a) $F R_{1}(x v i) \Rightarrow R_{0}^{1}$, and so $F R_{1}(k) \Rightarrow R_{0}^{1}$, where $k \in\{i-i v, v i i-x$, xiii-xvi .
(b) $F R_{1}(x i i i) \nRightarrow R_{0}^{5}$, and so $F R_{1}(k) \nRightarrow R_{0}^{m}$, where $k \in\{x i i i, x i v, \ldots ., x v i i i\}$ and $m \in\{5,6, \ldots, 9\}$.
(c) $F R_{1}(v) \Rightarrow R_{0}^{8}$, and so $F R_{1}(k) \Rightarrow R_{0}^{m}$ where $k \in\{i, i i i, v\}$ and $m \in\{2,5,8\}$.
(d) $F R_{1}(v i) \Rightarrow R_{0}^{2}$, and so $F R_{1}(k) \Rightarrow R_{0}^{2}$ where $k \in\{i, i i i, v, v i\}$.
(e) $F R_{1}(v i) \nRightarrow R_{0}^{8}$, and so $F R_{1}(k) \nRightarrow R_{0}^{m}$, where $k \in\{$ vi,xii,xviii $\}$ and $m \in\{8,9\}$.
(f) $F R_{1}(v i) \nRightarrow R_{0}^{3}$, and so $F R_{1}(k) \nRightarrow R_{0}^{m}$, where $k \in\{v i, x i i, x v i i i\}$ and $m \in\{3,4\}$.
(g) $F R_{1}(i v) \Rightarrow R_{0}^{4}$, and so $F R_{1}(k) \Rightarrow R_{0}^{m}$ where $k \in\{i-i v\}$ and $m \in\{1,2,3,4\}$.
(h) $R_{0}^{m} \nRightarrow F R_{1}(k)$, where $k \in\{i, i i, \ldots . ., x v i i i\}$ and $m \in\{1,2, \ldots \ldots, 9\}$.

Proof (a): Let (X, t) be an $F R_{1}(x v i)$-fts and $x, y \in X, x \neq y$ such that $\overline{1_{y}}(x)=0$. Therefore, $\exists \lambda \in t^{c}$ such that $\lambda(y)=1$ and $\lambda(x)=0$. Take $w=1-\lambda$. Now $w \in t$ such that $w(x)=1$ and $w(y)=0$. Since, (X, t) is an $F R_{1}(x v i)$-fts, $\exists u, v \in t$ such that $u(x)=1=v(y)$ and $u \leq 1-v$. Put, $\kappa=1-v \in t^{c}$. Now $\kappa(y)=0$ and $\kappa(x)=1$. Consequently, $\overline{1_{X}}(y)=0$. Hence (X, t) is R_{0}^{1}.

Proof (b):

Example-1: Consider a fuzzy topological space (X, t), where $X=\{x, y\}, u(x)=0.5, u(y)=$ 0 and $t=<\{u\} \cup\{$ constants $\}>$. Clearly, (X, t) is $F R_{1}(x i i i)$ but it is not R_{0}^{5}. For $\overline{1_{x}}(y)=1$ but $\overline{1_{y}}(x)<1$.

Proof (c): Let (X, t) be an $F R_{1}(v)$-fts. Let $x, y \in X, x \neq y, \alpha \in I_{0}$ such that $\overline{\alpha 1_{X}}(y)<\alpha$. This implies that there exists $m \in t^{c}$ such that $m(x)=\alpha$ and $m(y)<\alpha$. Let $w=1-m \in t$. Then $w(x) \neq w(y)$. Since (X, t) is an $F R_{1}(v)$-fts, there exist $u, v \in t$ such that $u(x)>\alpha_{1}, v(y)>\alpha_{2}$, and $u \wedge v=0 \forall \alpha_{1}, \alpha_{2} \in I_{0,1}$. Choose α_{1}, α_{2} in such a way that $\alpha=\alpha_{2}$ and $\alpha_{1}>1-\alpha$. Now $\alpha 1_{y}<v \leq 1-u$. Therefore, $\overline{\alpha 1_{y}} \leq \overline{1-u}=1-u$ and so $\overline{\alpha 1_{y}}(x) \leq 1-u(x)<1-\alpha_{1}<\alpha$. Hence, (X, t) is R_{0}^{8}. [Note [9]:
$\left.\left(\forall \alpha \in I_{0}, \overline{\alpha 1_{x}}(y)=\alpha \Rightarrow \overline{\alpha 1_{y}}(x)=\alpha\right) \Leftrightarrow\left(\forall \alpha \in I_{0}, \overline{\alpha 1_{x}}(y)<\alpha \Rightarrow \overline{\alpha 1_{y}}(x)<\alpha\right)\right] \square$

Proof (d): Let (X, t) be an $F R_{1}(v i)$-fts. Let $x, y \in X, x \neq y$ and $w \in t$ such that $w(x)>$ $w(y)$. Then, by $F R_{1}(v i)$ there exist $u, v \in t$ such that $u(x)>0, v(y)>0$ and $u \wedge v=0$. Clearly, $v(y)>v(x)$. Hence, (X, t) is R_{0}^{2}. [Note [9]: \{An fts (X, t) is $\left.R_{0}^{2}\right\} \Leftrightarrow\{\forall x, y \in$ $X, x \neq y$, if \exists a t-open set λ such that $\lambda(\mathrm{y})<\lambda(\mathrm{x})$ then \exists a t-open set μ such that $\mu(\mathrm{x})<$ $\mu(y)$.

Proof (e):

Example-2: Consider an fts (X, t) where $X=\{x, y\}, t=<\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}>\cup\{$ constants $\}$, $u_{1}(x)=u_{1}(y)=u_{2}(x)=0.6, u_{2}(y)=0.7, u_{3}(x)=u_{4}(y)=0, u_{3}(y)=0.8$ and $u_{4}(x)=0.4$. It can be checked that (X, t) is $F R_{1}(v i)$. Let $m_{k}=1-u_{k}, k=1,2,3,4$. Now $m_{1}(x)=0.4=m_{2}(x), \quad m_{3}(x)=1, m_{4}(x)=0.6, m_{1}(y)=0.4, \quad m_{2}(y)=0.3, \quad m_{3}(y)=0.2$
and $m_{4}(y)=1$. Take $\alpha=0.4$. Then $\overline{\alpha 1_{x}}(y)=0.2<\alpha$. But $\overline{\alpha 1_{y}}(x)=0.4=\alpha$. Therefore, (X, t) is not R_{0}^{8}.

Proof (f):

Example-3: Consider an fts (X, t) where $X=\{x, y\}, u(x)=0.6, u(y)=0=v(x)$ and $v(y)=$ 0.4 . Clearly, (X, t) is $F R_{1}(v i)$. Let $\alpha=0.5$. Now $\alpha<u(x)$. It can be checked that $\overline{\alpha 1_{X}}(y)=\alpha>u(y)$. Therefore, $\overline{\alpha 1_{X}}(y) \nsucceq u$. Hence, (X, t) is not R_{0}^{3}.

Proof (g): Let (X, t) be an $F R_{1}(i v)$-fts. Let $x \in X, \lambda \in t$ and $\alpha \in I_{1}$ such that $\alpha \leq \lambda(\mathrm{x})$. Suppose $\overline{\alpha 1_{X}} \nleftarrow \lambda$. This implies that there exist $y \in X, x \neq y$ such that $\overline{\alpha 1_{X}}(y)>\lambda(y)$. Thus $\lambda(x) \neq \lambda(y)$. Hence there exist $p, q \in t$ such that $p(x)=1=q(y)$ and $p \leq 1-q$. Put $m=1-$ p and $n=1-q$. Now $m, n \in t^{c}$ such that $m(x)=0=n(y)$ and $m(y)=1=n(x)$. Therefore, $\overline{\alpha 1_{X}}(y) \leq \overline{1_{X}}(y) \leq n(y)=0$, which is a contradiction. Therefore, $\overline{\alpha 1_{X}} \leq \lambda$. Hence (X, t) is R_{0}^{4}.

Proof (h):

Example-4 [13]: Let X be an infinite set. For $x, y \in X$, we define $U_{x y} \in I^{X}$ as follows:

$$
U_{x y}(z)=\left\{\begin{array}{lll}
0 & \text { if } & z \in\{x, y\} \\
1 & \text { if } & z \notin\{x, y\}
\end{array}\right.
$$

Let t be the fuzzy topology on X generated by $\left\{U_{x y}: x, y \in X\right\}$. It can be checked that if $x \neq y, \overline{1_{x}}(y)=0$. Therefore, (X, t) is R_{0}^{4}, R_{0}^{7} and R_{0}^{9}. But (X, t) is neither $F R_{1}(x v i)$ nor $F R_{1}(x v i i i)$ as there exist no $u, v \in \mathrm{t}$ such that $u \leq 1-v$. Therefore, (X, t) is not $F R_{1}(k), k \in\{i, i i, \ldots, x v i i i\} \square$

5. Fuzzy regular axioms

In this section, we recall five definitions of fuzzy regular axioms from [7, 8], and we show that, the well known topological property $\left(\right.$ regular $\left.\Rightarrow R_{1}\right)$ is not true, in general, for fts.

Definition-5.1: An fts (X, t) is called
(a) $F R(i)$ if and only if $\alpha \in I_{0}, \lambda \in t^{c}, x \in X$ and $\alpha \leq 1-\lambda(x)$ imply that there exist u, $v \in t$ such that $\alpha \leq u(x), \lambda \leq v$ and $u \leq 1-v$.
(b) $F R\left(\right.$ ii) if and only if $\alpha \in I_{0}, \lambda \in t^{c}, x \in X$ and $\alpha \lesssim 1-\lambda(x)$ imply that there exist $u, v \in t$ such that $\alpha \lesssim u(x), \lambda \leq v$ and $u \leq 1-v$.
(c) $F R\left(\right.$ iii) if and only if each $u \in t$ is a supremum of $u_{j}, j \in J$, where $\forall j, u_{j} \in t$ and $\overline{u_{j}} \leq u$.
(d) $F R(i v)$ if and only if $\lambda \in t^{c}, x \in X$ and $\lambda(x)=0$ imply that there exist $u, v \in t$ such that $u(x)=1, \lambda \leq v$ and $u \leq 1-v$.
(e) $F R(v)$ if and only if $\lambda \in t^{c}, x \in X$ and $1-\lambda(x)>0$ imply that there exist $u, v \in t$ such that $u(x)>0, \lambda \leq v$ and $u \leq 1-v$.

Note-1 [7, 8]: Let $x \in X$ and λ be a fuzzy set in X. Then for $\alpha \in \mathrm{I}_{0}$, " $\alpha \leq \lambda(x)$ " means $\alpha<\lambda(x)$ if $\alpha \neq 1$ and $\lambda(x)=1$ if $\alpha=1$.

Note-2 [7, 8]: The following implications exist among $F R(i), F R(i i), \ldots ., F R(v)$:

$$
\begin{gathered}
F R(i) \Rightarrow F R(i i) \Rightarrow F R(i i i) \Rightarrow F R(v) \\
\Downarrow \\
F R(i v)
\end{gathered}
$$

For proof see $[7,8,10]$.

Example-5 : Let $X=\{x, y, z\}$. For every pair $x, y \in X$ we define $U_{x y} \in I^{X}$ as follows: $U_{x y}(x)=1, U_{x y}(y)=0$ and $U_{x y}(z)=0.5$. Let t be the fuzzy topology on X generated by $\left\langle U_{x y} \in I^{X}: x, y \in X\right\rangle$. Now it can be easily verified that (X, t) is $F R(i)$. But (X, t) is neither $F R_{1}(x v i)$ nor $F R_{1}(x v i i i)$, since there exist no $u, v \in t$ such that $u \wedge v=0$. Therefore, $F R(k) \nRightarrow F R_{1}(m), k \in\{i, i i, \ldots . ., v\}$ and $m \in\{i, i i, \ldots . ., x v i i i\}$. Thus we see that the property (regular $\Rightarrow R_{1}$) is not true, in general, for fts.

References

1. L. A. Zadeh, Information and Control. 8, 338 (1965). http://dx.doi.org/10.1016/S0019-9958(65)90241-X
2. C. L. Chang, J. Math. Anal. Appl. 24, 182 (1968). http://dx.doi.org/10.1016/0022-247X(68)90057-7
3. R. Lowen, J. Math. Anal. Appl. 56, 621 (1976). http://dx.doi.org/10.1016/0022-247X(76)90029-9
4. B. Hutton and I. Reilly, Fuzzy Sets and Systems 3, 93 (1980). http://dx.doi.org/10.1016/0165-0114(80)90007-X
5. A. K. Srivastava, J. Math. Anal. Appl. 127, 151 (1987). http://dx.doi.org/10.1016/0022-247X(87)90147-8
6. R. Srivastava, S. N. Lal, and A. K. Srivastava, J. Math. Anal. Appl. 136, 66 (1988). http://dx.doi.org/10.1016/0022-247X(88)90116-3
7. D. M. Ali, Proc. Math. Soc., B.H.U., 5, 147 (1989).
8. D. M. Ali, Fuzzy Sets and Systems 35, 101 (1990). http://dx.doi.org/10.1016/0165-0114(90)90022-X
9. D. M. Ali., P. Wuyts, A. K. Srivastava, Fuzzy Sets and Systems 38, 97 (1990). http://dx.doi.org/10.1016/0165-0114(90)90103-D
10. D. M. Ali, Ph. D. Thesis, B.H.U. Varanasi (1990).
11. D. M. Ali, Fuzzy Sets and Systems 50, 97 (1992). http://dx.doi.org/10.1016/0165-0114(92)90207-K
12. F. A. Azam, D. M. Ali, Southeast Asian Bull. Math. 35 (5), 763 (2011).
13. D. M. Ali, F. A. Azam, J. Sci. Res. 4 (1), 21 (2012). doi:10.3329/jsr.v4i1.7044
14. G. Gerla, Fuzzy Sets and Systems 18, 159 (1986). http://dx.doi.org/10.1016/0165-0114(86)90018-7

[^0]: * Corresponding author: faqruddinaliazam@gmail.com

