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Abstract 

A five-dimensional Bianchi type-III string cosmological model is studied with a one-

dimensional cosmic string in the presence of zero mass scalar field in the context of the Lyra 

manifold. Exact solutions of Einstein's field equations are obtained by assuming quadratic 

equation of state (EoS) of the form        , where   is a constant and strictly    . 

The physical and geometrical aspects of the investigated model are analyzed in detail. 
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1.   Introduction 

At the time of phase transition in the early universe, the universe's temperature lowered, 

and the symmetry of the universe was broken spontaneously, which gives topologically 

stable defects known as vacuum domain walls, strings, and monopoles [1]. As a result, 

string cosmological models have received significant attention from researchers due to 

their importance in structure formation in the early stages of the universe's evolution.  

 By introducing the gauge function into the structure-less Manifold, Lyra [2] proposed 

a modification of Riemannian geometry, which shows a remarkable similitude to Weyl's 

geometry [3]. In consequent investigations, Sen [4], Sen, and Dunn [5] expressed a new 

scalar-tensor theory of gravitation and constructed an analog of Einstein's field equations 

based on Lyra's geometry. Halford [6] has shown that the scalar-tensor treatment based on 

Lyra's geometry predicts the same effects as in general relativity. At present, it is 

fascinating to study string cosmology in five-dimensional space-time in the framework of 

general relativity in addition to Lyra geometry. Numerous authors have studied different 

cosmological models in various theories of gravitation along with zero mass scalar field. 

Ram et al. [7] presented anisotropic dark energy with a massive scalar field in the 

evolution of a spatially homogeneous Bianchi type-VI0 cosmological model in the 
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framework of Lyra geometry. Reddy [8] investigated a spatially homogeneous and 

anisotropic Bianchi type-V dark energy model in the presence of scalar meson fields in 

general relativity. Katore et al. [9] examined a cylindrically symmetric Einstein-Rosen 

cosmological model with bulk viscosity and zero-mass scalar field in Lyra geometry. 

Mete [10] studied the cosmological model in the Lyra manifold. Reddy et al. [11] 

discussed a new dark energy model in a five-dimensional Kaluza-Klein anisotropic space-

time in the presence of scalar-meson fields in general relativity. Kiran et al. [12] 

discussed spatially homogeneous and anisotropic Bianchi type-III bulk viscous fluid string 

cosmological model in        gravity. Singh et al. [13] considered a five-dimensional 

spherically symmetric space-time within the framework of Saez-Ballester theory, 

wherever minimal dark energy-matter interaction occurs. Bhabor et al. [14] studied five-

dimensional Bianchi type-I string cosmological models with bulk viscous fluid in Lyra 

geometry. Mete et al. [15] studied a five-dimensional plane-symmetric bulk viscous string 

cosmological model in general relativity. Lambat et al. [16] explored Bianchi type VIo 

inflationary model with scalar field and flat potential in the context of Lyra geometry. 

 The equation of state in relativity and cosmology, which is however the relationship 

among temperature, pressure, combined matter, energy, and energy density for any region 

of space, plays a vital role. Reddy et al. [17] have studied the Bianchi type-I cosmological 

model with the quadratic equation of state in the general theory of relativity. Ananda et al. 

[18] examined cosmological dynamics and dark energy with a quadratic EoS; they have 

shown that the behavior of the anisotropy at the singularity found in the brane scenario 

can be recreated in the general relativistic context by considering the general form of 

quadratic EoS. Several researchers, including Rao et al. [19], Adhav et al. [20], and 

Mollah et al. [21,22], have investigated various cosmological models in five-dimensional 

space-time in different aspects. Recently Beesham et al. [23] and Baro et al. [24] pointed 

out different cosmological models with a quadratic EoS in general and modified theories 

of gravitation. Kantowaski-Sachs cosmological model with bulk viscous and cosmic 

string in the context of      gravity has been investigated by Bhoyar et al. [25]. 

Basumatary et al. [26] have explored the Bianchi type VI0 dark energy model with a 

particular form of scale factor in Sen-Dunn's theory of gravitation. Brahma et al. [27] have 

reviewed Bianchi type-V dark energy cosmological model with the electromagnetic field 

in Lyra based on        gravity.        

 Inspired by the above discussions, in this paper, a higher dimensional bulk viscous 

fluid cosmological model with one-dimensional cosmic string is studied in the presence of 

interacting zero mass scalar field in Lyra geometry with the aid of Bianchi type-III space-

time. Exact solutions ofEinstein's field equations are obtained by assuming quadratic EoS 

in the form       , where   is a constant and strictly    . Some physical and 

geometrical properties are also examined with present-day observations.   
 

2. Metric and Field Equations 
 

Bianchi type- III cosmological models in five-dimension are given by    

                                     (1) 
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where      are functions of time   and   is extra dimensions.   

The field equations based on Lyra's Manifold as presented by Sen [4] in the normal gauge 

are written as, 

    
 

 
     

 

 
     

 

 
    

                       (2) 

where     is displacement vector field of the Lyra manifold defined as, 

                  (3) 

and other symbols have their usual meaning, as in Riemannian geometry. 

Let us consider the energy-momentum tensor for a bulk viscous fluid containing a one-

dimensional cosmic string corresponding to interacting zero-mass scalar fields as 

        ̄       ̄           (       
 

 
         )  ,           (4) 

where  is the rest energy density for a cloud of strings loaded with particles which are 

given by      ,    being particle energy density,   is tension in the string and 

 ̄      , (5) 

where  ̄ is the total pressure which consists of the proper pressure  ,   stands for the 

coefficient of bulk viscosity,  is the Hubble parameter,      
  the scalar expansion 

factor,    the five velocity vectors and    is a space-like vector that represents the 

directions of the strings. 

The velocity vector    and direction of the string   are given by  

               (6) 

and 

          
 

 
    (7) 

In the co-moving coordinates system,   and   satisfy the conditions  

   
      

       and             (8) 

The scalar field   satisfies the equation 

  
 
 
   (9) 

Let us assume an equation of state (EoS) in the general form        for the matter of 

distribution and    considered it in the quadratic form [17] as 

       , (10) 

where   is a constant and strictly   . 

In the commoving coordinate system, equation (4) reduces to   

  
    

    
   ̄;      

   ̄   ;      
      and    

    for     

If      be the average scale factor then the spatial volume is 

          (11) 

From equations (2) - (8), line element (1) leads the following system of equations 
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)   , (18) 

where overhead dot (.) denotes ordinary differentiation with respect to time t. 

 

3. Solution of Field Equations 

 

Equation (17) gives  

    , where   is an integrating constant. 

Without loss of generality, taking    , yields 

    (19) 

Using equation (19) in equations (12) to (18) gives rise to    
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)   . (24) 

From the above five highly nonlinear independent equations with seven 

unknowns            ̄   can be seen. In order to overcome the difficulties due to the 

nonlinear nature of the field equations using      (Constant). Our aim is to derive the 

exact solutions of the field equations by assuming the following two extra conditions: 

i) The special law of variation for the Hubble parameter proposed by Berman [28], which 

yields a constant deceleration parameter defined by 

   
  ̈

 ̇ = Constant (25) 
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ii) Assuming that the shear scalar is proportional to scalar expansion       proposed by 

Collins [29], which leads to a condition 

     (26) 

where     is constant, and it takes care of the anisotropic nature of the model.  

Solving equation (25) yields to  

        
 

   ,                                (27) 

where       and   are constants of integration.  

This equation point towards the condition for the accelerated expansion of the universe 

is        . 

The scalar field   in the model is obtained as 

    (
   

   
)  

   

    (28) 

From equations (11), (19), and (26), the solution to the scale factors    and   are obtained 

as 

        
  

           ,    ,        
  

           ,         (29) 

and 

        
 

           ,      (30) 

with the suitable choice of constants, the scale factors can be written as,   

     
  

           
 
     

 

                  (31) 

After a suitable choice of coordinates and constants, the metric (1) can be written as  

          
  

                              
 

               (32) 

 

4. Physical and Kinematical Parameters 

 

In this section, we compute the values of physical and kinematical parameters of the 

model (32), which plays a significant role in the discussion of the cosmological model of 

the universe. 

The spatial volume for the model is given by 

   
 

      (33) 

The expansion scalar    , the shear scalar      and the average Hubble’s parameter    

are obtained as 

  
 

     
    (34) 

   
       

                   (35) 

  
 

     
   . (36) 



356 
 

Five-Dimensional Cosmological Model  

 

Now by using quadratic EoS in the form         , the energy density  , and the 

string tension density   are given as    

  
 

√ 
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              (37) 

   
           

            
     

   

            (38) 

By using the equations (37) and (38) in the relation       , the energy density of 

particle    is obtained as         
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                                 (39) 

 The displacement vector     can be obtained from equation (23) as 
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       (40) 

Also, the total pressure  ̄ and the proper pressure can be derived from equations (10) and 

(20) as     

 ̄   
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5. Physical Interpretation of the Solutions 

 

From Fig. 1, it has been observed that the Hubble parameter     given by equation (36) is 

always positive. As time   increases, the Hubble parameter     constantly decreases, and 

after some time, that is, whenever     it becomes zero. 

The behavior of the expansion scalar     by the use of equation (34) is depicted in Fig. 2. 

It is observed that the expansion scalar     decreases as time   increases, and after some 

finite time, it vanishes as    . 
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From equation (33) and Fig. 3, it has been noticed that the evolution of spatial volume     

is finite whenever      and it increases with time  , and after some finite time whenever 

time   , it reaches to infinity. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Variation of Hubble parameter   versus time  . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Variation of expansion scalar   versus time  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Variation of spatial volume   versus time  . 
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6. Conclusion 

        

In this paper, five-dimensional Bianchi type- III metrics in the framework of Lyra 

geometry with matter source as a bulk viscous fluid with one-dimensional cosmic string 

has been studied, and exact solutions of Einstein's field equations are obtained by using 

the quadratic equation of state in the form        . It has been observed that the 

expansion scalar    , the Hubble parameter      and the displacement vector     are 

always positive and tend to zero whenever   approaches infinity. At an initial epoch   

 , the spatial volume     and increases as time   increases, which exhibits the 

accelerated expansion of the universe (since        ), and finally, it turns out to be 

infinity whenever time    . We also note that 
 

 
 tends to constant as   tends to infinity 

for     which shows that the anisotropy in the universe is maintained throughout. 

However, for    , the model approaches isotropy. 
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