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Abstract
This paper presents a new approach to using polynomials such as Hermite, Bernoulli, Chebyshev, Fibonacci, and Bessel to solve neutral delay differential equations. The proposed method is based on the truncated polynomial expansion of the function together with collocation points and successive integration techniques. This method reduces the given equation to a system of nonlinear equations with unknown polynomial coefficients which can be easily calculated. The convergence of the proposed method is discussed with several mild conditions. Numerical examples are considered to demonstrate the efficiency of the method. The numerical results reveal that the proposed new approach gives better results than the conventional operational matrix approach of the polynomial collocation method. It demonstrates the reliability and efficiency of this method for solving linear and nonlinear neutral delay differential equations.
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1.   Introduction
Delay Differential Equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. The terms involving previous times are called delay terms. The delay terms are classified as constant, state-dependent, and time-dependent. Neutral delay differential equations (NDDEs) are another type of DDEs in which the highest-order derivative of the unknown function occurs with delay terms. DDEs arise in the fields of signal processing, digital images, control systems, epidemiology, chemical kinetics, etc. Some notable applications of DDEs and NDDEs are in chemical kinetics [1], climate model [2], SIR epidemic model [3], iterative survival model of red blood cells [4], immunology model [5] and cell growth model [6].
	DDEs and NDDEs have been studied by many authors and developed various analytical and numerical methods. Some of them are the Adams predictor corrector algorithm [7], Homotopy perturbation method [8], Reproducing kernel Hilbert space method [9], Variational iteration method [10], Elzaki transforms method [11], Rishi transforms method [12], Haar wavelet series method [13], Higher order derivative Runge Kutta method [14], Composite Runge Kutta methods and new one-step techniques [15], Hybrid Multistep block method [16] and Generalized Rational multistep method [17] for solving DDEs and NDDEs.
	The Collocation method based on various polynomials is a powerful technique for solving differential equations. Gulsu et al. [18,19] have proposed a collocation method based on Hermite and Chebyshev polynomials for solving DDEs with variable coefficients under mixed conditions. Yiizbas et al. [20] have presented the Bessel polynomial operational matrix method for solving NDDEs. Bhrawy et al. [21] have proposed a Legendre-Gauss collocation method for solving NDDEs with proportional delay. Tohidi et al. [22] have presented the Bernoulli operational matrix for solving DDEs. Koc et al. [23] have presented a matrix method based on Fibonacci polynomials for solving DDEs. Ibis et al. [24] have applied Hermite polynomials for solving NDDEs with proportional delays.
	The above-mentioned collocation methods using different polynomials are based on operational matrices. In this study, we propose a new approach of using Polynomial Collocation methods based on the Successive Integration Technique for solving linear and nonlinear NDDEs.
	This paper is organized as follows: Section 2 gives the basic definitions of different polynomials. Section 3 provides a description of the method for solving NDDEs. In Section 4, the convergence analysis of the proposed method is discussed. In Section 5, illustrative examples are provided. 

2. Basic Definition of Polynomials

2.1. Hermite polynomial

The Hermite polynomial  of order n is defined on the interval  There are different ways to define a Hermite polynomial; one of them is the so-called Rodrigues’ formula.
	(1)
From Eqn. (1) the recurrence relation for the polynomials can be derived as
       	(2)
 can be obtained from Eqn. (1) the remaining terms are determined using the recursion relation Eqn. (2). 
Thus, we have the following sequence of polynomials:





The order Hermite polynomial  has a leading coefficient 

2.2. Bernoulli polynomial

The Bernoulli polynomial is named after Jacob Bernoulli, which combines the Bernoulli numbers and binomial coefficients. The generating function for the Bernoulli polynomial of order n is defined by
               	(3) 
The recursion formula for the Bernoulli polynomial is:
, 	(4)
can be obtained from Eqn. (3) the remaining terms are determined using the recursion relation Eqn. (4). Thus, we have a few terms of the Bernoulli polynomials as:




 	

2.3. Chebyshev polynomial

The Chebyshev polynomial related to cosine functions on the interval  of order n is defined as
 	(5) 
The recursion relation of the Chebyshev polynomial is:
      	(6)
 and can be obtained from Eqn. (5). Then the remaining terms are determined from Eqn. (6). Thus, we have the following sequence of polynomials:




 	

2.4. Fibonacci polynomial

The Fibonacci polynomials are a polynomial sequence that can be considered Fibonacci numbers. The Fibonacci polynomials are defined by a recurrence relation

The first few Fibonacci polynomials are:




 
2.5. Bessel polynomial

The Bessel polynomial is defined by

The recursion equation for the Bessel polynomial is:  
The first few Bessel polynomials are:





3. Description of the Proposed Method

Consider the nth-order NDDE of the form.
 	(7)
with initial conditions 
 for      	(8)              
Here  is the initial function, and  is the delay term. 
Let P(t) represent any orthogonal polynomials. For the proposed method, it is assumed that
	(9)
where N is any positive integer, 


Here T stands for transpose of the matrix.
The aim is to determine the polynomial coefficients For this, Eqn. (9) is integrated with respect to t from 
    	(10)
Now, for delay terms 
	(11)
Then eqns. (10) and (11) are substituted in (7) and use the collocating points  ,  where    i = 0, 1…N.  This yields a system of linear or nonlinear equations subject to the linear and nonlinear terms in Eqn. (7). On solving this system of equations, we get the respective polynomial coefficients ’s from which the solution of the NDDE (7) can be obtained.

4. Convergency Analysis

Consider the first-order NDDE of the form.
            	(12)
with initial value condition 
.   	(13)      
Here  and  are given analytical functions.
	The convergence of the proposed method will be provided under several mild conditions, such as the solution boundedness of the Eqn. (12). Some definitions and lemmas are provided to clarify this section's main convergence theorem.

4.1. Definition 4.1 [21]
	
A function   belongs to the Sobolev space , if its  weak derivative    lies in  for all  with the norm

where  denotes the usual Lebesgue norm

and  stands for any finite-dimensional norm in 

4.2. Lemma 4.1 [21]

For a given function  there exists a polynomial  of degree   N such that

where,  is a constant independent of  and is the order of smoothness of . Here  with the smallest norm  is known as the  order best polynomial approximation of  in the norm of 
	Note that if  then  This implies that  converges to  at a spectral rate, that is, it would be faster than any given polynomial rate. Moreover, let us denote the set of continuous functions in a linear space on  by  and the uniform norm in  by 

Now integrating the Eqn. (12) in the interval and using the initial condition (13), we get

Taking  we rewrite the above equation in the following form
        	(14)
where 
  
and
 .
In the following Theorem 4.1, we show that the approximate solution expressed in terms of the orthogonal polynomials converges to the exact solution under several mild conditions.

4.3. Theorem 4.1

Let  and  be the exact and numerical solutions of Eqn. (12). Also, assume the approximations of  and  be  and  respectively. Moreover, suppose that. and  where  
Then,  subject to the condition 
Proof:
Suppose that the unknown functions  and  are approximated in terms of any orthogonal polynomials. Then, the numerical solution is an approximated polynomial in the form of  . We need to find an upper bound for the error between  and  for Eqn. (14).
According to the assumptions, Eqn. (14) can be written as
	(15)
Now, Eqn. (14) – Eqn. (15) yields 
 
By using the triangle inequality, we get
 
Since  and , the above inequality reduces to
	
This can be rewritten as
	
Using the assumptions 

 .
in the above inequality, we get
 
 
 
Let us introduce the following notations:
,  
.
Then, the above equation becomes 

If  , then
 
i.e., 
This is possible because of the smoothness of  and , Lemma 4.1 implies


  and
 
This completes the proof.

5. Numerical Examples

In this section, four numerical examples of linear and nonlinear NDDEs are given to demonstrate the accuracy and effectiveness of the proposed collocation method based on successive integration techniques.
Example 1 [20] Consider the first-order linear NDDE with proportional delay

with initial condition, .
The exact solution is .
The numerical results of the proposed method are compared with the the conventional operational matrix approach using the Bessel polynomial for different values oven in Table 1. The solution graph obtained using the proposed method with N=10 is presented in Fig. 1.

Table 1. Absolute Errors for Example 1.

	Time t
	Bessel polynomial collocation method

	
	N = 3
	N = 6
	N = 10

	
	Matrix Approach
	Successive Integration Technique
	Matrix Approach
	Successive Integration Technique
	Matrix Approach
	Successive Integration Technique

	0.2
	1.14 e-3
	2.82 e-04
	3.66 e-7
	5.30 e-08
	7.54 e-13
	2.17 e-13

	0.4
	1.56 e-3
	3.69 e-04
	2.12 e-7
	3.23 e-08
	4.72 e-13
	2.21 e-13

	0.6
	3.26 e-4
	1.61 e-04
	1.36 e-7
	2.13 e-08
	2.47 e-13
	2.76 e-14

	0.8
	4.20 e-4
	8.27 e-05
	1.90 e-7
	1.65 e-08
	4.81 e-14
	4.13 e-14

	1.0
	7.82 e-3
	1.97 e-04
	3.74 e-6
	1.16 e-08
	1.67e-11
	5.96 e-13
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Fig. 1. Solution Graph for Example 1.

Example 2 [19] Consider the second-order linear NDDE with constant delay and variable coefficient

with initial condition and .
The exact solution is  .
The numerical results of the proposed method are compared with the conventional operational matrix approach by using the Chebyshev polynomial for different values of N are given in Table 2. The solution graph obtained using the proposed method with N = 8 is presented in Fig. 2.
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Fig. 2. Solution Graph for Example 2.

Table 2. Absolute Errors for Example 2.

	
Time 
T
	Chebyshev Polynomial Collocation Method

	
	N = 6
	N = 7

	
	Matrix Approach
	Successive Integration Technique
	Matrix Approach
	Successive Integration Technique

	-0.2
	0.30 e-4
	1.49 e-7
	0.80 e-5
	7.21 e-7

	-0.4
	0.95 e-4
	2.69 e-6
	0.42 e-4
	2.90 e-6

	-0.6
	0.16 e-3
	9.51 e-6
	0.10 e-3
	6.30 e-6

	-0.8
	0.21 e-3
	2.06 e-5
	0.18 e-3
	1.05 e-5

	-1.0
	0.26 e-3
	3.53 e-5
	0.28e-3
	1.57e-5



Example 3 [25] Consider the following nonlinear NDDE

with initial condition  and 
The exact solution is  
The absolute errors are determined by using the proposed method based on five polynomials, namely Hermite, Bernoulli, Chebyshev, Fibonacci, and Bessel, with different values of N. The numerical results at t = 1 are presented in Table 3. 

Table 3. Absolute Errors for Example 3.

	Polynomials
	N = 3
	N = 5
	N = 7

	Bessel
	1.17e-03
	4.30e-05
	1.66e-05

	Bernoulli
	6.08e-05
	4.11e-06
	1.62e-07

	Chebyshev
	1.24e-03
	2.38e-05
	3.45e-06

	Hermite
	6.89e-04
	6.98e-06
	3.71e-07

	Fibonacci
	9.03e-04
	6.39e-06
	4.16e-06







Example 4 [25] 

Consider the following nonlinear state-dependent NDDE

with initial condition 
The exact solution is  
The absolute errors are determined by using the proposed method based on five polynomials, namely Hermite, Bernoulli, Chebyshev, Fibonacci, and Bessel, with different values of N. The numerical results at t = 1 are presented in Table 4.

Table 4. Absolute Errors for Example 4.
	Polynomials
	N = 3
	N = 5
	N = 7

	Bessel
	6.27e-04
	1.08e-06
	1.01e-08

	Bernoulli
	6.26e-04
	1.07e-06
	1.78e-08

	Chebyshev
	6.27e-04
	1.08e-06
	3.16e-09

	Hermite
	6.27e-04
	1.08e-06
	3.43e-09

	Fibonacci
	6.27e-04
	1.09e-06
	3.07e-09









6. Conclusion

In this paper, a new application of the Polynomial collocation method based on successive integration techniques is presented for solving neutral delay differential equations. The convergence analysis of the presented method has been discussed. Numerical examples of linear and nonlinear neutral delay differential equations are considered to demonstrate the efficiency of the proposed method. It is evident that the proposed polynomial collocation method based on successive integration techniques gives better results than the conventional operational matrix approach. The proposed method is computationally simple but gives results with good accuracy. Also, it is observed that accuracy increases as N increases. Hence, it is concluded that the proposed method is suitable for solving neutral delay differential equations.
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